Exemple #1
0
    def predict_image(self, image_data, features):
        """
        Make predictions on a single image from the TFRecord.
        Args:
            image_data: image as numpy array
            features: features of the TFRecord.

        Returns:
            pandas DataFrame with detection data.
        """
        image_path = bytes.decode(features['image_path'].numpy())
        image_name = os.path.basename(image_path)
        image = tf.expand_dims(image_data, 0)
        resized = transform_images(image, self.input_shape[0])
        outs = self.inference_model(resized)
        adjusted = cv2.cvtColor(image_data.numpy(), cv2.COLOR_RGB2BGR)
        result = (
            get_detection_data(adjusted, image_name, outs, self.class_names),
            image_name,
        )
        return result
Exemple #2
0
    def initialize_dataset(self, tf_record, batch_size, shuffle_buffer=512):
        """
        Initialize and prepare TFRecord dataset for training.
        Args:
            tf_record: TFRecord file.
            batch_size: int, training batch size
            shuffle_buffer: Buffer size for shuffling dataset.

        Returns:
            dataset.
        """
        dataset = read_tfr(tf_record, self.classes_file, get_feature_map(),
                           self.max_boxes)
        dataset = dataset.shuffle(shuffle_buffer)
        dataset = dataset.batch(batch_size)
        dataset = dataset.map(lambda x, y: (
            transform_images(x, self.input_shape[0]),
            transform_targets(y, self.anchors, self.masks, self.input_shape[0]
                              ),
        ))
        dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE)
        return dataset
Exemple #3
0
    def detect_image(self, image_data, image_name):
        """
        Given an image, get detections for the image.
        Args:
            image_data: image as numpy array/tf.Tensor
            image_name: str, name of the image

        Returns:
            pandas DataFrame with detections found.
        """
        image = tf.expand_dims(image_data, 0)
        resized = transform_images(image, self.input_shape[0])
        out = self.inference_model.predict(resized)
        if isinstance(image_data, np.ndarray):
            adjusted = cv2.cvtColor(image_data, cv2.COLOR_RGB2BGR)
        else:
            adjusted = cv2.cvtColor(image_data.numpy(), cv2.COLOR_RGB2BGR)
        detections = get_detection_data(
            adjusted,
            image_name,
            out,
            self.class_names,
        )
        return detections, adjusted