Exemple #1
0
    def forward(self, imgs, size=640, augment=False, profile=False):
        # Inference from various sources. For height=720, width=1280, RGB images example inputs are:
        #   filename:   imgs = 'data/samples/zidane.jpg'
        #   URI:             = 'https://github.com/ultralytics/yolov5/releases/download/v1.0/zidane.jpg'
        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(720,1280,3)
        #   PIL:             = Image.open('image.jpg')  # HWC x(720,1280,3)
        #   numpy:           = np.zeros((720,1280,3))  # HWC
        #   torch:           = torch.zeros(16,3,720,1280)  # BCHW
        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images

        p = next(self.model.parameters())  # for device and type
        if isinstance(imgs, torch.Tensor):  # torch
            return self.model(imgs.to(p.device).type_as(p), augment,
                              profile)  # inference

        # Pre-process
        n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (
            1, [imgs])  # number of images, list of images
        shape0, shape1 = [], []  # image and inference shapes
        for i, im in enumerate(imgs):
            if isinstance(im, str):  # filename or uri
                im = Image.open(
                    requests.get(im, stream=True).raw
                    if im.startswith('http') else im)  # open
            im = np.array(im)  # to numpy
            if im.shape[0] < 5:  # image in CHW
                im = im.transpose(
                    (1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
            im = im[:, :, :3] if im.ndim == 3 else np.tile(
                im[:, :, None], 3)  # enforce 3ch input
            s = im.shape[:2]  # HWC
            shape0.append(s)  # image shape
            g = (size / max(s))  # gain
            shape1.append([y * g for y in s])
            imgs[i] = im  # update
        shape1 = [
            make_divisible(x, int(self.stride.max()))
            for x in np.stack(shape1, 0).max(0)
        ]  # inference shape
        x = [letterbox(im, new_shape=shape1, auto=False)[0]
             for im in imgs]  # pad
        x = np.stack(x, 0) if n > 1 else x[0][None]  # stack
        x = np.ascontiguousarray(x.transpose((0, 3, 1, 2)))  # BHWC to BCHW
        x = torch.from_numpy(x).to(
            p.device).type_as(p) / 255.  # uint8 to fp16/32

        # Inference
        with torch.no_grad():
            y = self.model(x, augment, profile)[0]  # forward
        y = non_max_suppression(y,
                                conf_thres=self.conf,
                                iou_thres=self.iou,
                                classes=self.classes)  # NMS

        # Post-process
        for i in range(n):
            scale_coords(shape1, y[i][:, :4], shape0[i])

        return Detections(imgs, y, self.names)
Exemple #2
0
    def forward(self, imgs, size=640, augment=False, profile=False):
        # supports inference from various sources. For height=720, width=1280, RGB images example inputs are:
        #   opencv:     x = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(720,1280,3)
        #   PIL:        x = Image.open('image.jpg')  # HWC x(720,1280,3)
        #   numpy:      x = np.zeros((720,1280,3))  # HWC
        #   torch:      x = torch.zeros(16,3,720,1280)  # BCHW
        #   multiple:   x = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images

        p = next(self.model.parameters())  # for device and type
        if isinstance(imgs, torch.Tensor):  # torch
            return self.model(imgs.to(p.device).type_as(p), augment,
                              profile)  # inference

        # Pre-process
        n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (1, [imgs])
        shape0, shape1 = [], []  # image and inference shapes
        for i, img in enumerate(imgs):
            if isinstance(img, str):
                img = Image.open(img)
            img = np.array(img)
            if img.shape[0] < 5:
                img = img.transpose((1, 2, 0))
            img = img[:, :, :3] if img.ndim == 3 else np.tile(
                img[:, :, None], 3)
            s = img.shape[:2]  # HWC
            shape0.append(s)  # image shape
            g = (size / max(s))  # gain
            shape1.append([y * g for y in s])
            imgs[i] = img
        shape1 = [
            make_divisible(x, int(self.stride.max()))
            for x in np.stack(shape1, 0).max(0)
        ]  # inference shape
        x = [letterbox(img, new_shape=shape1, auto=False)[0]
             for img in imgs]  # pad
        x = np.stack(x, 0) if n > 1 else x[0][None]  # stack
        x = np.ascontiguousarray(x.transpose((0, 3, 1, 2)))  # BHWC to BCHW
        x = torch.from_numpy(x).to(
            p.device).type_as(p) / 255.  # uint8 to fp16/32

        # Inference
        with torch.no_grad():
            y = self.model(x, augment, profile)[0]
        # y = non_max_suppression(y, conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)
        y = non_max_suppression_torch_ops(y,
                                          conf_thres=self.conf,
                                          iou_thres=self.iou,
                                          classes=self.classes)

        # Post-process
        for i in range(n):
            scale_coords(shape1, y[i][:, :4], shape0[i])

        return Detections(imgs, y, self.names)
Exemple #3
0
    def detect_bbox(self,
                    img: np.ndarray,
                    img_size: int = 640,
                    stride: int = 32,
                    min_accuracy: float = 0.5) -> List:
        """
        TODO: input img in BGR format, not RGB; To Be Implemented in release 2.2
        """
        # normalize
        img_shape = img.shape
        img = letterbox(img, img_size, stride=stride)[0]
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)
        img = torch.from_numpy(img).to(self.device)
        img = img.half() if self.half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        pred = self.model(img)[0]
        # Apply NMS
        pred = non_max_suppression(pred)
        res = []
        for i, det in enumerate(pred):
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img_shape).round()
                res.append(det.cpu().detach().numpy())
        if len(res):
            return [[x1, y1, x2, y2, acc, b] for x1, y1, x2, y2, acc, b in res[0] if acc > min_accuracy]
        else:
            return []
Exemple #4
0
    def detect_pedestrians(self, camera_frame: np.ndarray) -> List[BoundingBox]:
        # Pre-process
        im = letterbox(camera_frame, self.IMG_SIZE, stride=self.model.stride)[0]
        im = np.ascontiguousarray(im.transpose(2, 0, 1))

        im = torch.from_numpy(np.expand_dims(im, 0)).to(self.device)
        im = im.half()
        im /= 255

        # Inference
        pred = self.model(im)

        # NMS
        pred = non_max_suppression(
            pred, conf_thres=self.conf, iou_thres=self.NMS_IOU_THRESHOLD
        )[0]

        # Scale predictions to original image coordinates
        pred_boxes = (
            scale_coords(im.shape[2:], pred[:, :4], camera_frame.shape)
            .round()
            .cpu()
            .numpy()
            .astype(int)
        )

        return [self.detection_to_bounding_box(det) for det in pred_boxes]
    def image_track(self, im0):
        """
        :param im0: original image, BGR format
        :return:
        """
        # preprocess ************************************************************
        # Padded resize
        img = letterbox(im0, new_shape=self.img_size)[0]
        # Convert
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)

        # numpy to tensor
        img = torch.from_numpy(img).to(self.device)
        img = img.half() if self.half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
        s = '%gx%g ' % img.shape[2:]  # print string

        # Detection time *********************************************************
        # Inference
        t1 = time_synchronized()
        with torch.no_grad():
            pred = self.detector(
                img, augment=self.args.augment)[0]  # list: bz * [ (#obj, 6)]

        # Apply NMS and filter object other than person (cls:0)
        pred = non_max_suppression(pred,
                                   self.args.conf_thres,
                                   self.args.iou_thres,
                                   classes=self.args.classes,
                                   agnostic=self.args.agnostic_nms)
        t2 = time_synchronized()

        # get all obj ************************************************************
        det = pred[0]  # for video, bz is 1
        if det is not None and len(
                det):  # det: (#obj, 6)  x1 y1 x2 y2 conf cls

            # Rescale boxes from img_size to original im0 size
            det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                      im0.shape).round()

            # Print results. statistics of number of each obj
            for c in det[:, -1].unique():
                n = (det[:, -1] == c).sum()  # detections per class
                s += '%g %ss, ' % (n, self.names[int(c)])  # add to string

            bbox_xywh = xyxy2xywh(det[:, :4]).cpu()
            confs = det[:, 4:5].cpu()

            # ****************************** deepsort ****************************
            outputs = self.deepsort.update(bbox_xywh, confs, im0)
            # (#ID, 5) x1,y1,x2,y2,track_ID
        else:
            outputs = torch.zeros((0, 5))

        t3 = time.time()
        return outputs, t2 - t1, t3 - t2
    def detect_displacement(self, img_path, img_size=None):
        """
        基于yolo v5中detect.py的run函数改造此函数即可
        方法一: 直接调用detect.run()方法并设置结果写出到txt文件 通过读取txt文件解析结果(此方法每次调用都需要重新加载模型 适合一次性大批量处理)
        方法二: 复用detect.run中代码,将模型加载放到 self._load_models中 将探测代码放到 detect_displacement中
        :param img_path 图片路径
        :param img_size 图片(高 宽)
        :return 类别,置信度,边框(x, y, w, h)
        """
        stride = max(int(self.model.stride.max()), 32)
        imgsz = general.check_img_size(img_size, s=stride)
        dataset = datasets.LoadImages(img_path,
                                      img_size=imgsz,
                                      stride=stride,
                                      auto=True)

        for path, im, im0s, vid_cap, s in dataset:
            im = torch.from_numpy(im).to(self.device)
            # uint8 to fp16/32
            im = im.float()
            # 0 - 255 to 0.0 - 1.0
            im /= 255
            if len(im.shape) == 3:
                # expand for batch 4-dim
                im = im[None]
            pred = self.model(im, augment=False, visualize=False)
            # 非极大值抑制
            pred = general.non_max_suppression(pred[0],
                                               0.25,
                                               0.4,
                                               None,
                                               False,
                                               max_det=1000)
            # Process predictions
            # per image
            for _, det in enumerate(pred):
                if len(det):
                    # process result
                    det[:, :4] = general.scale_coords(im.shape[2:], det[:, :4],
                                                      im0s.shape).round()
                    for *xyxy, conf, cls in reversed(det):
                        box = torch.tensor(xyxy).view(1, 4).view(-1).tolist()
                        box[2] = (box[2] - box[0])
                        box[3] = (box[3] - box[1])
                        confidence_value = conf.item()
                        class_index = cls.item()
                        return class_index, confidence_value, box

                    #print('conf %s, class %s, box: %s' % (confidence_value, class_index, box))
                    """
                    ann = plots.Annotator(im0s.copy())
                    ann.box_label(xyxy, 'dis')
                    im0 = ann.result()
                    cv2.imshow('dis', im0)
                    cv2.waitKey(5000)
                    """
        return None, None, None
Exemple #7
0
    def detect(self, source, img_size=640, conf=None, iou=None):
        conf = self.model.conf if not conf else conf
        iou = self.model.iou if not iou else iou
        img_size = check_img_size(img_size, s=self.model.stride.max())  # check img_size

        # Set Dataloader
        cudnn.benchmark = True

        dataset = LoadImages(source, img_size=img_size)

        names = self.model.module.names if hasattr(self.model, 'module') else self.model.names

        img = torch.zeros((1, 3, img_size, img_size), device=self.device)  # init img
        _ = self.model(img.half() if self.half else img) if self.device.type != 'cpu' else None  # run once

        detections = []

        for path, img, im0s, vid_cap in dataset:
            img = torch.from_numpy(img).to(self.device)
            img = img.half() if self.half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)

            pred = self.model(img, augment=False)[0]
            pred = non_max_suppression_torch_ops(pred, conf, iou, classes=None)

            # Process detections

            for i, det in enumerate(pred):  # detections per image

                p, s, im0 = path, '', im0s

                detection_result = {"entities": [], "detections": [], "src": path}

                gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
                if det is not None and len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                    # Print results
                    # Calling detach is necessary
                    for c in det[:, -1].detach().unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        detection_result['entities'].append((names[int(c)], int(n)))

                    # Write results
                    for *xyxy, conf, cls in reversed(det):
                        t_xyxy = torch.tensor(xyxy).view(1, 4)
                        xywh = (xyxy2xywh(t_xyxy) / gn).view(-1).tolist()  # normalized xywh
                        detection_result['detections'].append(dict(xyxy=t_xyxy.view(-1).tolist(), xywh=xywh,
                                                                   cls=names[int(cls)],
                                                                   confidence="{:.2%}".format(float(conf))))

                detections.append(detection_result)

        return detections
Exemple #8
0
def postprocess(predictions, imgsz0, imgsz1):
    """ Convert class IDs to class names. """
    predictions[:, :4] = scale_coords(imgsz1, predictions[:, :4],
                                      imgsz0).round()
    predictions = predictions.cpu().numpy().tolist()
    return [{
        "box": row[:4],
        "confidence": row[4],
        "class": CLASS_MAP[int(row[5])]
    } for row in predictions]
Exemple #9
0
    def detect(self, source: List[np.array], img_size=640, conf=None, iou=None):
        stacked, sizes, div_sizes = self.preprocess(source)
        result = self.infer(stacked, conf, iou)

        detections = []
        for i, det in enumerate(result):
            scale_coords(div_sizes, result[i][:, :4], sizes[i].original)
            detection_result = {"entities": [], "detections": []}

            gn = torch.tensor(sizes[i].original)[[1, 0, 1, 0]]

            for c in det[:, -1].detach().unique():
                n = (det[:, -1] == c).sum()  # detections per class
                detection_result['entities'].append((self.names[int(c)], int(n)))

            for *xyxy, conf, cls in reversed(det):
                t_xyxy = torch.tensor(xyxy).view(1, 4)
                xywh = (xyxy2xywh(t_xyxy) / gn).view(-1).tolist()  # normalized xywh
                detection_result['detections'].append(dict(xyxy=t_xyxy.view(-1).tolist(), xywh=xywh,
                                                           cls=self.names[int(cls)],
                                                           confidence="{:.2%}".format(float(conf))))

            detections.append(detection_result)
        return detections
Exemple #10
0
def get_yolo_roi(img_path, model, device, dataset_name):
    # 面积大于阈值
    if dataset_name == "ped2":
        min_area_thr = 10*10
    elif dataset_name == "avenue":
        min_area_thr = 30*30
    elif dataset_name == "shanghaiTech":
        min_area_thr = 8*8
    else: 
        raise NotImplementedError
    

    dataset = LoadImages(img_path, img_size=640)
    for path, img, im0s, vid_cap in dataset:
        p, s, im0 = Path(path), '', im0s

        # print(device)
        img = torch.from_numpy(img).to(device)
        img = img.float()
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img)[0]

        # Apply NMS
        pred = non_max_suppression(pred, 0.25, 0.45)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class

                # results
                bboxs = [] 
                for *xyxy, conf, cls in reversed(det):
                    box = [int(x.cpu().item()) for x in xyxy]
                    if (box[3]-box[1]+1)*(box[2]-box[0]+1) > min_area_thr:
                        bboxs.append( tuple(box) )

        return bboxs
Exemple #11
0
    def forward(self, x, size=640, augment=False, profile=False):
        # supports inference from various sources. For height=720, width=1280, RGB images example inputs are:
        #   opencv:     x = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(720,1280,3)
        #   PIL:        x = Image.open('image.jpg')  # HWC x(720,1280,3)
        #   numpy:      x = np.zeros((720,1280,3))  # HWC
        #   torch:      x = torch.zeros(16,3,720,1280)  # BCHW
        #   multiple:   x = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images

        p = next(self.model.parameters())  # for device and type
        if isinstance(x, torch.Tensor):  # torch
            return self.model(x.to(p.device).type_as(p), augment, profile)  # inference

        # Pre-process
        if not isinstance(x, list):
            x = [x]
        shape0, shape1 = [], []  # image and inference shapes
        batch = range(len(x))  # batch size
        for i in batch:
            x[i] = np.array(x[i])[:, :, :3]  # up to 3 channels if png
            s = x[i].shape[:2]  # HWC
            shape0.append(s)  # image shape
            g = (size / max(s))  # gain
            shape1.append([y * g for y in s])
        shape1 = [make_divisible(x, int(self.stride.max())) for x in np.stack(shape1, 0).max(0)]  # inference shape
        x = [letterbox(x[i], new_shape=shape1, auto=False)[0] for i in batch]  # pad
        x = np.stack(x, 0) if batch[-1] else x[0][None]  # stack
        x = np.ascontiguousarray(x.transpose((0, 3, 1, 2)))  # BHWC to BCHW
        x = torch.from_numpy(x).to(p.device).type_as(p) / 255.  # uint8 to fp16/32

        # Inference
        x = self.model(x, augment, profile)  # forward
        x = non_max_suppression(x[0], conf_thres=self.conf, iou_thres=self.iou, classes=self.classes)  # NMS

        # Post-process
        for i in batch:
            if x[i] is not None:
                x[i][:, :4] = scale_coords(shape1, x[i][:, :4], shape0[i])
        return x
Exemple #12
0
    def predict(self, img, im0s):
        img = torch.from_numpy(img).to(self._device)
        img = img.half() if self._half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = self._model(img)[0]

        # Apply NMS
        det = non_max_suppression(pred,
                                  self._conf_thres,
                                  self._iou_thres,
                                  classes=self._classes)[0]
        t2 = time_synchronized()
        logging.info('Inference time: {:.3f}s'.format(t2 - t1))

        if det is not None and len(det):
            # Rescale boxes from img_size to im0 size
            det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                      im0s.shape).round()
            return det
 def detect(self,img,model,stride,device,imgsz):
     names = model.module.names if hasattr(model, 'module') else model.names
     # t0 = time.time()
     im0s = img.copy()
     img = letterbox(im0s, imgsz, stride=stride)[0]
     # Convert
     img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
     img = np.ascontiguousarray(img)
     img = torch.from_numpy(img).to(device)
     half = device.type != "cpu"  # half precision only supported on CUDA
     img = img.half() if half else img.float()  # uint8 to fp16/32
     img /= 255.0  # 0 - 255 to 0.0 - 1.0
     if img.ndimension() == 3:
         img = img.unsqueeze(0)
         # Inference
     # t1 = time_synchronized()
     pred = model(img, augment=True)[0]
     # print(pred)
     # Apply NMS
     pred = non_max_suppression(pred, 0.60, 0.5, classes=[0,2,3,5,7], agnostic=True)
     t2 = time_synchronized()
     xywhs,labels,xyxys,confs = [],[],[],[]
     for i, det in enumerate(pred):
         im0 = im0s.copy()
         if len(det):
             # Rescale boxes from img_size to im0 size
             det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
             for *xyxy, conf, cls in reversed(det):
                  label = f'{names[int(cls)]}'
                  xywh = self.bbox_rel(*xyxy)
                  xyxys.append(xyxy)
                  xywhs.append(xywh)
                  labels.append(label)
                  confs.append([conf.item()])
             # print(labels)
     return xyxys,xywhs,labels,confs,im0
def detect(opt, save_img=False):
    global bird_image
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')

    # initialize the ROI frame
    cv2.namedWindow("image")
    cv2.setMouseCallback("image", get_mouse_points)

    # Initialize
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = torch.load(weights,
                       map_location=device)['model'].float()  # load to FP32
    model.to(device).eval()
    if half:
        model.half()  # to FP16

        # initialize deepsort
        cfg = get_config()
        cfg.merge_from_file(opt.config_deepsort)
        deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                            max_dist=cfg.DEEPSORT.MAX_DIST,
                            min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                            nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP,
                            max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                            max_age=cfg.DEEPSORT.MAX_AGE,
                            n_init=cfg.DEEPSORT.N_INIT,
                            nn_budget=cfg.DEEPSORT.NN_BUDGET,
                            use_cuda=True)

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        view_img = True
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    #initialize moving average window
    movingAverageUpdater = movingAverage.movingAverage(5)

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once

    save_path = str(Path(out))
    txt_path = str(Path(out)) + '/results.txt'

    d = DynamicUpdate()
    d.on_launch()

    risk_factors = []
    frame_nums = []
    count = 0

    for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
        if (frame_idx == 0):
            while True:
                image = im0s
                cv2.imshow("image", image)
                cv2.waitKey(1)
                if len(mouse_pts) == 7:
                    cv2.destroyWindow("image")
                    break
            four_points = mouse_pts
            # Get perspective, M is the transformation matrix for bird's eye view
            M, Minv = get_camera_perspective(image, four_points[0:4])

            # Last two points in getMousePoints... this will be the threshold distance between points
            threshold_pts = src = np.float32(np.array([four_points[4:]]))

            # Convert distance to bird's eye view
            warped_threshold_pts = cv2.perspectiveTransform(threshold_pts,
                                                            M)[0]

            # Get distance in pixels
            threshold_pixel_dist = np.sqrt(
                (warped_threshold_pts[0][0] - warped_threshold_pts[1][0])**2 +
                (warped_threshold_pts[0][1] - warped_threshold_pts[1][1])**2)

            # Draw the ROI on the output images
            ROI_pts = np.array([
                four_points[0], four_points[1], four_points[3], four_points[2]
            ], np.int32)

            # initialize birdeye view video writer
            frame_h, frame_w, _ = image.shape

            bevw = birdeye_video_writer.birdeye_video_writer(
                frame_h, frame_w, M, threshold_pixel_dist)
        else:
            break
    t = time.time()
    for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
        print("Loop time: ", time.time() - t)
        t = time.time()
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        cv2.polylines(im0s, [ROI_pts], True, (0, 255, 255), thickness=4)

        # Inferenc
        tOther = time.time()
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()
        print("Non max suppression and inference: ", time.time() - tOther)
        print("Pre detection time: ", time.time() - t)
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            s += '%gx%g ' % img.shape[2:]  # print string
            save_path = str(Path(out) / Path(p).name)

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                bbox_xywh = []
                bbox_xyxy = []
                confs = []

                ROI_polygon = Polygon(ROI_pts)

                # Adapt detections to deep sort input format
                for *xyxy, conf, cls in det:
                    img_h, img_w, _ = im0.shape
                    x_c, y_c, bbox_w, bbox_h = bbox_rel(img_w, img_h, *xyxy)
                    obj = [x_c, y_c, bbox_w, bbox_h]
                    confs.append([conf.item()])
                    bbox_xyxy.append(xyxy)
                    bbox_xywh.append(obj)

                xywhs = torch.Tensor(bbox_xywh)
                confss = torch.Tensor(confs)

                # Pass detections to deepsort
                deepsortTime = time.time()
                #outputs = deepsort.update(xywhs, confss, im0)
                print("Deepsort function call: ", (time.time() - deepsortTime))
                outputs = bbox_xyxy
                # draw boxes for visualization
                if len(outputs) > 0:
                    # filter deepsort output
                    outputs_in_ROI, ids_in_ROI = remove_points_outside_ROI(
                        bbox_xyxy, ROI_polygon)
                    center_coords_in_ROI = xywh_to_center_coords(
                        outputs_in_ROI)

                    warped_pts = birdeye_transformer.transform_center_coords_to_birdeye(
                        center_coords_in_ROI, M)

                    clusters = DBSCAN(eps=threshold_pixel_dist,
                                      min_samples=1).fit(warped_pts)
                    print(clusters.labels_)
                    draw_boxes(im0, outputs_in_ROI, clusters.labels_)

                    risk_dict = Counter(clusters.labels_)
                    bird_image = bevw.create_birdeye_frame(
                        warped_pts, clusters.labels_, risk_dict)

                    # movingAverageUpdater.updatePoints(warped_pts, ids_in_ROI)
                    #
                    # gettingAvgTime = time.time()
                    # movingAveragePairs = movingAverageUpdater.getCurrentAverage()
                    #
                    # movingAverageIds = [id for id, x_coord, y_coord in movingAveragePairs]
                    # movingAveragePts = [(x_coord, y_coord) for id, x_coord, y_coord in movingAveragePairs]
                    # embded the bird image to the video

                    # otherStuff = time.time()
                    # if(len(movingAveragePairs) > 0):
                    #     movingAvgClusters = DBSCAN(eps=threshold_pixel_dist, min_samples=1).fit(movingAveragePts)
                    #     movingAvgClustersLables = movingAvgClusters.labels_
                    #     risk_dict = Counter(movingAvgClustersLables)
                    #     bird_image = bevw.create_birdeye_frame(movingAveragePts, movingAvgClustersLables, risk_dict)
                    #     bird_image = resize(bird_image, 20)
                    #     bv_height, bv_width, _ = bird_image.shape
                    #     frame_x_center, frame_y_center = frame_w //2, frame_h//2
                    #     x_offset = 20
                    #
                    #     im0[ frame_y_center-bv_height//2:frame_y_center+bv_height//2, \
                    #         x_offset:bv_width+x_offset ] = bird_image
                    # else:
                    #     risk_dict = Counter(clusters.labels_)
                    #     bird_image = bevw.create_birdeye_frame(warped_pts, clusters.labels_, risk_dict)
                    bird_image = resize(bird_image, 20)
                    bv_height, bv_width, _ = bird_image.shape
                    frame_x_center, frame_y_center = frame_w // 2, frame_h // 2
                    x_offset = 20

                    im0[frame_y_center - bv_height // 2:frame_y_center + bv_height // 2, \
                    x_offset:bv_width + x_offset] = bird_image

                    # print("Other stuff: ", time.time() - otherStuff)

                    #write the risk graph

                    risk_factors += [compute_frame_rf(risk_dict)]
                    frame_nums += [frame_idx]
                    graphTime = time.time()

                    if (frame_idx > 100):
                        count += 1
                        frame_nums.pop(0)
                        risk_factors.pop(0)
                    if frame_idx % 10 == 0:
                        d.on_running(frame_nums, risk_factors, count,
                                     count + 100)
                    print("Graph Time: ", time.time() - graphTime)

                # Write MOT compliant results to file
                if save_txt and len(outputs_in_ROI) != 0:
                    for j, output in enumerate(outputs_in_ROI):
                        bbox_left = output[0]
                        bbox_top = output[1]
                        bbox_w = output[2]
                        bbox_h = output[3]
                        identity = output[-1]
                        with open(txt_path, 'a') as f:
                            f.write(('%g ' * 10 + '\n') %
                                    (frame_idx, identity, bbox_left, bbox_top,
                                     bbox_w, bbox_h, -1, -1, -1,
                                     -1))  # label format

            # Stream results
            if view_img:
                # cv2.imshow("bird_image", bird_image)
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:

                if dataset.mode == 'images':
                    cv2.imwrite(save_path, bird_image)
                    cv2.imwrite(save_path, im0)
                else:

                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*opt.fourcc),
                            fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
Exemple #15
0
def detect(opt, save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')

    # initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST,
                        min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP,
                        max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE,
                        n_init=cfg.DEEPSORT.N_INIT,
                        nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    # Initialize
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    stride = int(model.stride.max())  # model stride
    imgsz = check_img_size(imgsz, s=stride)  # check img_size
    names = model.module.names if hasattr(
        model, 'module') else model.names  # get class names
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        view_img = True
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    # run once
    _ = model(img.half() if half else img) if device.type != 'cpu' else None

    save_path = str(Path(out))
    txt_path = str(Path(out)) + '/results.txt'

    for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            s += '%gx%g ' % img.shape[2:]  # print string
            save_path = str(Path(out) / Path(p).name)

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                bbox_xywh = []
                confs = []

                # Adapt detections to deep sort input format
                for *xyxy, conf, cls in det:
                    x_c, y_c, bbox_w, bbox_h = bbox_rel(*xyxy)
                    obj = [x_c, y_c, bbox_w, bbox_h]
                    bbox_xywh.append(obj)
                    confs.append([conf.item()])

                xywhs = torch.Tensor(bbox_xywh)
                confss = torch.Tensor(confs)

                # Pass detections to deepsort
                outputs = deepsort.update(xywhs, confss, im0)

                # draw boxes for visualization
                if len(outputs) > 0:
                    bbox_xyxy = outputs[:, :4]
                    identities = outputs[:, -1]
                    draw_boxes(im0, bbox_xyxy, identities)

                # Write MOT compliant results to file
                if save_txt and len(outputs) != 0:
                    for j, output in enumerate(outputs):
                        bbox_left = output[0]
                        bbox_top = output[1]
                        bbox_w = output[2]
                        bbox_h = output[3]
                        identity = output[-1]
                        with open(txt_path, 'a') as f:
                            f.write(('%g ' * 10 + '\n') %
                                    (frame_idx, identity, bbox_left, bbox_top,
                                     bbox_w, bbox_h, -1, -1, -1,
                                     -1))  # label format

            else:
                deepsort.increment_ages()

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                print('saving img!')
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    print('saving video!')
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*opt.fourcc),
                            fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
Exemple #16
0
def test(
        data,
        weights=None,  # model.pt path(s)
        batch_size=32,  # batch size
        imgsz=640,  # inference size (pixels)
        conf_thres=0.001,  # confidence threshold
        iou_thres=0.6,  # NMS IoU threshold
        task='val',  # train, val, test, speed or study
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        single_cls=False,  # treat as single-class dataset
        augment=False,  # augmented inference
        verbose=False,  # verbose output
        save_txt=False,  # save results to *.txt
        save_hybrid=False,  # save label+prediction hybrid results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_json=False,  # save a cocoapi-compatible JSON results file
        project='runs/test',  # save to project/name
        name='exp',  # save to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        half=True,  # use FP16 half-precision inference
        model=None,
        dataloader=None,
        save_dir=Path(''),
        plots=True,
        wandb_logger=None,
        compute_loss=None,
):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        set_logging()
        device = select_device(device, batch_size=batch_size)

        # Directories
        save_dir = increment_path(Path(project) / name,
                                  exist_ok=exist_ok)  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(
            parents=True, exist_ok=True)  # make dir

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        gs = max(int(model.stride.max()), 32)  # grid size (max stride)
        imgsz = check_img_size(imgsz, s=gs)  # check image size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

    # Half
    half &= device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Configure
    model.eval()
    if isinstance(data, str):
        with open(data) as f:
            data = yaml.safe_load(f)
    check_dataset(data)  # check
    is_coco = data['val'].endswith('coco/val2017.txt')  # COCO dataset
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95,
                          10).to(device)  # iou vector for [email protected]:0.95
    niou = iouv.numel()

    # Logging
    log_imgs = 0
    if wandb_logger and wandb_logger.wandb:
        log_imgs = min(wandb_logger.log_imgs, 100)
    # Dataloader
    if not training:
        if device.type != 'cpu':
            model(
                torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                    next(model.parameters())))  # run once
        task = task if task in (
            'train', 'val', 'test') else 'val'  # path to train/val/test images
        dataloader = create_dataloader(data[task],
                                       imgsz,
                                       batch_size,
                                       gs,
                                       single_cls,
                                       pad=0.5,
                                       rect=True,
                                       prefix=colorstr(f'{task}: '))[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = {
        k: v
        for k, v in enumerate(
            model.names if hasattr(model, 'names') else model.module.names)
    }
    coco91class = coco80_to_coco91_class()
    s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R',
                                 '[email protected]', '[email protected]:.95')
    p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
    for batch_i, (img, targets, paths,
                  shapes) in enumerate(tqdm(dataloader, desc=s)):
        t_ = time_synchronized()
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width
        t = time_synchronized()
        t0 += t - t_

        # Run model
        out, train_out = model(
            img, augment=augment)  # inference and training outputs
        t1 += time_synchronized() - t

        # Compute loss
        if compute_loss:
            loss += compute_loss([x.float() for x in train_out],
                                 targets)[1][:3]  # box, obj, cls

        # Run NMS
        targets[:, 2:] *= torch.Tensor([width, height, width,
                                        height]).to(device)  # to pixels
        lb = [targets[targets[:, 0] == i, 1:]
              for i in range(nb)] if save_hybrid else []  # for autolabelling
        t = time_synchronized()
        out = non_max_suppression(out,
                                  conf_thres,
                                  iou_thres,
                                  labels=lb,
                                  multi_label=True,
                                  agnostic=single_cls)
        t2 += time_synchronized() - t

        # Statistics per image
        for si, pred in enumerate(out):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path = Path(paths[si])
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                  torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            if single_cls:
                pred[:, 5] = 0
            predn = pred.clone()
            scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0],
                         shapes[si][1])  # native-space pred

            # Append to text file
            if save_txt:
                gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0
                                                  ]]  # normalization gain whwh
                for *xyxy, conf, cls in predn.tolist():
                    xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                            gn).view(-1).tolist()  # normalized xywh
                    line = (cls, *xywh,
                            conf) if save_conf else (cls,
                                                     *xywh)  # label format
                    with open(save_dir / 'labels' / (path.stem + '.txt'),
                              'a') as f:
                        f.write(('%g ' * len(line)).rstrip() % line + '\n')

            # W&B logging - Media Panel plots
            if len(
                    wandb_images
            ) < log_imgs and wandb_logger.current_epoch > 0:  # Check for test operation
                if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
                    box_data = [{
                        "position": {
                            "minX": xyxy[0],
                            "minY": xyxy[1],
                            "maxX": xyxy[2],
                            "maxY": xyxy[3]
                        },
                        "class_id": int(cls),
                        "box_caption": "%s %.3f" % (names[cls], conf),
                        "scores": {
                            "class_score": conf
                        },
                        "domain": "pixel"
                    } for *xyxy, conf, cls in pred.tolist()]
                    boxes = {
                        "predictions": {
                            "box_data": box_data,
                            "class_labels": names
                        }
                    }  # inference-space
                    wandb_images.append(
                        wandb_logger.wandb.Image(img[si],
                                                 boxes=boxes,
                                                 caption=path.name))
            wandb_logger.log_training_progress(
                predn, path,
                names) if wandb_logger and wandb_logger.wandb_run else None

            # Append to pycocotools JSON dictionary
            if save_json:
                # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
                image_id = int(
                    path.stem) if path.stem.isnumeric() else path.stem
                box = xyxy2xywh(predn[:, :4])  # xywh
                box[:, :2] -= box[:, 2:] / 2  # xy center to top-left corner
                for p, b in zip(pred.tolist(), box.tolist()):
                    jdict.append({
                        'image_id':
                        image_id,
                        'category_id':
                        coco91class[int(p[5])] if is_coco else int(p[5]),
                        'bbox': [round(x, 3) for x in b],
                        'score':
                        round(p[4], 5)
                    })

            # Assign all predictions as incorrect
            correct = torch.zeros(pred.shape[0],
                                  niou,
                                  dtype=torch.bool,
                                  device=device)
            if nl:
                detected = []  # target indices
                tcls_tensor = labels[:, 0]

                # target boxes
                tbox = xywh2xyxy(labels[:, 1:5])
                scale_coords(img[si].shape[1:], tbox, shapes[si][0],
                             shapes[si][1])  # native-space labels
                if plots:
                    confusion_matrix.process_batch(
                        predn, torch.cat((labels[:, 0:1], tbox), 1))

                # Per target class
                for cls in torch.unique(tcls_tensor):
                    ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(
                        -1)  # target indices
                    pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(
                        -1)  # prediction indices

                    # Search for detections
                    if pi.shape[0]:
                        # Prediction to target ious
                        ious, i = box_iou(predn[pi, :4], tbox[ti]).max(
                            1)  # best ious, indices

                        # Append detections
                        detected_set = set()
                        for j in (ious > iouv[0]).nonzero(as_tuple=False):
                            d = ti[i[j]]  # detected target
                            if d.item() not in detected_set:
                                detected_set.add(d.item())
                                detected.append(d)
                                correct[
                                    pi[j]] = ious[j] > iouv  # iou_thres is 1xn
                                if len(
                                        detected
                                ) == nl:  # all targets already located in image
                                    break

            # Append statistics (correct, conf, pcls, tcls)
            stats.append(
                (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Plot images
        if plots and batch_i < 3:
            f = save_dir / f'test_batch{batch_i}_labels.jpg'  # labels
            Thread(target=plot_images,
                   args=(img, targets, paths, f, names),
                   daemon=True).start()
            f = save_dir / f'test_batch{batch_i}_pred.jpg'  # predictions
            Thread(target=plot_images,
                   args=(img, output_to_target(out), paths, f, names),
                   daemon=True).start()

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats,
                                              plot=plots,
                                              save_dir=save_dir,
                                              names=names)
        ap50, ap = ap[:, 0], ap.mean(1)  # [email protected], [email protected]:0.95
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64),
                         minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t0, t1, t2))  # speeds per image
    if not training:
        shape = (batch_size, 3, imgsz, imgsz)
        print(
            f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}'
            % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        if wandb_logger and wandb_logger.wandb:
            val_batches = [
                wandb_logger.wandb.Image(str(f), caption=f.name)
                for f in sorted(save_dir.glob('test*.jpg'))
            ]
            wandb_logger.log({"Validation": val_batches})
    if wandb_images:
        wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights
                 ).stem if weights is not None else ''  # weights
        anno_json = '../coco/annotations/instances_val2017.json'  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            check_requirements(['pycocotools'])
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [
                    int(Path(x).stem) for x in dataloader.dataset.img_files
                ]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:
                                    2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            print(f'pycocotools unable to run: {e}')

    # Return results
    model.float()  # for training
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map,
            *(loss.cpu() / len(dataloader)).tolist()), maps, t
Exemple #17
0
def detect(opt, save_img=False):
    out, source, weights, view_img, save_txt, imgsz = opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')
    global counter
    global features
    # initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST,
                        min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP,
                        max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE,
                        n_init=cfg.DEEPSORT.N_INIT,
                        nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    # Initialize
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA. Make faster cmputation with lower precision.

    #Write headers into csv file
    with open(str(Path(args.output)) + '/results.csv', 'a') as f:
        f.write("Time,People Count Changed,TotalCount,ActivePerson,\n")

    #Initialize the scheduler for every 2 secs
    scheduler = BackgroundScheduler()
    scheduler.start()
    scheduler.add_job(func=write_csv,
                      args=[opt.output],
                      trigger=IntervalTrigger(seconds=2))

    # Load model
    model = torch.load(weights,
                       map_location=device)['model'].float()  # load to FP32
    model.to(device).eval()
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        view_img = True
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once

    save_path = str(Path(out))
    txt_path = str(Path(out)) + '/results.csv'

    for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            s += '%gx%g ' % img.shape[2:]  # print string
            save_path = str(Path(out) / Path(p).name)

            if det is not None and len(det):
                # Rescale boxes from img_size to im0(640) size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                bbox_xywh = []
                confs = []

                # Adapt detections to deep sort input format
                for *xyxy, conf, cls in det:
                    img_h, img_w, _ = im0.shape
                    x_c, y_c, bbox_w, bbox_h = bbox_rel(img_w, img_h, *xyxy)
                    obj = [x_c, y_c, bbox_w, bbox_h]
                    bbox_xywh.append(obj)
                    confs.append([conf.item()])

                xywhs = torch.Tensor(bbox_xywh)
                confss = torch.Tensor(confs)

                # Pass detections to deepsort
                outputs = deepsort.update(xywhs, confss, im0)

                # draw boxes for visualization
                if len(outputs) > 0:
                    bbox_xyxy = outputs[:, :4]
                    identities = outputs[:, -1]
                    draw_boxes(im0, bbox_xyxy, identities)
                    features['identities'] = identities
                if save_txt and len(outputs) != 0:
                    for j, output in enumerate(outputs):
                        bbox_left = output[0]
                        bbox_top = output[1]
                        bbox_w = output[2]
                        bbox_h = output[3]
                        identity = output[-1]
                        # with open(txt_path, 'a') as f:
                        # f.write(f"{datetime.now()},{changes if changes != counter else 0},{counter},{len(identities)},\n")  # label format

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1), end='\r')

            # Write Counter on img
            cv2.putText(im0, "Counter : " + str(counter), (10, 20),
                        cv2.FONT_HERSHEY_PLAIN, 2, [1, 190, 200], 2)

            # Stream results
            # if view_img:
            # 	cv2.imshow(p, im0)
            # 	if cv2.waitKey(1) == ord('q'):  # q to quit
            # 		raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    print('saving img!')
                    cv2.imwrite(save_path, im0)
                else:
                    # print('saving video!')
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer. Issues with video writer. Fix later

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*opt.fourcc),
                            fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
    print('Done. (%.3fs)' % (time.time() - t0))
Exemple #18
0
    def forward(self, imgs, size=640, augment=False, profile=False):
        # Inference from various sources. For height=640, width=1280, RGB images example inputs are:
        #   file:       imgs = 'data/images/zidane.jpg'  # str or PosixPath
        #   URI:             = 'https://ultralytics.com/images/zidane.jpg'
        #   OpenCV:          = cv2.imread('image.jpg')[:,:,::-1]  # HWC BGR to RGB x(640,1280,3)
        #   PIL:             = Image.open('image.jpg') or ImageGrab.grab()  # HWC x(640,1280,3)
        #   numpy:           = np.zeros((640,1280,3))  # HWC
        #   torch:           = torch.zeros(16,3,320,640)  # BCHW (scaled to size=640, 0-1 values)
        #   multiple:        = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...]  # list of images

        t = [time_sync()]
        p = next(self.model.parameters()) if self.pt else torch.zeros(
            1)  # for device and type
        autocast = self.amp and (p.device.type != 'cpu'
                                 )  # Automatic Mixed Precision (AMP) inference
        if isinstance(imgs, torch.Tensor):  # torch
            with amp.autocast(enabled=autocast):
                return self.model(
                    imgs.to(p.device).type_as(p), augment,
                    profile)  # inference

        # Pre-process
        n, imgs = (len(imgs), imgs) if isinstance(imgs, list) else (
            1, [imgs])  # number of images, list of images
        shape0, shape1, files = [], [], [
        ]  # image and inference shapes, filenames
        for i, im in enumerate(imgs):
            f = f'image{i}'  # filename
            if isinstance(im, (str, Path)):  # filename or uri
                im, f = Image.open(
                    requests.get(im, stream=True).raw if str(im).
                    startswith('http') else im), im
                im = np.asarray(exif_transpose(im))
            elif isinstance(im, Image.Image):  # PIL Image
                im, f = np.asarray(
                    exif_transpose(im)), getattr(im, 'filename', f) or f
            files.append(Path(f).with_suffix('.jpg').name)
            if im.shape[0] < 5:  # image in CHW
                im = im.transpose(
                    (1, 2, 0))  # reverse dataloader .transpose(2, 0, 1)
            im = im[..., :3] if im.ndim == 3 else np.tile(
                im[..., None], 3)  # enforce 3ch input
            s = im.shape[:2]  # HWC
            shape0.append(s)  # image shape
            g = (size / max(s))  # gain
            shape1.append([y * g for y in s])
            imgs[i] = im if im.data.contiguous else np.ascontiguousarray(
                im)  # update
        shape1 = [
            make_divisible(x, self.stride) for x in np.stack(shape1, 0).max(0)
        ]  # inference shape
        x = [
            letterbox(im, new_shape=shape1 if self.pt else size, auto=False)[0]
            for im in imgs
        ]  # pad
        x = np.stack(x, 0) if n > 1 else x[0][None]  # stack
        x = np.ascontiguousarray(x.transpose((0, 3, 1, 2)))  # BHWC to BCHW
        x = torch.from_numpy(x).to(
            p.device).type_as(p) / 255  # uint8 to fp16/32
        t.append(time_sync())

        with amp.autocast(enabled=autocast):
            # Inference
            y = self.model(x, augment, profile)  # forward
            t.append(time_sync())

            # Post-process
            y = non_max_suppression(y if self.dmb else y[0],
                                    self.conf,
                                    iou_thres=self.iou,
                                    classes=self.classes,
                                    agnostic=self.agnostic,
                                    multi_label=self.multi_label,
                                    max_det=self.max_det)  # NMS
            for i in range(n):
                scale_coords(shape1, y[i][:, :4], shape0[i])

            t.append(time_sync())
            return Detections(imgs, y, files, t, self.names, x.shape)
def detect(opt, save_img=False):
    ct = CentroidTracker()
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith(
        'rtsp') or source.startswith('http') or source.endswith('.txt')

    # initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    # Initialize
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA
    now = datetime.datetime.now().strftime("%Y/%m/%d/%H:%M:%S") # current time

    # Load model
    model = torch.load(weights, map_location=device)[
        'model'].float()  # load to FP32
    
    model.to(device).eval()
    
# =============================================================================
    filepath_mask = 'D:/Internship Crime Detection/YOLOv5 person detection/AjnaTask/Mytracker/yolov5/weights/mask.pt'
        
    model_mask = torch.load(filepath_mask, map_location = device)['model'].float()
    model_mask.to(device).eval()
    if half:
        model_mask.half()
        
    names_m = model_mask.module.names if hasattr(model_mask, 'module') else model_mask.names
# =============================================================================
    
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        view_img = False
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    # run once
    _ = model(img.half() if half else img) if device.type != 'cpu' else None

    save_path = str(Path(out))
    txt_path = str(Path(out)) + '/results.txt'

    memory = {}
    people_counter = 0
    in_people = 0
    out_people = 0
    people_mask = 0
    people_none = 0
    time_sum = 0
    # now_time = datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S')
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
    for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]
# =============================================================================
        pred_mask = model_mask(img)[0]
# =============================================================================
        # Apply NMS
        pred = non_max_suppression(
            pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
        
# =============================================================================
        pred_mask = non_max_suppression(pred_mask, 0.4, 0.5, classes = [0, 1, 2], agnostic = None)
        
        if pred_mask is None:
            continue
        classification = torch.cat(pred_mask)[:, -1]
        if len(classification) == 0:
            print("----",None)
            continue
        index = int(classification[0])
        
        mask_class = names_m[index]
        print("MASK CLASS>>>>>>> \n", mask_class)
# =============================================================================

        # Create the haar cascade
        # cascPath = "D:/Internship Crime Detection/YOLOv5 person detection/AjnaTask/Mytracker/haarcascade_frontalface_alt2.xml"
        # faceCascade = cv2.CascadeClassifier(cascPath)
        
        
        t2 = time_synchronized()
        
        
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            s += '%gx%g ' % img.shape[2:]  # print string
            save_path = str(Path(out) / Path(p).name)
            img_center_y = int(im0.shape[0]//2)
            # line = [(int(im0.shape[1]*0.258),int(img_center_y*1.3)),(int(im0.shape[1]*0.55),int(img_center_y*1.3))]
            # print("LINE>>>>>>>>>", line,"------------")
            # line = [(990, 672), (1072, 24)]
            line = [(1272, 892), (1800, 203)]
            #  [(330, 468), (704, 468)]
            print("LINE>>>>>>>>>", line,"------------")
            cv2.line(im0,line[0],line[1],(0,0,255),5)
            
# =============================================================================
#             gray = cv2.cvtColor(im0, cv2.COLOR_BGR2GRAY)
#             # Detect faces in the image
#             faces = faceCascade.detectMultiScale(
#             gray,
#             scaleFactor=1.1,
#             minNeighbors=5,
#             minSize=(30, 30)
#             )
#             # Draw a rectangle around the faces
#             for (x, y, w, h) in faces:
#                 cv2.rectangle(im0, (x, y), (x+w, y+h), (0, 255, 0), 2)
#                 text_x = x
#                 text_y = y+h
#                 cv2.putText(im0, mask_class, (text_x, text_y), cv2.FONT_HERSHEY_COMPLEX_SMALL,
#                                                     1, (0, 0, 255), thickness=1, lineType=2)
# =============================================================================
        
            
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(
                    img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                bbox_xywh = []
                confs = []
                bbox_xyxy = []
                rects = [] # Is it correct?

                # Adapt detections to deep sort input format
                for *xyxy, conf, cls in det:
                    x_c, y_c, bbox_w, bbox_h = bbox_rel(*xyxy)
                    # label = f'{names[int(cls)]}'
                    xyxy_list = torch.tensor(xyxy).view(1,4).view(-1).tolist()
                    plot_one_box(xyxy, im0, label='person', color=colors[int(cls)], line_thickness=3)
                    rects.append(xyxy_list)
                    
                    obj = [x_c, y_c, bbox_w, bbox_h,int(cls)]
                    #cv2.circle(im0,(int(x_c),int(y_c)),color=(0,255,255),radius=12,thickness = 10)
                    bbox_xywh.append(obj)
                    # bbox_xyxy.append(rec)
                    confs.append([conf.item()])
                    


                xywhs = torch.Tensor(bbox_xywh)
                confss = torch.Tensor(confs)

                # Pass detections to deepsort
                outputs = ct.update(rects) # xyxy
                # outputs = deepsort.update(xywhs, confss, im0) # deepsort
                index_id = []
                previous = memory.copy()
                memory = {}
                boxes = []
                names_ls = []
                


                # draw boxes for visualization
                if len(outputs) > 0:
                    
                    # print('output len',len(outputs))
                    for id_,centroid in outputs.items():
                        # boxes.append([output[0],output[1],output[2],output[3]])
                        # index_id.append('{}-{}'.format(names_ls[-1],output[-2]))
                        index_id.append(id_)
                        boxes.append(centroid)
                        memory[index_id[-1]] = boxes[-1]

                    
                    i = int(0)
                    print(">>>>>>>",boxes)
                    for box in boxes:
                        # extract the bounding box coordinates
                        # (x, y) = (int(box[0]), int(box[1]))
                        # (w, h) = (int(box[2]), int(box[3]))
                        x = int(box[0])
                        y = int(box[1])
                        # GGG
                        if index_id[i] in previous:
                            previous_box = previous[index_id[i]]
                            (x2, y2) = (int(previous_box[0]), int(previous_box[1]))
                            # (w2, h2) = (int(previous_box[2]), int(previous_box[3]))
                            p0 = (x,y)
                            p1 = (x2,y2)
                            
                            cv2.line(im0, p0, p1, (0,255,0), 3) # current frame obj center point - before frame obj center point
                        
                            if intersect(p0, p1, line[0], line[1]):
                                people_counter += 1
                                print('==============================')
                                print(p0,"---------------------------",p0[1])
                                print('==============================')
                                print(line[1][1],'------------------',line[0][0],'-----------------', line[1][0],'-------------',line[0][1])
                                # if p0[1] <= line[1][1]:
                                #     in_people +=1
                    
                                
                                # else:
                                #     # if mask_class == 'mask':
                                #     #     print("COUNTING MASK..", mask_class)
                                #     #     people_mask += 1
                                #     # if mask_class == 'none':
                                #     #     people_none += 1
                                #     out_people +=1 
                                if p0[1] >= line[1][1]:
                                    in_people += 1
                                    if mask_class == 'mask':
                                        people_mask += 1
                                    else:
                                        people_none += 1
                                else:
                                    out_people += 1
                            

                        i += 1

                    
                        
                # Write MOT compliant results to file
                if save_txt and len(outputs) != 0:
                    for j, output in enumerate(outputs):
                        bbox_left = output[0]
                        bbox_top = output[1]
                        bbox_w = output[2]
                        bbox_h = output[3]
                        identity = output[-1]
                        with open(txt_path, 'a') as f:
                            f.write(('%g ' * 10 + '\n') % (frame_idx, identity, bbox_left,
                                                           bbox_top, bbox_w, bbox_h, -1, -1, -1, -1))  # label format
                
            else:
                deepsort.increment_ages()
            cv2.putText(im0, 'Person [down][up] : [{}][{}]'.format(out_people,in_people),(130,50),cv2.FONT_HERSHEY_COMPLEX,1.0,(0,0,255),3)
            cv2.putText(im0, 'Person [mask][no_mask] : [{}][{}]'.format(people_mask, people_none), (130,100),cv2.FONT_HERSHEY_COMPLEX,1.0,(0,0,255),3)
            # Print time (inference + NMS)
            
            
            print('%sDone. (%.3fs)' % (s, t2 - t1))
            time_sum += t2-t1
            
            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    # im0= cv2.resize(im0,(0,0),fx=0.5,fy=0.5,interpolation=cv2.INTER_LINEAR)
                    cv2.imwrite(save_path, im0)
                else:
                    
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)
    
    print('Done. (%.3fs)' % (time.time() - t0))
Exemple #20
0
def detect(
    weights="yolov5s.pt",
    source="yolov5/data/images",
    img_size=640,
    conf_thres=0.75,
    iou_thres=0.45,
    device="",
    view_img=False,
    save_txt=False,
    save_conf=False,
    classes=None,
    agnostic_nms=False,
    augment=False,
    update=False,
    project="runs/detect",
    name="exp",
    exist_ok=False,
    save_img=False,
):
    """
    Args:
        weights: str
            model.pt path(s)
        source: str
            file/folder, 0 for webcam
        img_size: int
            inference size (pixels)
        conf_thres: float
            object confidence threshold
        iou_thres: float
            IOU threshold for NMS
        device: str
            cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img: bool
            display results
        save_txt: bool
            save results to *.txt
        save_conf: bool
            save confidences in save_txt labels
        classes: int
            filter by class: [0], or [0, 2, 3]
        agnostic-nms: bool
            class-agnostic NMS
        augment: bool
            augmented inference
        update: bool
            update all models
        project: str
            save results to project/name
        name: str
            save results to project/name
        exist_ok: bool
            existing project/name ok, do not increment
    """
    source, weights, view_img, save_txt, imgsz = (
        source,
        weights,
        view_img,
        save_txt,
        img_size,
    )
    webcam = (
        source.isnumeric()
        or source.endswith(".txt")
        or source.lower().startswith(("rtsp://", "rtmp://", "http://"))
    )

    # Directories
    save_dir = Path(
        increment_path(Path(project) / name, exist_ok=exist_ok)
    )  # increment run
    (save_dir / "labels" if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True
    )  # make dir

    # Initialize
    set_logging()
    device = select_device(device)
    half = device.type != "cpu"  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name="resnet101", n=2)  # initialize
        modelc.load_state_dict(
            torch.load("weights/resnet101.pt", map_location=device)["model"]
        ).to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, "module") else model.names
    colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img) if device.type != "cpu" else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=augment)[0]

        # Apply NMS
        pred = non_max_suppression(
            pred,
            conf_thres,
            iou_thres,
            classes=classes,
            agnostic=agnostic_nms,
        )
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0, frame = path[i], "%g: " % i, im0s[i].copy(), dataset.count
            else:
                p, s, im0, frame = path, "", im0s, getattr(dataset, "frame", 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # img.jpg
            txt_path = str(save_dir / "labels" / p.stem) + (
                "" if dataset.mode == "image" else f"_{frame}"
            )  # img.txt
            s += "%gx%g " % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}s, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (
                            (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn)
                            .view(-1)
                            .tolist()
                        )  # normalized xywh
                        line = (
                            (cls, *xywh, conf) if save_conf else (cls, *xywh)
                        )  # label format
                        with open(txt_path + ".txt", "a") as f:
                            f.write(("%g " * len(line)).rstrip() % line + "\n")

                    if save_img or view_img:  # Add bbox to image
                        label = f"{names[int(cls)]} {conf:.2f}"
                        plot_one_box(
                            xyxy,
                            im0,
                            label=label,
                            color=colors[int(cls)],
                            line_thickness=3,
                        )

            # Print time (inference + NMS)
            print(f"{s}Done. ({t2 - t1:.3f}s)")

            # Stream results
            if view_img:
                cv2.imshow(str(p), im0)

            # Save results (image with detections)
            if save_img:
                if dataset.mode == "image":
                    cv2.imwrite(save_path, im0)
                else:  # 'video'
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer

                        fourcc = "mp4v"  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)
                        )
                    vid_writer.write(im0)

    if save_txt or save_img:
        s = (
            f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}"
            if save_txt
            else ""
        )
        print(f"Results saved to {save_dir}{s}")

    print(f"Done. ({time.time() - t0:.3f}s)")
Exemple #21
0
def run(
        weights=ROOT / 'yolov5s.pt',  # model.pt path(s)
        source=ROOT / 'data/images',  # file/dir/URL/glob, 0 for webcam
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
):
    source = str(source)
    save_img = not nosave and not source.endswith(
        '.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(
        ('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url
                                                               and not is_file)
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name,
                              exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(
        parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data)
    stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Half
    half &= (
        pt or jit or onnx or engine
    ) and device.type != 'cpu'  # FP16 supported on limited backends with CUDA
    if pt or jit:
        model.model.half() if half else model.model.float()

    # Dataloader
    if webcam:
        view_img = check_imshow()
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
        bs = len(dataset)  # batch_size
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
        bs = 1  # batch_size
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half)  # warmup
    dt, seen = [0.0, 0.0, 0.0], 0
    for path, im, im0s, vid_cap, s in dataset:
        t1 = time_sync()
        im = torch.from_numpy(im).to(device)
        im = im.half() if half else im.float()  # uint8 to fp16/32
        im /= 255  # 0 - 255 to 0.0 - 1.0
        if len(im.shape) == 3:
            im = im[None]  # expand for batch dim
        t2 = time_sync()
        dt[0] += t2 - t1

        # Inference
        visualize = increment_path(save_dir / Path(path).stem,
                                   mkdir=True) if visualize else False
        pred = model(im, augment=augment, visualize=visualize)
        t3 = time_sync()
        dt[1] += t3 - t2

        # NMS
        pred = non_max_suppression(pred,
                                   conf_thres,
                                   iou_thres,
                                   classes,
                                   agnostic_nms,
                                   max_det=max_det)
        dt[2] += time_sync() - t3

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0,
                                  line_width=line_thickness,
                                  example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(im.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh,
                                conf) if save_conf else (cls,
                                                         *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (
                            names[c]
                            if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                        if save_crop:
                            save_one_box(xyxy,
                                         imc,
                                         file=save_dir / 'crops' / names[c] /
                                         f'{p.stem}.jpg',
                                         BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release(
                            )  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix(
                            '.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps,
                            (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')

    # Print results
    t = tuple(x / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(
        f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}'
        % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights)  # update model (to fix SourceChangeWarning)
Exemple #22
0
    def predict(self, src_image):
        param = self.getParam()

        # Initialize
        init_logging()
        half = self.device.type != 'cpu'  # half precision only supported on CUDA

        # Load model
        if self.model is None or param.update:
            self.model = attempt_load(param.model_path, map_location=self.device)  # load FP32 model
            stride = int(self.model.stride.max())  # model stride
            param.input_size = check_img_size(param.input_size, s=stride)  # check img_size
            if half:
                self.model.half()  # to FP16F

            # Get names and colors
            self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
            self.colors = [[random.randint(0, 255) for _ in range(3)] for _ in self.names]
            param.update = False
        else:
            stride = int(self.model.stride.max())  # model stride

        # Resize image
        image = letterbox(src_image, param.input_size, stride)[0]
        image = image.transpose(2, 0, 1)
        image = np.ascontiguousarray(image)
        self.emitStepProgress()

        # Run inference
        image = torch.from_numpy(image).to(self.device)
        image = image.half() if half else image.float()  # uint8 to fp16/32
        image /= 255.0  # 0 - 255 to 0.0 - 1.0
        if image.ndimension() == 3:
            image = image.unsqueeze(0)

        self.emitStepProgress()

        # Inference
        pred = self.model(image, augment=param.augment)[0]
        self.emitStepProgress()

        # Apply NMS
        pred = non_max_suppression(pred, param.conf_thres, param.iou_thres, agnostic=param.agnostic_nms)
        self.emitStepProgress()

        graphics_output = self.getOutput(1)
        graphics_output.setNewLayer("YoloV5")
        graphics_output.setImageIndex(0)

        detected_names = []
        detected_conf = []

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(image.shape[2:], det[:, :4], src_image.shape).round()

                # Results
                for *xyxy, conf, cls in reversed(det):
                    # Box
                    w = float(xyxy[2] - xyxy[0])
                    h = float(xyxy[3] - xyxy[1])
                    prop_rect = core.GraphicsRectProperty()
                    prop_rect.pen_color = self.colors[int(cls)]
                    graphics_box = graphics_output.addRectangle(float(xyxy[0]), float(xyxy[1]), w, h, prop_rect)
                    graphics_box.setCategory(self.names[int(cls)])
                    # Label
                    name = self.names[int(cls)]
                    prop_text = core.GraphicsTextProperty()
                    prop_text.font_size = 8
                    prop_text.color = self.colors[int(cls)]
                    graphics_output.addText(name, float(xyxy[0]), float(xyxy[1]), prop_text)
                    detected_names.append(name)
                    detected_conf.append(conf.item())

        # Init numeric output
        numeric_ouput = self.getOutput(2)
        numeric_ouput.clearData()
        numeric_ouput.setOutputType(dataprocess.NumericOutputType.TABLE)
        numeric_ouput.addValueList(detected_conf, "Confidence", detected_names)
        self.emitStepProgress()
Exemple #23
0
def detect(opt, save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')
    array_detected_object = []

    # initialize deepsort
    cfg = get_config()
    cfg.merge_from_file(opt.config_deepsort)
    deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                        max_dist=cfg.DEEPSORT.MAX_DIST,
                        min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                        nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP,
                        max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                        max_age=cfg.DEEPSORT.MAX_AGE,
                        n_init=cfg.DEEPSORT.N_INIT,
                        nn_budget=cfg.DEEPSORT.NN_BUDGET,
                        use_cuda=True)

    # Initialize
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = torch.load(weights,
                       map_location=device)['model'].float()  # load to FP32
    model.to(device).eval()
    if half:
        model.half()  # to FP16

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        view_img = True
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once

    save_path = str(Path(out))
    txt_path = str(Path(out)) + '/results.txt'

    peopleIn = 0
    peopleOut = 0
    detectedIds = []

    for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            s += '%gx%g ' % img.shape[2:]  # print string
            save_path = str(Path(out) / Path(p).name)

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                bbox_xywh = []
                confs = []

                # Adapt detections to deep sort input format
                for *xyxy, conf, cls in det:
                    img_h, img_w, _ = im0.shape
                    x_c, y_c, bbox_w, bbox_h = bbox_rel(img_w, img_h, *xyxy)
                    obj = [x_c, y_c, bbox_w, bbox_h]
                    bbox_xywh.append(obj)
                    confs.append([conf.item()])

                xywhs = torch.Tensor(bbox_xywh)
                confss = torch.Tensor(confs)

                # Pass detections to deepsort
                outputs = deepsort.update(xywhs, confss, im0)

                # draw boxes for visualization
                if len(outputs) > 0:
                    bbox_xyxy = outputs[:, :4]
                    identities = outputs[:, -1]
                    draw_boxes(im0, bbox_xyxy, identities)

                # Write MOT compliant results to file
                if save_txt and len(outputs) != 0:
                    for j, output in enumerate(outputs):
                        bbox_left = output[0]
                        bbox_top = output[1]
                        bbox_w = output[2]
                        bbox_h = output[3]
                        identity = output[-1]
                        array_detected_object.append(identity)
                        array_detected_object = list(
                            dict.fromkeys(array_detected_object))

                        xas = 0
                        yas = 0

                        if identity >= 0:
                            xas = bbox_xyxy[0][0]
                            yas = bbox_xyxy[0][1]

                        if identity not in detectedIds and int(bbox_top) >= 10:
                            detectedIds.append(identity)
                            if int(bbox_top) >= 500 or (int(bbox_left) >= 800
                                                        and
                                                        int(bbox_top) >= 80):
                                peopleOut += 1
                            if int(bbox_top) <= 100:
                                peopleIn += 1

                        # with open(txt_path, 'a') as f:
                        #     f.write(('%g ' * 10 + '\n') % (frame_idx, identity, bbox_left,
                        #             bbox_top, bbox_w, bbox_h, -1, -1, -1, -1))  # label format
                        # f.write(('%g ' * 3 + '\n') % (identity, bbox_left, bbox_top))  # label format
                        # resultText = str(identity) + '-' + str(bbox_top)
                        # f.write(resultText + '\n')  # label format
                        # f.write(('%g ' * 4 + '\n') % (-1, frame_idx, -1, -1, str(xas), str(yas)))  # label format
                        # f.write(str(identity))
                        # f.write(('%g ' * 1 + '\n') % (identity))
                        # f.write('\n')
                        # f.write(str(bbox_xyxy))
                        # f.write("Number people counted: " + str(len(array_detected_object)))
                        # with open(txt_path, 'r') as fp:
                        #     line = fp.readline()
                        #     cnt = 1
                        #     while line:
                        #         identity = line.split("-")[0]
                        #         infoCheck = line.split("-")[1]
                        #         if identity not in detectedIds:
                        #             detectedIds.append(identity)
                        #             if int(infoCheck) > 680 :
                        #                 peopleOut += 1
                        #             else:
                        #                 peopleIn +=1

                        # print("Line {}: {}".format(cnt, line.strip().split("-")[0]))
                        # line = fp.readline()

                        # cnt += 1
                        # print("All people counted: " + str(peopleIn + peopleOut))
                        # print("Number people in: " + str(peopleIn))
                        # print("Number people out: " + str(peopleOut))

            font = cv2.FONT_HERSHEY_DUPLEX
            cv2.putText(im0,
                        "People in out counted: " + str(peopleIn + peopleOut),
                        (50, 100), font, 0.8, (0, 255, 255), 2, font)
            cv2.putText(im0, "Number people in: " + str(peopleIn), (50, 135),
                        font, 0.8, (0, 255, 255), 2, font)
            cv2.putText(im0, "Number people out: " + str(peopleOut), (50, 170),
                        font, 0.8, (0, 255, 255), 2, font)

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    txt_result = str(Path(out)) + '/result-counted.txt'

                    print("All people counted: " + str(peopleIn + peopleOut))
                    print("Number people in: " + str(peopleIn))
                    print("Number people out: " + str(peopleOut))
                    with open(txt_path, 'a') as f:
                        f.write("All people counted: " +
                                str(peopleIn + peopleOut))
                        f.write("Number people in: " + str(peopleIn))
                        f.write("Number people out: " + str(peopleOut))

                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                print('saving img!')
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    print('saving video!')
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*opt.fourcc),
                            fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
Exemple #24
0
def mainFunc(args):
    # Set the main function flag
    print("Main Function Start...")

    # Check the GPU device
    print("Number of available GPUs: {}".format(torch.cuda.device_count()))

    # Check whether using the distributed runing for the network
    is_distributed = initDistributed(args)
    master = True
    if is_distributed and os.environ["RANK"]:
        master = int(
            os.environ["RANK"]) == 0  # check whether this node is master node

    # Configuration for device setting
    set_logging()
    if is_distributed:
        device = torch.device('cuda:{}'.format(args.local_rank))
    else:
        device = select_device(args.device)
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load the configuration
    config = loadConfig(args.config)

    # CuDNN related setting
    if torch.cuda.is_available():
        cudnn.benchmark = config.DEVICE.CUDNN.BENCHMARK
        cudnn.deterministic = config.DEVICE.CUDNN.DETERMINISTIC
        cudnn.enabled = config.DEVICE.CUDNN.ENABLED

    # Configurations for dirctories
    save_img, save_dir, source, yolov5_weights, view_img, save_txt, imgsz = \
        False, Path(args.save_dir), args.source, args.weights, args.view_img, args.save_txt, args.img_size
    webcam = source.isnumeric() or source.startswith(
        ('rtsp://', 'rtmp://', 'http://')) or source.endswith('.txt')

    if save_dir == Path('runs/detect'):  # if default
        os.makedirs('runs/detect', exist_ok=True)  # make base
        save_dir = Path(increment_dir(save_dir / 'exp',
                                      args.name))  # increment run
    os.makedirs(save_dir / 'labels' if save_txt else save_dir,
                exist_ok=True)  # make new dir

    # Load yolov5 model for human detection
    model_yolov5 = attempt_load(config.MODEL.PRETRAINED.YOLOV5,
                                map_location=device)
    imgsz = check_img_size(imgsz,
                           s=model_yolov5.stride.max())  # check img_size
    if half:
        model_yolov5.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        model_classifier = load_classifier(name='resnet101', n=2)  # initialize
        model_classifier.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        model_classifier.to(device).eval()

    # Load resnet model for human keypoints estimation
    model_resnet = eval('pose_models.' + config.MODEL.NAME.RESNET +
                        '.get_pose_net')(config, is_train=False)
    if config.EVAL.RESNET.MODEL_FILE:
        print('=> loading model from {}'.format(config.EVAL.RESNET.MODEL_FILE))
        model_resnet.load_state_dict(torch.load(config.EVAL.RESNET.MODEL_FILE),
                                     strict=False)
    else:
        print('expected model defined in config at EVAL.RESNET.MODEL_FILE')
    model_resnet.to(device)
    model_resnet.eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)
    pose_transform = transforms.Compose(
        [  # input transformation for 2d human pose estimation
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])
        ])

    # Get names and colors
    names = model_yolov5.module.names if hasattr(
        model_yolov5, 'module') else model_yolov5.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Construt filters for filtering 2D/3D human keypoints
    # filters_2d = constructFilters((1,16,2), freq=25, mincutoff=1, beta=0.01)  # for test
    # filters_3d = constructFilters((1,16,3), freq=25, mincutoff=1, beta=0.01)

    # Run the yolov5 and resnet for 2d human pose estimation
    # with torch.no_grad():
    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model_yolov5(img.half() if half else img
                     ) if device.type != 'cpu' else None  # run once

    # Process every video frame
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred_boxes = model_yolov5(img, augment=args.augment)[0]

        # Apply NMS
        pred_boxes = non_max_suppression(pred_boxes,
                                         args.conf_thres,
                                         args.iou_thres,
                                         classes=args.classes,
                                         agnostic=args.agnostic_nms)
        t2 = time_synchronized()

        # Can not find people and move to next frame
        if pred_boxes[0] is None:
            # show the frame with no human detected
            cv2.namedWindow("2D Human Pose Estimation", cv2.WINDOW_NORMAL)
            cv2.imshow("2D Human Pose Estimation", im0s[0].copy())
            # wait manual operations
            # with kb.Listener(on_press=on_press) as listener:
            #     listener.join()
            #     return
            # if kb.is_pressed('t'):
            #     return
            print("No Human Detected and Move on.")
            print("-" * 30)
            continue

        # Print time (inference + NMS)
        detect_time = t2 - t1
        detect_fps = 1.0 / detect_time
        print("Human Detection Time: {}, Human Detection FPS: {}".format(
            detect_time, detect_fps))

        # Apply Classifier
        if classify:  # false
            pred_boxes = apply_classifier(pred_boxes, model_classifier, img,
                                          im0s)

        # Estimate 2d human pose(multiple person)
        centers = []
        scales = []
        for id, boxes in enumerate(pred_boxes):
            if boxes is not None and len(boxes):
                boxes[:, :4] = scale_coords(img.shape[2:], boxes[:, :4],
                                            im0s[id].copy().shape).round()
            # convert tensor to list format
            boxes = np.delete(boxes.cpu().numpy(), [-2, -1], axis=1).tolist()
            for l in range(len(boxes)):
                boxes[l] = [tuple(boxes[l][0:2]), tuple(boxes[l][2:4])]
            # convert box to center and scale
            for box in boxes:
                center, scale = box_to_center_scale(box, imgsz, imgsz)
                centers.append(center)
                scales.append(scale)
        t3 = time_synchronized()
        pred_pose_2d = get_pose_estimation_prediction(config,
                                                      model_resnet,
                                                      im0s[0],
                                                      centers,
                                                      scales,
                                                      transform=pose_transform,
                                                      device=device)
        t4 = time_synchronized()

        # Print time (2d human pose estimation)
        estimate_time = t4 - t3
        estimate_fps = 1.0 / estimate_time
        print("Pose Estimation Time: {}, Pose Estimation FPS: {}".format(
            estimate_time, estimate_fps))

        # Filter the predicted 2d human pose(multiple person)
        t5 = time_synchronized()
        # if False:  # for test
        if config.EVAL.RESNET.USE_FILTERS_2D:
            # construct filters for every keypoints of every person in 2D
            filters_2d = constructFilters(pred_pose_2d.shape,
                                          freq=1,
                                          mincutoff=1,
                                          beta=0.01)
            print("Shape of filters_2d: ({}, {}, {})".format(
                len(filters_2d), len(filters_2d[0]),
                len(filters_2d[0][0])))  # for test
            for per in range(pred_pose_2d.shape[0]):
                for kp in range(pred_pose_2d.shape[1]):
                    for coord in range(pred_pose_2d.shape[2]):
                        pred_pose_2d[per][kp][coord] = filters_2d[per][kp][
                            coord](pred_pose_2d[per][kp][coord])
        t6 = time_synchronized()

        # Print time (filter 2d human pose)
        filter_time_2d = t6 - t5
        filter_fps_2d = 1.0 / filter_time_2d
        print("Filter 2D Pose Time: {}, Filter 2D Pose FPS: {}".format(
            filter_time_2d, filter_fps_2d))

        # Process detections and estimations in 2D
        for i, box in enumerate(pred_boxes):
            if webcam:  # batch_size >= 1
                p, s, im0 = Path(path[i]), '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = Path(path), '', im0s

            save_path = str(save_dir / p.name)
            txt_path = str(save_dir / 'labels' / p.stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh

            if box is not None and len(box):
                # Rescale boxes from img_size to im0 size
                box[:, :4] = scale_coords(img.shape[2:], box[:, :4],
                                          im0.shape).round()

                # Print results
                for c in box[:, -1].unique():
                    n = (box[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(box):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if args.save_conf else (
                            cls, *xywh)  # label format
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * len(line) + '\n') % line)

                    # Add bbox to image
                    if save_img or view_img:
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

                # Draw joint keypoints, number orders and human skeletons for every detected people in 2D
                for person in pred_pose_2d:
                    # draw the human keypoints
                    for idx, coord in enumerate(person):
                        x_coord, y_coord = int(coord[0]), int(coord[1])
                        cv2.circle(im0, (x_coord, y_coord), 1, (0, 0, 255), 5)
                        cv2.putText(im0, str(idx), (x_coord, y_coord),
                                    cv2.FONT_HERSHEY_SIMPLEX, 0.6,
                                    (255, 255, 255), 2, cv2.LINE_AA)

                    # draw the human skeletons in PACIFIC mode
                    for skeleton in PACIFIC_SKELETON_INDEXES:
                        cv2.line(im0, (int(person[skeleton[0]][0]),
                                       int(person[skeleton[0]][1])),
                                 (int(person[skeleton[1]][0]),
                                  int(person[skeleton[1]][1])), skeleton[2], 2)

            # Print time (inference + NMS + estimation)
            print('%sDone. (%.3fs)' % (s, t4 - t1))

            # Stream results
            if view_img:
                detect_text = "Detect FPS:{0:0>5.2f}/{1:0>6.2f}ms".format(
                    detect_fps, detect_time * 1000)
                estimate_text = "Estimate FPS:{0:0>5.2f}/{1:0>6.2f}ms".format(
                    estimate_fps, estimate_time * 1000)
                cv2.putText(im0, detect_text, (10, 30),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2,
                            cv2.LINE_AA)
                cv2.putText(im0, estimate_text, (10, 60),
                            cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2,
                            cv2.LINE_AA)
                cv2.namedWindow("2D Human Pose Estimation", cv2.WINDOW_NORMAL)
                cv2.imshow("2D Human Pose Estimation", im0)
                if cv2.waitKey(1) & 0xFF == ord('q'):  # q to quit
                    return
                    # goto .mainFunc

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*fourcc), fps,
                            (w, h))
                    vid_writer.write(im0)

        # Print time (inference + NMS + estimation + 2d filtering)
        all_process_time = t6 - t1
        all_process_fps = 1.0 / all_process_time
        print("All Process Time: {}, All Process FPS: {}".format(
            all_process_time, all_process_fps))
        print("-" * 30)

    # Goto label
    # label .mainFunc

    # Print saving results
    if save_txt or save_img:
        print('Results saved to %s' % save_dir)

    # Release video reader and writer, then destory all opencv windows
    dataset.vid_cap.release()
    vid_writer.release()
    cv2.destroyAllWindows()
    print('Present 2D Human Pose Inference Done. Total Time:(%.3f seconds)' %
          (time.time() - t0))
Exemple #25
0
    def detect(self):  # pylint: disable=too-many-locals,too-many-branches,too-many-statements
        """ Start main code for object detection and distance calculations """
        start_time = time.time()

        logger.info('Start detecting')
        logger.debug('Device: %s', self.device)

        window_name = 'Stream'
        if self.webcam:
            # Full screen
            cv2.namedWindow(window_name, cv2.WND_PROP_FULLSCREEN)
            cv2.setWindowProperty(window_name, cv2.WND_PROP_FULLSCREEN,
                                  cv2.WINDOW_FULLSCREEN)

        # Run inference
        img = torch.zeros((1, 3, self.imgsz, self.imgsz),
                          device=self.device)  # init img
        _ = self.model(img.half() if self.half else img
                       ) if self.half else None  # run once

        frame_id = 0
        for path, img, im0s, vid_cap in self.dataset:
            img, pred, prediction_time = self.get_predictions(img)

            objects_base = []
            # Process detections
            for idx_image, det in enumerate(pred):  # detections per image
                if self.webcam:  # batch_size >= 1
                    path_frame, im0 = path[idx_image], im0s[idx_image].copy()
                    print_details = '%g: ' % idx_image
                else:
                    path_frame, im0 = path, im0s
                    print_details = ''

                # Must be inside the for loop so code can be used with multiple files (e.g. images)
                save_path = str(Path(self.out) / Path(path_frame).name)

                if self.save_txt or self.debug:
                    # normalization gain whwh
                    gn_whwh = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # pylint: disable=not-callable
                    print_details += '%gx%g ' % img.shape[2:]

                if det is not None and len(det) > 0:
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                              im0.shape).round()

                    # Print results
                    if self.save_txt or self.debug:
                        classes_cnt = Counter(det[:, -1].tolist())
                        for class_idx, class_cnt in classes_cnt.items():
                            print_details += '%g %ss, ' % (
                                class_cnt, self.class_names[int(class_idx)])

                    # Write results
                    for *xyxy, conf, cls in det:
                        if self.save_txt:  # Write to file
                            # normalized xywh
                            xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                    gn_whwh).view(-1).tolist()  # pylint: disable=not-callable
                            with open(
                                    save_path[:save_path.rfind('.')] + '.txt',
                                    'a') as file:
                                file.write(('%g ' * 5 + '\n') %
                                           (cls, *xywh))  # label format

                        if self.save_img or self.view_img:  # Add bbox to image
                            label = '%s %.2f' % (self.class_names[int(cls)],
                                                 conf)
                            if label is not None:
                                if (label.split())[0] == 'person':
                                    # Save bbox and initialize it with zero, the "safe" label
                                    objects_base.append([xyxy, 0])

                # Plot lines connecting people and get highest label per person
                objects_base = self.monitor_distance_current_boxes(
                    objects_base, im0, 1)

                # Plot box with highest label on person
                plot.draw_boxes(objects_base, im0, self.overlay_images, 1,
                                True)

                # Count label occurrences per frame
                risk_count = self.label_occurrences(objects_base)

                if self.view_img:
                    # Flip screen in horizontal direction
                    im0 = im0[:, ::-1, :]

                # Plot legend
                if self.opt.add_legend:
                    im0 = plot.add_risk_counts(im0, risk_count, LEGEND_HEIGHT,
                                               self.opt.lang)

                # Plot banner
                if self.opt.add_banner:
                    im0 = plot.add_banner(im0, self.banner_icon, BANNER_WIDTH)

                if self.debug:
                    # Print frames per second
                    running_time = time.time() - start_time
                    frame_id = frame_id + 1
                    logger.debug('Frame rate: %s',
                                 round(frame_id / running_time, 2))
                    # Print time (inference + NMS)
                    logger.debug('%sDone. (%.3fs)', print_details,
                                 prediction_time)

                # Stream results
                if self.view_img:
                    if self.resolution:
                        # Interpolation INTER_AREA is better, INTER_LINEAR (default) is faster
                        im0 = cv2.resize(im0, self.resolution)
                    cv2.imshow(window_name, im0)  # im0[:, ::-1, :]
                    if cv2.waitKey(1) == ord('q'):  # q to quit
                        raise StopIteration

                # Save results
                if self.save_img:
                    self.save_results(im0, vid_cap, save_path)

        logger.info('Results saved to %s', Path(self.out))

        logger.info('Done. (%.3fs)', (time.time() - start_time))
Exemple #26
0
    def get_detector_results(self, request):
        """

        Args:
            request (GetDetectorResultsRequest):

        Returns:
            GetDetectorResultsResponse
        """
        try:
            import torch
            from yolov5.utils.general import non_max_suppression
            from yolov5.utils.general import scale_coords
            from yolov5.utils.datasets import letterbox
            import numpy as np
        except ImportError:
            raise

        if self.currently_busy.is_set():
            return GetDetectorResultsResponse(status=ServiceStatus(BUSY=True))
        self.currently_busy.set()

        detections = Detections()

        try:
            image = ros_numpy.numpify(request.image)
            if request.image.encoding == "rgb8":
                image = image[..., ::-1]

            original_shape = image.shape
            img = letterbox(image, new_shape=self.image_size)[0]
            img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB
            img = np.ascontiguousarray(img)

            img = torch.from_numpy(img).to(self.device)
            img = img.half() if self.half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
            with torch.no_grad():
                pred = self.model(img, augment=False)[0]
            pred = non_max_suppression(pred, self.conf_thresh, self.iou_thresh, agnostic=False)

            for i, det in enumerate(pred):
                if det is not None and len(det):
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], original_shape).round()

                    for x1, y1, x2, y2, conf, cls in reversed(det):
                        x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
                        confidence = float(conf)
                        class_name = self.names[int(cls)]
                        roi = RegionOfInterest(x1=x1, y1=y1, x2=x2, y2=y2)
                        seg_roi = SegmentOfInterest(x=[], y=[])
                        detections.objects.append(Detection(roi=roi, seg_roi=seg_roi, id=self._new_id(), track_id=-1,
                                                            confidence=confidence, class_name=class_name))
                self.currently_busy.clear()
        except Exception as e:
            print("FruitCastServer error: ", e)
            return GetDetectorResultsResponse(status=ServiceStatus(ERROR=True), results=detections)

        return GetDetectorResultsResponse(status=ServiceStatus(OKAY=True), results=detections)
Exemple #27
0
    def detect(self, opt):
        print("before detect lock")
        self.qmut_1.lock()
        print("after detect lock")
        out, source, weights, view_img, save_txt, imgsz = \
            opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
        webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')

        # initialize deepsort
        cfg = get_config()
        cfg.merge_from_file(opt.config_deepsort)
        deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT,
                            max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE,
                            nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP,
                            max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE,
                            max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET,
                            use_cuda=True)

        # Initialize
        device = select_device(opt.device)
        if os.path.exists(out):
            shutil.rmtree(out)  # delete output folder
        os.makedirs(out)  # make new output folder
        half = device.type != 'cpu'  # half precision only supported on CUDA

        # Load model
        model = torch.load(weights, map_location=device)['model'].float()  # load to FP32
        model.to(device).eval()
        if half:
            model.half()  # to FP16

        # Set Dataloader

        if webcam:
            view_img = True
            cudnn.benchmark = True  # set True to speed up constant image size inference
            dataset = LoadStreams(source, img_size=imgsz)
        else:
            view_img = True
            dataset = LoadImages(source, img_size=imgsz)

        # Get names and colors
        names = model.module.names if hasattr(model, 'module') else model.names

        # Run inference
        self.t0 = time.time()
        img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
        _ = model(img.half() if half else img) if device.type != 'cpu' else None  # run once

        for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset):
            if not self.Consuming:
                # dataset.stop_cap()
                raise StopIteration
            img = torch.from_numpy(img).to(device)
            img = img.half() if half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)

            # Inference
            t1 = time_synchronized()
            pred = model(img, augment=opt.augment)[0]

            # Apply NMS
            pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,
                                       agnostic=opt.agnostic_nms)
            t2 = time_synchronized()

            # Process detections
            for i, det in enumerate(pred):  # detections per image
                if not self.Consuming:
                    # dataset.stop_cap()
                    raise StopIteration
                if webcam:  # batch_size >= 1
                    p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
                else:
                    p, s, im0 = path, '', im0s

                s += '%gx%g ' % img.shape[2:]  # print string

                if det is not None and len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
                    n = 0
                    # Print results
                    for c in det[:, -1].unique():
                        n = (det[:, -1] == c).sum()  # detections per class
                        s += '%g %ss, ' % (n, names[int(c)])  # add to string
                    # 将当前帧的总人数发送给前端pyqt界面
                    self.sum_person.emit(n)
                    self.msleep(30)
                    bbox_xywh = []
                    confs = []

                    # Adapt detections to deep sort input format
                    for *xyxy, conf, cls in det:
                        img_h, img_w, _ = im0.shape
                        x_c, y_c, bbox_w, bbox_h = bbox_rel(img_w, img_h, *xyxy)
                        obj = [x_c, y_c, bbox_w, bbox_h]
                        bbox_xywh.append(obj)
                        confs.append([conf.item()])

                    xywhs = torch.Tensor(bbox_xywh)
                    confss = torch.Tensor(confs)

                    # Pass detections to deepsort
                    outputs = deepsort.update(xywhs, confss, im0)

                    # draw boxes for visualization
                    if len(outputs) > 0:
                        bbox_xyxy = outputs[:, :4]
                        identities = outputs[:, -1]
                        self.bbox_id.emit([bbox_xyxy, identities])
                        self.msleep(30)
                        draw_boxes(im0, bbox_xyxy, identities)

                # Print time (inference + NMS)
                print('%sDone. (%.3fs)' % (s, t2 - t1))
                # Stream results
                if view_img:
                    # self.detOut.emit(im0)
                    self.queue.put(im0)
                    # if self.queue.qsize() > 3:
                    self.qmut_1.unlock()
                    if self.queue.qsize() > 1:

                        self.queue.get(False)
                        self.queue.task_done()
                    else:
                        self.msleep(30)

        print('Done. (%.3fs)' % (time.time() - self.t0))
Exemple #28
0
    def test_model(self, config, testset):  # pylint: disable=unused-argument
        """The testing loop for YOLOv5.

        Arguments:
            config: Configuration parameters as a dictionary.
            testset: The test dataset.
        """
        assert Config().data.datasource == 'YOLO'
        test_loader = yolo.DataSource.get_test_loader(config['batch_size'],
                                                      testset)

        device = next(self.model.parameters()).device  # get model device

        # Configure
        self.model.eval()
        with open(Config().data.data_params) as f:
            data = yaml.load(f, Loader=yaml.SafeLoader)  # model dict
        check_dataset(data)  # check
        nc = Config().data.num_classes  # number of classes
        iouv = torch.linspace(0.5, 0.95,
                              10).to(device)  # iou vector for [email protected]:0.95
        niou = iouv.numel()

        seen = 0
        names = {
            k: v
            for k, v in enumerate(self.model.names if hasattr(
                self.model, 'names') else self.module.names)
        }
        s = ('%20s' + '%12s' * 6) % \
            ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95')
        p, r, f1, mp, mr, map50, map, = 0., 0., 0., 0., 0., 0., 0.
        stats, ap, ap_class = [], [], []

        for batch_i, (img, targets, paths,
                      shapes) in enumerate(tqdm(test_loader, desc=s)):
            img = img.to(device, non_blocking=True).float()
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            targets = targets.to(device)
            nb, _, height, width = img.shape  # batch size, channels, height, width

            with torch.no_grad():
                # Run model
                if Config().algorithm.type == 'mistnet':
                    logits = self.model.forward_to(img)
                    logits = logits.cpu().detach().numpy()
                    logits = unary_encoding.encode(logits)
                    logits = torch.from_numpy(logits.astype('float32'))
                    out, train_out = self.model.forward_from(logits.to(device))
                else:
                    out, train_out = self.model(img)

                # Run NMS
                targets[:,
                        2:] *= torch.Tensor([width, height, width,
                                             height]).to(device)  # to pixels
                lb = []  # for autolabelling
                out = non_max_suppression(out,
                                          conf_thres=0.001,
                                          iou_thres=0.6,
                                          labels=lb,
                                          multi_label=True)

            # Statistics per image
            for si, pred in enumerate(out):
                labels = targets[targets[:, 0] == si, 1:]
                nl = len(labels)
                tcls = labels[:, 0].tolist() if nl else []  # target class
                seen += 1

                if len(pred) == 0:
                    if nl:
                        stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                      torch.Tensor(), torch.Tensor(), tcls))
                    continue

                # Predictions
                predn = pred.clone()
                scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0],
                             shapes[si][1])  # native-space pred

                # Assign all predictions as incorrect
                correct = torch.zeros(pred.shape[0],
                                      niou,
                                      dtype=torch.bool,
                                      device=device)
                if nl:
                    detected = []  # target indices
                    tcls_tensor = labels[:, 0]

                    # target boxes
                    tbox = xywh2xyxy(labels[:, 1:5])
                    scale_coords(img[si].shape[1:], tbox, shapes[si][0],
                                 shapes[si][1])  # native-space labels

                    # Per target class
                    for cls in torch.unique(tcls_tensor):
                        ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(
                            -1)  # prediction indices
                        pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(
                            -1)  # target indices

                        # Search for detections
                        if pi.shape[0]:
                            # Prediction to target ious
                            ious, i = box_iou(predn[pi, :4], tbox[ti]).max(
                                1)  # best ious, indices

                            # Append detections
                            detected_set = set()
                            for j in (ious > iouv[0]).nonzero(as_tuple=False):
                                d = ti[i[j]]  # detected target
                                if d.item() not in detected_set:
                                    detected_set.add(d.item())
                                    detected.append(d)
                                    correct[pi[j]] = ious[
                                        j] > iouv  # iou_thres is 1xn
                                    if len(
                                            detected
                                    ) == nl:  # all targets already located in image
                                        break

                # Append statistics (correct, conf, pcls, tcls)
                stats.append(
                    (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))

        # Compute statistics
        stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
        if len(stats) and stats[0].any():
            p, r, ap, f1, ap_class = ap_per_class(*stats,
                                                  plot=False,
                                                  save_dir='',
                                                  names=names)
            ap50, ap = ap[:, 0], ap.mean(1)  # [email protected], [email protected]:0.95
            mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
            nt = np.bincount(stats[3].astype(np.int64),
                             minlength=nc)  # number of targets per class
        else:
            nt = torch.zeros(1)

        # Print results
        pf = '%20s' + '%12.3g' * 6  # print format
        print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

        return map50
Exemple #29
0
    def update(self):
        f = 0
        start_time = datetime.datetime.now()
        today = datetime.date.today()
        # dd/mm/YY
        date = today.strftime("%d/%m/%Y")
        current_time = start_time.strftime("%H:%M:%S")

        trackIds, position, speed_e, fps = [], {}, 0, 0.0
        two_w, three_w, four_w, truck, bus, total = 0, 0, 0, 0, 0, 0
        img = torch.zeros((1, 3, self.imgsz, self.imgsz),
                          device=self.device)  # init img
        (grabbed, frame) = self.vs.read()

        path = "traffic3.mp4"
        img0 = frame
        names = self.model.module.names if hasattr(
            self.model, "module") else self.model.names

        if grabbed == True:
            img = letterbox(img0, new_shape=640)[0]
            # Convert
            img = img[:, :, ::-1].transpose(2, 0,
                                            1)  # BGR to RGB, to 3x416x416
            img = np.ascontiguousarray(img)
            f = f + 1
            # count = self.count+1
            img = torch.from_numpy(img).to(self.device)
            img = img.half() if self.half else img.float()  # uint8 to fp16/32
            img /= 255.0  # 0 - 255 to 0.0 - 1.0
            if img.ndimension() == 3:
                img = img.unsqueeze(0)
            # Inference
            t1 = time_synchronized()
            pred = self.model(img, augment=self.augment)[0]

            # Apply NMS
            pred = non_max_suppression(
                pred,
                self.conf_thres,
                self.iou_thres,
                classes=self.classes,
                agnostic=self.agnostic_nms,
            )
            t2 = time_synchronized()
            # Process detections
            for i, det in enumerate(pred):  # detections per image
                if self.webcam:  # batch_size >= 1
                    p, s, im0 = path[i], "%g: " % i, img0[i].copy()
                else:
                    p, s, im0 = path, "", img0

                s += "%gx%g " % img.shape[2:]  # print string
                # save_path = str(Path(self.out) / Path(p).name)

                if det is not None and len(det):
                    # Rescale boxes from img_size to im0 size
                    det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                              im0.shape).round()

                    bbox_xywh = []
                    confs = []
                    labels = []

                    # Adapt detections to deep sort input format
                    for *xyxy, conf, cls in det:
                        label = f"{names[int(cls)]}"
                        bbox_left = min([xyxy[0].item(), xyxy[2].item()])
                        bbox_top = min([xyxy[1].item(), xyxy[3].item()])
                        bbox_w = abs(xyxy[0].item() - xyxy[2].item())
                        bbox_h = abs(xyxy[1].item() - xyxy[3].item())
                        x_c = bbox_left + bbox_w / 2
                        y_c = bbox_top + bbox_h / 2
                        bbox_w = bbox_w
                        bbox_h = bbox_h
                        # x_c, y_c, bbox_w, bbox_h = bbox_rel(self, *xyxy)
                        obj = [x_c, y_c, bbox_w, bbox_h]
                        bbox_xywh.append(obj)
                        confs.append([conf.item()])
                        labels.append(label)

                    confss, labelss = [], []
                    for conf, label in zip(confs, labels):
                        confss.append(conf)
                        labelss.append(label)

                    xywhs = torch.Tensor(bbox_xywh)
                    confss = torch.Tensor(confs)

                    # Pass detections to deepsort
                    outputs = self.deepsort.update(xywhs, confss, im0)

                    # draw line
                    cv2.polylines(im0, [self.pts_arr], self.isClosed,
                                  (255, 0, 0), 2)
                    cv2.rectangle(img0, (650, 0), (850, 170),
                                  color=(0, 0, 0),
                                  thickness=-1)
                    if len(outputs) > 0:
                        bbox_xyxy = outputs[:, :4]
                        identities = outputs[:, -1]
                        offset = (0, 0)
                        counter = 0
                        for i, box in enumerate(bbox_xyxy):
                            if i < (len(labels[::-1]) - 1):
                                x1, y1, x2, y2 = [int(i) for i in box]
                                x1 += offset[0]
                                x2 += offset[0]
                                y1 += offset[1]
                                y2 += offset[1]
                                # box text and bar
                                id = int(identities[i]
                                         ) if identities is not None else 0
                                label = "{}{:d}".format("", id)

                                cls = labels[::-1][i]

                                # Object counting
                                if cls == "motorcycle":
                                    two_w, total = self.Obj_counting(
                                        id, label, trackIds, two_w, total)
                                elif cls == "auto":
                                    three_w, total = self.Obj_counting(
                                        id, label, trackIds, three_w, total)
                                elif cls == "car":
                                    four_w, total = self.Obj_counting(
                                        id, label, trackIds, four_w, total)
                                elif cls == "truck":
                                    truck, total = self.Obj_counting(
                                        id, label, trackIds, truck, total)
                                elif cls == "bus":
                                    bus, total = self.Obj_counting(
                                        id, label, trackIds, bus, total)
                                fps = self.calculate_fps(start_time, f)
                                # check if center points of object is inside the polygon
                                point = Point((int(x1 + (x2 - x1) / 2),
                                               int(y1 + (y2 - y1) / 2)))
                                polygon = Polygon(self.points)
                                if (polygon.contains(point)) == True:
                                    counter = counter + 1
                                    t_size = cv2.getTextSize(
                                        label, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0]
                                    cv2.rectangle(im0, (x1, y1), (x2, y2),
                                                  (0, 255, 0), 3)
                        if counter > 5:
                            flow = "High"
                        elif counter >= 2 and counter < 5:
                            flow = "Medium"
                        else:
                            flow = "Low"
                        cv2.putText(
                            im0,
                            "Occupancy - " + str(counter),
                            (650, 30),
                            cv2.FONT_HERSHEY_DUPLEX,
                            .5,
                            (255, 0, 0),
                            1,
                        )
                        cv2.putText(
                            im0,
                            "Date - " + str(date),
                            (650, 60),
                            cv2.FONT_HERSHEY_DUPLEX,
                            .5,
                            (255, 0, 0),
                            1,
                        )
                        cv2.putText(
                            im0,
                            "Time - " + str(current_time),
                            (650, 90),
                            cv2.FONT_HERSHEY_DUPLEX,
                            .5,
                            (255, 0, 0),
                            1,
                        )
                        cv2.putText(
                            im0,
                            "Speed - " + "N A",
                            (650, 120),
                            cv2.FONT_HERSHEY_DUPLEX,
                            .5,
                            (255, 0, 0),
                            1,
                        )
                        cv2.putText(
                            im0,
                            "Flow - " + str(flow),
                            (650, 150),
                            cv2.FONT_HERSHEY_DUPLEX,
                            .5,
                            (255, 0, 0),
                            1,
                        )

                    # img = cv2.resize(img, (650, 360))
                    # image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
                    image = PIL.Image.fromarray(img0)
                    image = PIL.ImageTk.PhotoImage(image)
                    font = ("Arial", 12)
                    self.canvas.configure(image=image)
                    self.canvas.image = image
                    result = tk.Label(
                        self.counting_result,
                        text=f"Counting Results",
                        width=12,
                        font=font,
                        anchor="center",
                        fg="blue",
                    )
                    result.grid(row=0, column=2, padx=2)
                    # result.pack(padx=10, pady=10)
                    if self.two_w is None:
                        self.two_w = tk.Label(
                            self.counting_result,
                            text=f"Two Wheeler \n\n{two_w}",
                            width=13,
                            font=font,
                            anchor="center",
                            bg="#8080c0",
                            fg="white",
                        )
                        self.two_w.grid(row=1, column=0, padx=2)
                    else:
                        self.two_w.configure(text=f"Two Wheeler\n\n{two_w}")

                    if self.three_w is None:
                        self.three_w = tk.Label(
                            self.counting_result,
                            text=f"Three Wheeler\n\n{three_w}",
                            font=font,
                            width=13,
                            anchor="center",
                            bg="#8080c0",
                            fg="white",
                        )
                        self.three_w.grid(row=1, column=1, padx=2)
                    else:
                        self.three_w.configure(
                            text=f"Three Wheeler\n\n{three_w}")

                    if self.four_w is None:
                        self.four_w = tk.Label(
                            self.counting_result,
                            text=f"Four Wheeler\n\n{four_w}",
                            width=13,
                            font=font,
                            anchor="center",
                            bg="#8080c0",
                            fg="white",
                        )
                        self.four_w.grid(row=1, column=2, padx=2)
                    else:
                        self.four_w.configure(text=f"Four Wheeler\n\n{four_w}")

                    if self.truck is None:
                        self.truck = tk.Label(
                            self.counting_result,
                            text=f"Truck\n\n{truck}",
                            font=font,
                            width=10,
                            anchor="center",
                            bg="#8080c0",
                            fg="white",
                        )
                        self.truck.grid(row=1, column=3, padx=1)
                    else:
                        self.truck.configure(text=f"Truck\n\n{truck}")

                    if self.bus is None:
                        self.bus = tk.Label(
                            self.counting_result,
                            text=f"Bus\n\n{bus}",
                            font=font,
                            width=10,
                            anchor="center",
                            bg="#8080c0",
                            fg="white",
                        )
                        self.bus.grid(row=1, column=4, padx=2)
                    else:
                        self.bus.configure(text=f"Bus\n\n{bus}")

                    if self.total is None:
                        self.total = tk.Label(
                            self.counting_result,
                            text=f"Total Vehicle\n\n{total}",
                            font=font,
                            width=10,
                            anchor="center",
                            bg="#8080c0",
                            fg="white",
                        )
                        self.total.grid(row=1, column=5, pady=2)
                    else:
                        self.total.configure(text=f"Total Vehicle\n\n{total}")

                    if self.fps is None:
                        self.fps = tk.Label(
                            self.counting_result,
                            text=f"FPS\n\n{fps:.2f}",
                            font=font,
                            width=13,
                            anchor="center",
                            bg="#8080c0",
                            fg="white",
                        )
                        self.fps.grid(row=2, column=0, pady=2)
                    else:
                        self.fps.configure(text=f"FPS\n\n{fps:.2f}")

                else:
                    self.deepsort.increment_ages()
                self.root.after(self.delay, self.update)
                # Print time (inference + NMS)
                print("%sDone. (%.3fs)" % (s, t2 - t1))

        else:
            self.root.quit()
            print(
                "***********************************************FINSHED***********************************************"
            )
Exemple #30
0
def detect(save_img=False):
    out, source, weights, view_img, save_txt, imgsz = \
        opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size
    webcam = source.isnumeric() or source.startswith(
        'rtsp') or source.startswith('http') or source.endswith('.txt')

    # Initialize
    set_logging()
    device = select_device(opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder
    half = device.type != 'cpu'  # half precision only supported on CUDA

    # Load model
    model = attempt_load(weights, map_location=device)  # load FP32 model
    imgsz = check_img_size(imgsz, s=model.stride.max())  # check img_size
    if half:
        model.half()  # to FP16

    # Second-stage classifier
    classify = False
    if classify:
        modelc = load_classifier(name='resnet101', n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=imgsz)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=imgsz)

    # Get names and colors
    names = model.module.names if hasattr(model, 'module') else model.names
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Run inference
    t0 = time.time()
    img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img
    _ = model(img.half() if half else img
              ) if device.type != 'cpu' else None  # run once
    for path, img, im0s, vid_cap in dataset:
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = time_synchronized()
        pred = model(img, augment=opt.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)
        t2 = time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            txt_path = str(Path(out) / Path(p).stem) + (
                '_%g' % dataset.frame if dataset.mode == 'video' else '')
            s += '%gx%g ' % img.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1,
                                          0]]  # normalization gain whwh
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        with open(txt_path + '.txt', 'a') as f:
                            f.write(('%g ' * 5 + '\n') %
                                    (cls, *xywh))  # label format

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, t2 - t1))

            # Stream results
            if view_img:
                # cv2.imshow(p, im0)
                cv2.imwrite("C:/Users/lenovo/Desktop/server/output/camera.jpg",
                            im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIterationq

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fourcc = 'mp4v'  # output video codec
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        # vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h))
                        vid_writer = cv2.VideoWriter(
                            save_path,
                            cv2.VideoWriter_fourcc('X', '2', '6', '4'), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % Path(out))
        if platform.system() == 'Darwin' and not opt.update:  # MacOS
            os.system('open ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))