Exemple #1
0
def yolo4lite_resnet50v2_body(inputs, num_anchors, num_classes):
    '''Create YOLO_v4 Lite ResNet50V2 model CNN body in keras.'''
    resnet50v2 = ResNet50V2(input_tensor=inputs,
                            weights='imagenet',
                            include_top=False)
    print('backbone layers number: {}'.format(len(resnet50v2.layers)))

    # input: 416 x 416 x 3
    # post_relu: 13 x 13 x 2048
    # conv4_block5_out: 26 x 26 x 1024
    # conv3_block3_out: 52 x 52 x 512

    # f1 :13 x 13 x 2048
    f1 = resnet50v2.get_layer('post_relu').output
    # f2: 26 x 26 x 1024
    f2 = resnet50v2.get_layer('conv4_block5_out').output
    # f3 : 52 x 52 x 512
    f3 = resnet50v2.get_layer('conv3_block3_out').output

    f1_channel_num = 1024
    f2_channel_num = 512
    f3_channel_num = 256

    y1, y2, y3 = yolo4lite_predictions(
        (f1, f2, f3), (f1_channel_num, f2_channel_num, f3_channel_num),
        num_anchors, num_classes)

    return Model(inputs=inputs, outputs=[y1, y2, y3])
def yolo4lite_mobilenet_body(inputs, num_anchors, num_classes, alpha=1.0):
    '''Create YOLO_v4 Lite MobileNet model CNN body in keras.'''
    mobilenet = MobileNet(input_tensor=inputs,
                          weights='imagenet',
                          include_top=False,
                          alpha=alpha)
    print('backbone layers number: {}'.format(len(mobilenet.layers)))

    # input: 416 x 416 x 3
    # conv_pw_13_relu :13 x 13 x (1024*alpha)
    # conv_pw_11_relu :26 x 26 x (512*alpha)
    # conv_pw_5_relu : 52 x 52 x (256*alpha)

    # f1: 13 x 13 x (1024*alpha) for 416 input
    f1 = mobilenet.get_layer('conv_pw_13_relu').output
    # f2: 26 x 26 x (512*alpha) for 416 input
    f2 = mobilenet.get_layer('conv_pw_11_relu').output
    # f3: 52 x 52 x (256*alpha) for 416 input
    f3 = mobilenet.get_layer('conv_pw_5_relu').output

    f1_channel_num = int(1024 * alpha)
    f2_channel_num = int(512 * alpha)
    f3_channel_num = int(256 * alpha)

    y1, y2, y3 = yolo4lite_predictions(
        (f1, f2, f3), (f1_channel_num, f2_channel_num, f3_channel_num),
        num_anchors, num_classes)

    return Model(inputs, [y1, y2, y3])
def yolo4lite_mobilenetv2_body(inputs, num_anchors, num_classes, alpha=1.0):
    '''Create YOLO_v4 Lite MobileNetV2 model CNN body in keras.'''
    mobilenetv2 = MobileNetV2(input_tensor=inputs,
                              weights='imagenet',
                              include_top=False,
                              alpha=alpha)
    print('backbone layers number: {}'.format(len(mobilenetv2.layers)))

    # input: 416 x 416 x 3
    # out_relu: 13 x 13 x 1280
    # block_13_expand_relu: 26 x 26 x (576*alpha)
    # block_6_expand_relu: 52 x 52 x (192*alpha)

    # f1 :13 x 13 x 1280
    f1 = mobilenetv2.get_layer('out_relu').output
    # f2: 26 x 26 x (576*alpha)
    f2 = mobilenetv2.get_layer('block_13_expand_relu').output
    # f3 : 52 x 52 x (192*alpha)
    f3 = mobilenetv2.get_layer('block_6_expand_relu').output

    f1_channel_num = int(1280 * alpha)
    f2_channel_num = int(576 * alpha)
    f3_channel_num = int(192 * alpha)
    #f1_channel_num = 1024
    #f2_channel_num = 512
    #f3_channel_num = 256

    y1, y2, y3 = yolo4lite_predictions(
        (f1, f2, f3), (f1_channel_num, f2_channel_num, f3_channel_num),
        num_anchors, num_classes)

    return Model(inputs=inputs, outputs=[y1, y2, y3])
def yolo4lite_efficientnet_body(inputs, num_anchors, num_classes, level=1):
    '''
    Create YOLO_v4 Lite EfficientNet model CNN body in keras.
    # Arguments
        level: EfficientNet level number.
            by default we use EfficientNetB1 as backbone
    '''
    efficientnet, feature_map_info = get_efficientnet_backbone_info(
        inputs, level=level)
    print('backbone layers number: {}'.format(len(efficientnet.layers)))

    f1 = efficientnet.get_layer('top_activation').output
    f1_channel_num = feature_map_info['f1_channel_num']

    f2 = efficientnet.get_layer('block6a_expand_activation').output
    f2_channel_num = feature_map_info['f2_channel_num']

    f3 = efficientnet.get_layer('block4a_expand_activation').output
    f3_channel_num = feature_map_info['f3_channel_num']

    y1, y2, y3 = yolo4lite_predictions(
        (f1, f2, f3), (f1_channel_num, f2_channel_num, f3_channel_num),
        num_anchors, num_classes)

    return Model(inputs, [y1, y2, y3])
def yolo4lite_mobilenetv3large_body(inputs,
                                    num_anchors,
                                    num_classes,
                                    alpha=1.0):
    '''Create YOLO_v4 Lite MobileNetV3Large model CNN body in keras.'''
    mobilenetv3large = MobileNetV3Large(input_tensor=inputs,
                                        weights='imagenet',
                                        include_top=False,
                                        alpha=alpha)
    print('backbone layers number: {}'.format(len(mobilenetv3large.layers)))

    # input: 416 x 416 x 3
    # activation_38(layer 194, final feature map): 13 x 13 x (960*alpha)
    # expanded_conv_14/Add(layer 191, end of block14): 13 x 13 x (160*alpha)

    # activation_29(layer 146, middle in block12) : 26 x 26 x (672*alpha)
    # expanded_conv_11/Add(layer 143, end of block11) : 26 x 26 x (112*alpha)

    # activation_15(layer 79, middle in block6) : 52 x 52 x (240*alpha)
    # expanded_conv_5/Add(layer 76, end of block5): 52 x 52 x (40*alpha)

    # NOTE: activation layer name may different for TF1.x/2.x, so we
    # use index to fetch layer
    # f1: 13 x 13 x (960*alpha)
    f1 = mobilenetv3large.layers[194].output
    # f2: 26 x 26 x (672*alpha) for 416 input
    f2 = mobilenetv3large.layers[146].output
    # f3: 52 x 52 x (240*alpha) for 416 input
    f3 = mobilenetv3large.layers[79].output

    f1_channel_num = int(960 * alpha)
    f2_channel_num = int(672 * alpha)
    f3_channel_num = int(240 * alpha)
    #f1_channel_num = 1024
    #f2_channel_num = 512
    #f3_channel_num = 256

    y1, y2, y3 = yolo4lite_predictions(
        (f1, f2, f3), (f1_channel_num, f2_channel_num, f3_channel_num),
        num_anchors, num_classes)

    return Model(inputs, [y1, y2, y3])
Exemple #6
0
def yolo4lite_mobilenetv3small_body(inputs,
                                    num_anchors,
                                    num_classes,
                                    alpha=1.0):
    '''Create YOLO_v4 Lite MobileNetV3Small model CNN body in keras.'''
    mobilenetv3small = MobileNetV3Small(input_tensor=inputs,
                                        weights='imagenet',
                                        include_top=False,
                                        alpha=alpha)
    print('backbone layers number: {}'.format(len(mobilenetv3small.layers)))

    # input: 416 x 416 x 3
    # activation_31(layer 165, final feature map): 13 x 13 x (576*alpha)
    # expanded_conv_10/Add(layer 162, end of block10): 13 x 13 x (96*alpha)

    # activation_22(layer 117, middle in block8) : 26 x 26 x (288*alpha)
    # expanded_conv_7/Add(layer 114, end of block7) : 26 x 26 x (48*alpha)

    # activation_7(layer 38, middle in block3) : 52 x 52 x (96*alpha)
    # expanded_conv_2/Add(layer 35, end of block2): 52 x 52 x (24*alpha)

    # NOTE: activation layer name may different for TF1.x/2.x, so we
    # use index to fetch layer
    # f1: 13 x 13 x (576*alpha)
    f1 = mobilenetv3small.layers[165].output
    # f2: 26 x 26 x (288*alpha) for 416 input
    f2 = mobilenetv3small.layers[117].output
    # f3: 52 x 52 x (96*alpha)
    f3 = mobilenetv3small.layers[38].output

    f1_channel_num = int(576 * alpha)
    f2_channel_num = int(288 * alpha)
    f3_channel_num = int(96 * alpha)
    #f1_channel_num = 1024
    #f2_channel_num = 512
    #f3_channel_num = 256

    y1, y2, y3 = yolo4lite_predictions(
        (f1, f2, f3), (f1_channel_num, f2_channel_num, f3_channel_num),
        num_anchors, num_classes)

    return Model(inputs, [y1, y2, y3])