Exemple #1
0
def tiny_yolo4lite_mobilenet_body(inputs,
                                  num_anchors,
                                  num_classes,
                                  alpha=1.0,
                                  use_spp=True):
    '''Create Tiny YOLO_v3 Lite MobileNet model CNN body in keras.'''
    mobilenet = MobileNet(input_tensor=inputs,
                          weights='imagenet',
                          include_top=False,
                          alpha=alpha)

    # input: 416 x 416 x 3
    # conv_pw_13_relu :13 x 13 x (1024*alpha)
    # conv_pw_11_relu :26 x 26 x (512*alpha)
    # conv_pw_5_relu : 52 x 52 x (256*alpha)

    # f1 :13 x 13 x (1024*alpha) for 416 input
    f1 = mobilenet.get_layer('conv_pw_13_relu').output
    # f2: 26 x 26 x (512*alpha) for 416 input
    f2 = mobilenet.get_layer('conv_pw_11_relu').output

    #feature map 1 head (13 x 13 x (512*alpha) for 416 input)
    x1 = DarknetConv2D_BN_Leaky(int(512 * alpha), (1, 1))(f1)
    if use_spp:
        x1 = Spp_Conv2D_BN_Leaky(x1, int(512 * alpha))

    #upsample fpn merge for feature map 1 & 2
    x1_upsample = compose(DarknetConv2D_BN_Leaky(int(256 * alpha), (1, 1)),
                          UpSampling2D(2))(x1)
    x2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(int(512*alpha), (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=int(512 * alpha),
                                            kernel_size=(3, 3),
                                            block_id_str='15'))(
                                                [x1_upsample, f2])

    #feature map 2 output (26 x 26 x (512*alpha) for 416 input)
    y2 = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1))(x2)

    #downsample fpn merge for feature map 2 & 1
    x2_downsample = compose(
        ZeroPadding2D(((1, 0), (1, 0))),
        #DarknetConv2D_BN_Leaky(int(512*alpha), (3,3), strides=(2,2)),
        Darknet_Depthwise_Separable_Conv2D_BN_Leaky(int(512 * alpha), (3, 3),
                                                    strides=(2, 2),
                                                    block_id_str='16'))(x2)
    x1 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(int(1024*alpha), (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=int(1024 * alpha),
                                            kernel_size=(3, 3),
                                            block_id_str='17'))(
                                                [x2_downsample, x1])

    #feature map 1 output (13 x 13 x (1024*alpha) for 416 input)
    y1 = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1))(x1)

    return Model(inputs, [y1, y2])
Exemple #2
0
def tiny_yolo4lite_efficientnet_body(inputs,
                                     num_anchors,
                                     num_classes,
                                     level=0,
                                     use_spp=True):
    '''
    Create Tiny YOLO_v4 Lite EfficientNet model CNN body in keras.
    # Arguments
        level: EfficientNet level number.
            by default we use basic EfficientNetB0 as backbone
    '''
    efficientnet, feature_map_info = get_efficientnet_backbone_info(
        inputs, level=level)

    f1 = efficientnet.get_layer('top_activation').output
    f2 = efficientnet.get_layer('block6a_expand_activation').output
    f1_channel_num = feature_map_info['f1_channel_num']
    f2_channel_num = feature_map_info['f2_channel_num']

    #feature map 1 head (13 x 13 x (f1_channel_num//2) for 416 input)
    x1 = DarknetConv2D_BN_Leaky(f1_channel_num // 2, (1, 1))(f1)
    if use_spp:
        x1 = Spp_Conv2D_BN_Leaky(x1, f1_channel_num // 2)

    #upsample fpn merge for feature map 1 & 2
    x1_upsample = compose(DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1)),
                          UpSampling2D(2))(x1)
    x2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(f2_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f2_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='8'))(
                                                [x1_upsample, f2])

    #feature map 2 output (26 x 26 x f2_channel_num for 416 input)
    y2 = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1))(x2)

    #downsample fpn merge for feature map 2 & 1
    x2_downsample = compose(
        ZeroPadding2D(((1, 0), (1, 0))),
        #DarknetConv2D_BN_Leaky(f1_channel_num//2, (3,3), strides=(2,2)),
        Darknet_Depthwise_Separable_Conv2D_BN_Leaky(f1_channel_num // 2,
                                                    (3, 3),
                                                    strides=(2, 2),
                                                    block_id_str='9'))(x2)
    x1 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(f1_channel_num, (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=f1_channel_num,
                                            kernel_size=(3, 3),
                                            block_id_str='10'))(
                                                [x2_downsample, x1])

    #feature map 1 output (13 x 13 x f1_channel_num for 416 input)
    y1 = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1))(x1)

    return Model(inputs, [y1, y2])
Exemple #3
0
def yolo4lite_mobilenetv3large_body(inputs,
                                    num_anchors,
                                    num_classes,
                                    alpha=1.0):
    '''Create YOLO_v4 Lite MobileNetV3Large model CNN body in keras.'''
    mobilenetv3large = MobileNetV3Large(input_tensor=inputs,
                                        weights='imagenet',
                                        include_top=False,
                                        alpha=alpha)

    # input: 416 x 416 x 3
    # activation_38(layer 194, final feature map): 13 x 13 x (960*alpha)
    # expanded_conv_14/Add(layer 191, end of block14): 13 x 13 x (160*alpha)

    # activation_29(layer 146, middle in block12) : 26 x 26 x (672*alpha)
    # expanded_conv_11/Add(layer 143, end of block11) : 26 x 26 x (112*alpha)

    # activation_15(layer 79, middle in block6) : 52 x 52 x (240*alpha)
    # expanded_conv_5/Add(layer 76, end of block5): 52 x 52 x (40*alpha)

    # f1 :13 x 13 x (960*alpha)
    # NOTE: activation layer name may different for TF1.x/2.x, so we
    # use index to fetch layer
    f1 = mobilenetv3large.layers[194].output
    #feature map 1 head (13 x 13 x (480*alpha) for 416 input)
    x1 = make_yolo_spp_depthwise_separable_head(f1, int(480 * alpha))

    #upsample fpn merge for feature map 1 & 2
    x1_upsample = compose(DarknetConv2D_BN_Leaky(int(336 * alpha), (1, 1)),
                          UpSampling2D(2))(x1)

    f2 = mobilenetv3large.layers[146].output
    # f2: 26 x 26 x (672*alpha) for 416 input
    x2 = DarknetConv2D_BN_Leaky(int(336 * alpha), (1, 1))(f2)
    x2 = Concatenate()([x2, x1_upsample])

    #feature map 2 head (26 x 26 x (336*alpha) for 416 input)
    x2 = make_yolo_depthwise_separable_head(x2, int(336 * alpha))

    #upsample fpn merge for feature map 2 & 3
    x2_upsample = compose(DarknetConv2D_BN_Leaky(int(120 * alpha), (1, 1)),
                          UpSampling2D(2))(x2)

    f3 = mobilenetv3large.layers[79].output
    # f3 : 52 x 52 x (240*alpha) for 416 input
    x3 = DarknetConv2D_BN_Leaky(int(120 * alpha), (1, 1))(f3)
    x3 = Concatenate()([x3, x2_upsample])

    #feature map 3 head & output (52 x 52 x (240*alpha) for 416 input)
    #x3, y3 = make_depthwise_separable_last_layers(x3, int(120*alpha), num_anchors*(num_classes+5))
    x3 = make_yolo_depthwise_separable_head(x3, int(120 * alpha))
    y3 = compose(Depthwise_Separable_Conv2D_BN_Leaky(int(240 * alpha), (3, 3)),
                 DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x3)

    #downsample fpn merge for feature map 3 & 2
    x3_downsample = compose(
        ZeroPadding2D(((1, 0), (1, 0))),
        Darknet_Depthwise_Separable_Conv2D_BN_Leaky(int(336 * alpha), (3, 3),
                                                    strides=(2, 2)))(x3)

    x2 = Concatenate()([x3_downsample, x2])

    #feature map 2 output (26 x 26 x (672*alpha) for 416 input)
    #x2, y2 = make_depthwise_separable_last_layers(x2, int(336*alpha), num_anchors*(num_classes+5))
    x2 = make_yolo_depthwise_separable_head(x2, int(336 * alpha))
    y2 = compose(Depthwise_Separable_Conv2D_BN_Leaky(int(672 * alpha), (3, 3)),
                 DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x2)

    #downsample fpn merge for feature map 2 & 1
    x2_downsample = compose(
        ZeroPadding2D(((1, 0), (1, 0))),
        Darknet_Depthwise_Separable_Conv2D_BN_Leaky(int(480 * alpha), (3, 3),
                                                    strides=(2, 2)))(x2)

    x1 = Concatenate()([x2_downsample, x1])

    #feature map 1 output (13 x 13 x (960*alpha) for 416 input)
    #x1, y1 = make_depthwise_separable_last_layers(x1, int(480*alpha), num_anchors*(num_classes+5))
    x1 = make_yolo_depthwise_separable_head(x1, int(480 * alpha))
    y1 = compose(Depthwise_Separable_Conv2D_BN_Leaky(int(960 * alpha), (3, 3)),
                 DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x1)

    return Model(inputs, [y1, y2, y3])
Exemple #4
0
def tiny_yolo4lite_mobilenetv3large_body(inputs,
                                         num_anchors,
                                         num_classes,
                                         alpha=1.0,
                                         spp=True):
    '''Create Tiny YOLO_v4 Lite MobileNetV3Large model CNN body in keras.'''
    mobilenetv3large = MobileNetV3Large(input_tensor=inputs,
                                        weights='imagenet',
                                        include_top=False,
                                        alpha=alpha)

    # input: 416 x 416 x 3
    # activation_38(layer 194, final feature map): 13 x 13 x (960*alpha)
    # expanded_conv_14/Add(layer 191, end of block14): 13 x 13 x (160*alpha)

    # activation_29(layer 146, middle in block12) : 26 x 26 x (672*alpha)
    # expanded_conv_11/Add(layer 143, end of block11) : 26 x 26 x (112*alpha)

    # activation_15(layer 79, middle in block6) : 52 x 52 x (240*alpha)
    # expanded_conv_5/Add(layer 76, end of block5): 52 x 52 x (40*alpha)

    # f1 :13 x 13 x (960*alpha)
    # NOTE: activation layer name may different for TF1.x/2.x, so we
    # use index to fetch layer
    f1 = mobilenetv3large.layers[194].output
    # f2: 26 x 26 x (672*alpha) for 416 input
    f2 = mobilenetv3large.layers[146].output

    #feature map 1 head (13 x 13 x (480*alpha) for 416 input)
    x1 = DarknetConv2D_BN_Leaky(int(480 * alpha), (1, 1))(f1)
    if spp:
        x1 = Spp_Conv2D_BN_Leaky(x1, int(480 * alpha))

    #upsample fpn merge for feature map 1 & 2
    x1_upsample = compose(DarknetConv2D_BN_Leaky(int(336 * alpha), (1, 1)),
                          UpSampling2D(2))(x1)
    x2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(int(672*alpha), (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=int(672 * alpha),
                                            kernel_size=(3, 3),
                                            block_id_str='15'))(
                                                [x1_upsample, f2])

    #feature map 2 output (26 x 26 x (672*alpha) for 416 input)
    y2 = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1))(x2)

    #downsample fpn merge for feature map 2 & 1
    x2_downsample = compose(
        ZeroPadding2D(((1, 0), (1, 0))),
        #DarknetConv2D_BN_Leaky(int(480*alpha), (3,3), strides=(2,2)),
        Darknet_Depthwise_Separable_Conv2D_BN_Leaky(int(480 * alpha), (3, 3),
                                                    strides=(2, 2),
                                                    block_id_str='16'))(x2)
    x1 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(int(960*alpha), (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=int(960 * alpha),
                                            kernel_size=(3, 3),
                                            block_id_str='17'))(
                                                [x2_downsample, x1])

    #feature map 1 output (13 x 13 x (960*alpha) for 416 input)
    y1 = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1))(x1)

    return Model(inputs, [y1, y2])
Exemple #5
0
def yolo4lite_mobilenet_body(inputs, num_anchors, num_classes, alpha=1.0):
    '''Create YOLO_v4 Lite MobileNet model CNN body in keras.'''
    mobilenet = MobileNet(input_tensor=inputs,
                          weights='imagenet',
                          include_top=False,
                          alpha=alpha)

    # input: 416 x 416 x 3
    # conv_pw_13_relu :13 x 13 x (1024*alpha)
    # conv_pw_11_relu :26 x 26 x (512*alpha)
    # conv_pw_5_relu : 52 x 52 x (256*alpha)

    f1 = mobilenet.get_layer('conv_pw_13_relu').output
    # f1 :13 x 13 x (1024*alpha) for 416 input
    #feature map 1 head (13 x 13 x (512*alpha) for 416 input)
    x1 = make_yolo_spp_depthwise_separable_head(f1,
                                                int(512 * alpha),
                                                block_id_str='14')

    #upsample fpn merge for feature map 1 & 2
    x1_upsample = compose(DarknetConv2D_BN_Leaky(int(256 * alpha), (1, 1)),
                          UpSampling2D(2))(x1)

    f2 = mobilenet.get_layer('conv_pw_11_relu').output
    # f2: 26 x 26 x (512*alpha) for 416 input
    x2 = DarknetConv2D_BN_Leaky(int(256 * alpha), (1, 1))(f2)
    x2 = Concatenate()([x2, x1_upsample])

    #feature map 2 head (26 x 26 x (256*alpha) for 416 input)
    x2 = make_yolo_depthwise_separable_head(x2,
                                            int(256 * alpha),
                                            block_id_str='15')

    #upsample fpn merge for feature map 2 & 3
    x2_upsample = compose(DarknetConv2D_BN_Leaky(int(128 * alpha), (1, 1)),
                          UpSampling2D(2))(x2)

    f3 = mobilenet.get_layer('conv_pw_5_relu').output
    # f3 : 52 x 52 x  (256*alpha) for 416 input
    x3 = DarknetConv2D_BN_Leaky(int(128 * alpha), (1, 1))(f3)
    x3 = Concatenate()([x3, x2_upsample])

    #feature map 3 head & output (52 x 52 x (256*alpha) for 416 input)
    #x3, y3 = make_depthwise_separable_last_layers(x3, int(128*alpha), num_anchors*(num_classes+5), block_id_str='16')
    x3 = make_yolo_depthwise_separable_head(x3,
                                            int(128 * alpha),
                                            block_id_str='16')
    y3 = compose(
        Depthwise_Separable_Conv2D_BN_Leaky(int(256 * alpha), (3, 3),
                                            block_id_str='16_3'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x3)

    #downsample fpn merge for feature map 3 & 2
    x3_downsample = compose(
        ZeroPadding2D(((1, 0), (1, 0))),
        Darknet_Depthwise_Separable_Conv2D_BN_Leaky(int(256 * alpha), (3, 3),
                                                    strides=(2, 2),
                                                    block_id_str='16_4'))(x3)

    x2 = Concatenate()([x3_downsample, x2])

    #feature map 2 output (26 x 26 x (512*alpha) for 416 input)
    #x2, y2 = make_depthwise_separable_last_layers(x2, int(256*alpha), num_anchors*(num_classes+5), block_id_str='17')
    x2 = make_yolo_depthwise_separable_head(x2,
                                            int(256 * alpha),
                                            block_id_str='17')
    y2 = compose(
        Depthwise_Separable_Conv2D_BN_Leaky(int(512 * alpha), (3, 3),
                                            block_id_str='17_3'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x2)

    #downsample fpn merge for feature map 2 & 1
    x2_downsample = compose(
        ZeroPadding2D(((1, 0), (1, 0))),
        Darknet_Depthwise_Separable_Conv2D_BN_Leaky(int(512 * alpha), (3, 3),
                                                    strides=(2, 2),
                                                    block_id_str='17_4'))(x2)

    x1 = Concatenate()([x2_downsample, x1])

    #feature map 1 output (13 x 13 x (1024*alpha) for 416 input)
    #x1, y1 = make_depthwise_separable_last_layers(x1, int(512*alpha), num_anchors*(num_classes+5), block_id_str='18')
    x1 = make_yolo_depthwise_separable_head(x1,
                                            int(512 * alpha),
                                            block_id_str='18')
    y1 = compose(
        Depthwise_Separable_Conv2D_BN_Leaky(int(1024 * alpha), (3, 3),
                                            block_id_str='18_3'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x1)

    return Model(inputs, [y1, y2, y3])
Exemple #6
0
def yolo4lite_efficientnet_body(inputs, num_anchors, num_classes, level=1):
    '''
    Create YOLO_v4 Lite EfficientNet model CNN body in keras.
    # Arguments
        level: EfficientNet level number.
            by default we use basic EfficientNetB1 as backbone
    '''
    efficientnet, feature_map_info = get_efficientnet_backbone_info(
        inputs, level=level)

    f1 = efficientnet.get_layer('top_activation').output
    f1_channel_num = feature_map_info['f1_channel_num']

    f2 = efficientnet.get_layer('block6a_expand_activation').output
    f2_channel_num = feature_map_info['f2_channel_num']

    f3 = efficientnet.get_layer('block4a_expand_activation').output
    f3_channel_num = feature_map_info['f3_channel_num']

    #feature map 1 head (13x13x(f1_channel_num//2) for 416 input)
    x1 = make_yolo_spp_depthwise_separable_head(f1,
                                                f1_channel_num // 2,
                                                block_id_str='8')

    #upsample fpn merge for feature map 1 & 2
    x1_upsample = compose(DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1)),
                          UpSampling2D(2))(x1)

    x2 = DarknetConv2D_BN_Leaky(f2_channel_num // 2, (1, 1))(f2)
    x2 = Concatenate()([x2, x1_upsample])

    #feature map 2 head (26x26x(f2_channel_num//2) for 416 input)
    x2 = make_yolo_depthwise_separable_head(x2,
                                            f2_channel_num // 2,
                                            block_id_str='9')

    #upsample fpn merge for feature map 2 & 3
    x2_upsample = compose(DarknetConv2D_BN_Leaky(f3_channel_num // 2, (1, 1)),
                          UpSampling2D(2))(x2)

    x3 = DarknetConv2D_BN_Leaky(f3_channel_num // 2, (1, 1))(f3)
    x3 = Concatenate()([x3, x2_upsample])

    #feature map 3 head & output (52x52xf3_channel_num for 416 input)
    #x3, y3 = make_depthwise_separable_last_layers(x3, f3_channel_num//2, num_anchors*(num_classes+5), block_id_str='10')
    x3 = make_yolo_depthwise_separable_head(x3,
                                            f3_channel_num // 2,
                                            block_id_str='10')
    y3 = compose(
        Depthwise_Separable_Conv2D_BN_Leaky(f3_channel_num, (3, 3),
                                            block_id_str='10_3'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x3)

    #downsample fpn merge for feature map 3 & 2
    x3_downsample = compose(
        ZeroPadding2D(((1, 0), (1, 0))),
        Darknet_Depthwise_Separable_Conv2D_BN_Leaky(f2_channel_num // 2,
                                                    (3, 3),
                                                    strides=(2, 2),
                                                    block_id_str='10_4'))(x3)

    x2 = Concatenate()([x3_downsample, x2])

    #feature map 2 output (26x26xf2_channel_num for 416 input)
    #x2, y2 = make_depthwise_separable_last_layers(x2, f2_channel_num//2, num_anchors*(num_classes+5), block_id_str='11')
    x2 = make_yolo_depthwise_separable_head(x2,
                                            f2_channel_num // 2,
                                            block_id_str='11')
    y2 = compose(
        Depthwise_Separable_Conv2D_BN_Leaky(f2_channel_num, (3, 3),
                                            block_id_str='11_3'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x2)

    #downsample fpn merge for feature map 2 & 1
    x2_downsample = compose(
        ZeroPadding2D(((1, 0), (1, 0))),
        Darknet_Depthwise_Separable_Conv2D_BN_Leaky(f1_channel_num // 2,
                                                    (3, 3),
                                                    strides=(2, 2),
                                                    block_id_str='11_4'))(x2)

    x1 = Concatenate()([x2_downsample, x1])

    #feature map 1 output (13x13xf1_channel_num for 416 input)
    #x1, y1 = make_depthwise_separable_last_layers(x1, f1_channel_num//2, num_anchors*(num_classes+5), block_id_str='12')
    x1 = make_yolo_depthwise_separable_head(x1,
                                            f1_channel_num // 2,
                                            block_id_str='12')
    y1 = compose(
        Depthwise_Separable_Conv2D_BN_Leaky(f1_channel_num, (3, 3),
                                            block_id_str='12_3'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x1)

    return Model(inputs, [y1, y2, y3])
Exemple #7
0
def yolo4lite_mobilenetv3small_body(inputs,
                                    num_anchors,
                                    num_classes,
                                    alpha=1.0):
    '''Create YOLO_v4 Lite MobileNetV3Small model CNN body in keras.'''
    mobilenetv3small = MobileNetV3Small(input_tensor=inputs,
                                        weights='imagenet',
                                        include_top=False,
                                        alpha=alpha)

    # input: 416 x 416 x 3
    # activation_31(layer 165, final feature map): 13 x 13 x (576*alpha)
    # expanded_conv_10/Add(layer 162, end of block10): 13 x 13 x (96*alpha)

    # activation_22(layer 117, middle in block8) : 26 x 26 x (288*alpha)
    # expanded_conv_7/Add(layer 114, end of block7) : 26 x 26 x (48*alpha)

    # activation_7(layer 38, middle in block3) : 52 x 52 x (96*alpha)
    # expanded_conv_2/Add(layer 35, end of block2): 52 x 52 x (24*alpha)

    # f1 :13 x 13 x (576*alpha)
    # NOTE: activation layer name may different for TF1.x/2.x, so we
    # use index to fetch layer
    f1 = mobilenetv3small.layers[165].output
    #feature map 1 head (13 x 13 x (288*alpha) for 416 input)
    x1 = make_yolo_spp_depthwise_separable_head(f1,
                                                int(288 * alpha),
                                                block_id_str='11')

    #upsample fpn merge for feature map 1 & 2
    x1_upsample = compose(DarknetConv2D_BN_Leaky(int(144 * alpha), (1, 1)),
                          UpSampling2D(2))(x1)

    f2 = mobilenetv3small.layers[117].output
    # f2: 26 x 26 x (288*alpha) for 416 input
    x2 = DarknetConv2D_BN_Leaky(int(144 * alpha), (1, 1))(f2)
    x2 = Concatenate()([x2, x1_upsample])

    #feature map 2 head (26 x 26 x (144*alpha) for 416 input)
    x2 = make_yolo_depthwise_separable_head(x2,
                                            int(144 * alpha),
                                            block_id_str='12')

    #upsample fpn merge for feature map 2 & 3
    x2_upsample = compose(DarknetConv2D_BN_Leaky(int(48 * alpha), (1, 1)),
                          UpSampling2D(2))(x2)

    f3 = mobilenetv3small.layers[38].output
    # f3 : 52 x 52 x (96*alpha)

    x3 = DarknetConv2D_BN_Leaky(int(48 * alpha), (1, 1))(f3)
    x3 = Concatenate()([x3, x2_upsample])

    #feature map 3 head & output (52 x 52 x (96*alpha) for 416 input)
    #x3, y3 = make_depthwise_separable_last_layers(x3, int(48*alpha), num_anchors*(num_classes+5), block_id_str='13')
    x3 = make_yolo_depthwise_separable_head(x3,
                                            int(48 * alpha),
                                            block_id_str='13')
    y3 = compose(
        Depthwise_Separable_Conv2D_BN_Leaky(int(96 * alpha), (3, 3),
                                            block_id_str='13_3'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x3)

    #downsample fpn merge for feature map 3 & 2
    x3_downsample = compose(
        ZeroPadding2D(((1, 0), (1, 0))),
        Darknet_Depthwise_Separable_Conv2D_BN_Leaky(int(144 * alpha), (3, 3),
                                                    strides=(2, 2),
                                                    block_id_str='13_4'))(x3)

    x2 = Concatenate()([x3_downsample, x2])

    #feature map 2 output (26 x 26 x (288*alpha) for 416 input)
    #x2, y2 = make_depthwise_separable_last_layers(x2, int(144*alpha), num_anchors*(num_classes+5), block_id_str='14')
    x2 = make_yolo_depthwise_separable_head(x2,
                                            int(144 * alpha),
                                            block_id_str='14')
    y2 = compose(
        Depthwise_Separable_Conv2D_BN_Leaky(int(288 * alpha), (3, 3),
                                            block_id_str='14_3'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x2)

    #downsample fpn merge for feature map 2 & 1
    x2_downsample = compose(
        ZeroPadding2D(((1, 0), (1, 0))),
        Darknet_Depthwise_Separable_Conv2D_BN_Leaky(int(288 * alpha), (3, 3),
                                                    strides=(2, 2),
                                                    block_id_str='14_4'))(x2)

    x1 = Concatenate()([x2_downsample, x1])

    #feature map 1 output (13 x 13 x (576*alpha) for 416 input)
    #x1, y1 = make_depthwise_separable_last_layers(x1, int(288*alpha), num_anchors*(num_classes+5), block_id_str='15')
    x1 = make_yolo_depthwise_separable_head(x1,
                                            int(288 * alpha),
                                            block_id_str='15')
    y1 = compose(
        Depthwise_Separable_Conv2D_BN_Leaky(int(576 * alpha), (3, 3),
                                            block_id_str='15_3'),
        DarknetConv2D(num_anchors * (num_classes + 5), (1, 1)))(x1)

    return Model(inputs, [y1, y2, y3])
Exemple #8
0
def tiny_yolo4lite_mobilenetv3small_body(inputs,
                                         num_anchors,
                                         num_classes,
                                         alpha=1.0,
                                         use_spp=True):
    '''Create Tiny YOLO_v4 Lite MobileNetV3Small model CNN body in keras.'''
    mobilenetv3small = MobileNetV3Small(input_tensor=inputs,
                                        weights='imagenet',
                                        include_top=False,
                                        alpha=alpha)

    # input: 416 x 416 x 3
    # activation_31(layer 165, final feature map): 13 x 13 x (576*alpha)
    # expanded_conv_10/Add(layer 162, end of block10): 13 x 13 x (96*alpha)

    # activation_22(layer 117, middle in block8) : 26 x 26 x (288*alpha)
    # expanded_conv_7/Add(layer 114, end of block7) : 26 x 26 x (48*alpha)

    # activation_7(layer 38, middle in block3) : 52 x 52 x (96*alpha)
    # expanded_conv_2/Add(layer 35, end of block2): 52 x 52 x (24*alpha)

    # f1 :13 x 13 x (576*alpha)
    # NOTE: activation layer name may different for TF1.x/2.x, so we
    # use index to fetch layer
    f1 = mobilenetv3small.layers[165].output
    # f2: 26 x 26 x (288*alpha) for 416 input
    f2 = mobilenetv3small.layers[117].output

    #feature map 1 head (13 x 13 x (288*alpha) for 416 input)
    x1 = DarknetConv2D_BN_Leaky(int(288 * alpha), (1, 1))(f1)
    if use_spp:
        x1 = Spp_Conv2D_BN_Leaky(x1, int(288 * alpha))

    #upsample fpn merge for feature map 1 & 2
    x1_upsample = compose(DarknetConv2D_BN_Leaky(int(144 * alpha), (1, 1)),
                          UpSampling2D(2))(x1)
    x2 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(int(288*alpha), (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=int(288 * alpha),
                                            kernel_size=(3, 3),
                                            block_id_str='11'))(
                                                [x1_upsample, f2])

    #feature map 2 output (26 x 26 x (288*alpha) for 416 input)
    y2 = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1))(x2)

    #downsample fpn merge for feature map 2 & 1
    x2_downsample = compose(
        ZeroPadding2D(((1, 0), (1, 0))),
        #DarknetConv2D_BN_Leaky(int(288*alpha), (3,3), strides=(2,2)),
        Darknet_Depthwise_Separable_Conv2D_BN_Leaky(int(288 * alpha), (3, 3),
                                                    strides=(2, 2),
                                                    block_id_str='12'))(x2)
    x1 = compose(
        Concatenate(),
        #DarknetConv2D_BN_Leaky(int(576*alpha), (3,3)),
        Depthwise_Separable_Conv2D_BN_Leaky(filters=int(576 * alpha),
                                            kernel_size=(3, 3),
                                            block_id_str='13'))(
                                                [x2_downsample, x1])

    #feature map 1 output (13 x 13 x (576*alpha) for 416 input)
    y1 = DarknetConv2D(num_anchors * (num_classes + 5), (1, 1))(x1)

    return Model(inputs, [y1, y2])