def output_to_target(output): # Convert model output to target format [batch_id, class_id, x, y, w, h, conf] targets = [] for i, o in enumerate(output): for *box, conf, cls in o.cpu().numpy(): targets.append([i, cls, *list(*xyxy2xywh(np.array(box)[None])), conf]) return np.array(targets)
def image_track(self, im0): """ :param im0: original image, BGR format :return: """ # preprocess ************************************************************ # Padded resize img = letterbox(im0, new_shape=self.img_size)[0] # Convert img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) # numpy to tensor img = torch.from_numpy(img).to(self.device) img = img.half() if self.half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) s = '%gx%g ' % img.shape[2:] # print string # Detection time ********************************************************* # Inference t1 = time_synchronized() with torch.no_grad(): pred = self.detector( img, augment=self.args.augment)[0] # list: bz * [ (#obj, 6)] # Apply NMS and filter object other than person (cls:0) pred = non_max_suppression(pred, self.args.conf_thres, self.args.iou_thres, classes=self.args.classes, agnostic=self.args.agnostic_nms) t2 = time_synchronized() # get all obj ************************************************************ det = pred[0] # for video, bz is 1 if det is not None and len( det): # det: (#obj, 6) x1 y1 x2 y2 conf cls # Rescale boxes from img_size to original im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results. statistics of number of each obj for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, self.names[int(c)]) # add to string bbox_xywh = xyxy2xywh(det[:, :4]).cpu() confs = det[:, 4:5].cpu() # ****************************** deepsort **************************** outputs = self.deepsort.update(bbox_xywh, confs, im0) # (#ID, 5) x1,y1,x2,y2,track_ID else: outputs = torch.zeros((0, 5)) t3 = time.time() return outputs, t2 - t1, t3 - t2
def __init__(self, imgs, pred, files, times=(0, 0, 0, 0), names=None, shape=None): super().__init__() d = pred[0].device # device gn = [ torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in imgs ] # normalizations self.imgs = imgs # list of images as numpy arrays self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) self.names = names # class names self.files = files # image filenames self.times = times # profiling times self.xyxy = pred # xyxy pixels self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized self.n = len(self.pred) # number of images (batch size) self.t = tuple((times[i + 1] - times[i]) * 1000 / self.n for i in range(3)) # timestamps (ms) self.s = shape # inference BCHW shape
def save_one_txt(predn, save_conf, shape, file): # Save one txt result gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh for *xyxy, conf, cls in predn.tolist(): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(file, 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n')
def detect(self, source, img_size=640, conf=None, iou=None): conf = self.model.conf if not conf else conf iou = self.model.iou if not iou else iou img_size = check_img_size(img_size, s=self.model.stride.max()) # check img_size # Set Dataloader cudnn.benchmark = True dataset = LoadImages(source, img_size=img_size) names = self.model.module.names if hasattr(self.model, 'module') else self.model.names img = torch.zeros((1, 3, img_size, img_size), device=self.device) # init img _ = self.model(img.half() if self.half else img) if self.device.type != 'cpu' else None # run once detections = [] for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(self.device) img = img.half() if self.half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) pred = self.model(img, augment=False)[0] pred = non_max_suppression_torch_ops(pred, conf, iou, classes=None) # Process detections for i, det in enumerate(pred): # detections per image p, s, im0 = path, '', im0s detection_result = {"entities": [], "detections": [], "src": path} gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results # Calling detach is necessary for c in det[:, -1].detach().unique(): n = (det[:, -1] == c).sum() # detections per class detection_result['entities'].append((names[int(c)], int(n))) # Write results for *xyxy, conf, cls in reversed(det): t_xyxy = torch.tensor(xyxy).view(1, 4) xywh = (xyxy2xywh(t_xyxy) / gn).view(-1).tolist() # normalized xywh detection_result['detections'].append(dict(xyxy=t_xyxy.view(-1).tolist(), xywh=xywh, cls=names[int(cls)], confidence="{:.2%}".format(float(conf)))) detections.append(detection_result) return detections
def save_one_json(predn, jdict, path, class_map): # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} image_id = int(path.stem) if path.stem.isnumeric() else path.stem box = xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(predn.tolist(), box.tolist()): jdict.append({'image_id': image_id, 'category_id': class_map[int(p[5])], 'bbox': [round(x, 3) for x in b], 'score': round(p[4], 5)})
def __init__(self, imgs, pred, names=None): super(Detections, self).__init__() d = pred[0].device # device gn = [torch.tensor([*[im.shape[i] for i in [1, 0, 1, 0]], 1., 1.], device=d) for im in imgs] # normalizations self.imgs = imgs # list of images as numpy arrays self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls) self.names = names # class names self.xyxy = pred # xyxy pixels self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized self.n = len(self.pred)
def plot_test_txt(): # from yolov5.utils.plots import *; plot_test() # Plot test.txt histograms x = np.loadtxt('test.txt', dtype=np.float32) box = xyxy2xywh(x[:, :4]) cx, cy = box[:, 0], box[:, 1] fig, ax = plt.subplots(1, 1, figsize=(6, 6), tight_layout=True) ax.hist2d(cx, cy, bins=600, cmax=10, cmin=0) ax.set_aspect('equal') plt.savefig('hist2d.png', dpi=300) fig, ax = plt.subplots(1, 2, figsize=(12, 6), tight_layout=True) ax[0].hist(cx, bins=600) ax[1].hist(cy, bins=600) plt.savefig('hist1d.png', dpi=200)
def save_one_box(xyxy, im, file='image.jpg', gain=1.02, pad=10, square=False, BGR=False, save=True): # Save image crop as {file} with crop size multiple {gain} and {pad} pixels. Save and/or return crop xyxy = torch.tensor(xyxy).view(-1, 4) b = xyxy2xywh(xyxy) # boxes if square: b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # attempt rectangle to square b[:, 2:] = b[:, 2:] * gain + pad # box wh * gain + pad xyxy = xywh2xyxy(b).long() clip_coords(xyxy, im.shape) crop = im[int(xyxy[0, 1]):int(xyxy[0, 3]), int(xyxy[0, 0]):int(xyxy[0, 2]), ::(1 if BGR else -1)] if save: file.parent.mkdir(parents=True, exist_ok=True) # make directory cv2.imwrite(str(increment_path(file).with_suffix('.jpg')), crop) return crop
def detect(self, source: List[np.array], img_size=640, conf=None, iou=None): stacked, sizes, div_sizes = self.preprocess(source) result = self.infer(stacked, conf, iou) detections = [] for i, det in enumerate(result): scale_coords(div_sizes, result[i][:, :4], sizes[i].original) detection_result = {"entities": [], "detections": []} gn = torch.tensor(sizes[i].original)[[1, 0, 1, 0]] for c in det[:, -1].detach().unique(): n = (det[:, -1] == c).sum() # detections per class detection_result['entities'].append((self.names[int(c)], int(n))) for *xyxy, conf, cls in reversed(det): t_xyxy = torch.tensor(xyxy).view(1, 4) xywh = (xyxy2xywh(t_xyxy) / gn).view(-1).tolist() # normalized xywh detection_result['detections'].append(dict(xyxy=t_xyxy.view(-1).tolist(), xywh=xywh, cls=self.names[int(cls)], confidence="{:.2%}".format(float(conf)))) detections.append(detection_result) return detections
def mainFunc(args): # Set the main function flag print("Main Function Start...") # Check the GPU device print("Number of available GPUs: {}".format(torch.cuda.device_count())) # Check whether using the distributed runing for the network is_distributed = initDistributed(args) master = True if is_distributed and os.environ["RANK"]: master = int( os.environ["RANK"]) == 0 # check whether this node is master node # Configuration for device setting set_logging() if is_distributed: device = torch.device('cuda:{}'.format(args.local_rank)) else: device = select_device(args.device) half = device.type != 'cpu' # half precision only supported on CUDA # Load the configuration config = loadConfig(args.config) # CuDNN related setting if torch.cuda.is_available(): cudnn.benchmark = config.DEVICE.CUDNN.BENCHMARK cudnn.deterministic = config.DEVICE.CUDNN.DETERMINISTIC cudnn.enabled = config.DEVICE.CUDNN.ENABLED # Configurations for dirctories save_img, save_dir, source, yolov5_weights, view_img, save_txt, imgsz = \ False, Path(args.save_dir), args.source, args.weights, args.view_img, args.save_txt, args.img_size webcam = source.isnumeric() or source.startswith( ('rtsp://', 'rtmp://', 'http://')) or source.endswith('.txt') if save_dir == Path('runs/detect'): # if default os.makedirs('runs/detect', exist_ok=True) # make base save_dir = Path(increment_dir(save_dir / 'exp', args.name)) # increment run os.makedirs(save_dir / 'labels' if save_txt else save_dir, exist_ok=True) # make new dir # Load yolov5 model for human detection model_yolov5 = attempt_load(config.MODEL.PRETRAINED.YOLOV5, map_location=device) imgsz = check_img_size(imgsz, s=model_yolov5.stride.max()) # check img_size if half: model_yolov5.half() # to FP16 # Second-stage classifier classify = False if classify: model_classifier = load_classifier(name='resnet101', n=2) # initialize model_classifier.load_state_dict( torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights model_classifier.to(device).eval() # Load resnet model for human keypoints estimation model_resnet = eval('pose_models.' + config.MODEL.NAME.RESNET + '.get_pose_net')(config, is_train=False) if config.EVAL.RESNET.MODEL_FILE: print('=> loading model from {}'.format(config.EVAL.RESNET.MODEL_FILE)) model_resnet.load_state_dict(torch.load(config.EVAL.RESNET.MODEL_FILE), strict=False) else: print('expected model defined in config at EVAL.RESNET.MODEL_FILE') model_resnet.to(device) model_resnet.eval() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = True dataset = LoadStreams(source, img_size=imgsz) else: save_img = True dataset = LoadImages(source, img_size=imgsz) pose_transform = transforms.Compose( [ # input transformation for 2d human pose estimation transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # Get names and colors names = model_yolov5.module.names if hasattr( model_yolov5, 'module') else model_yolov5.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] # Construt filters for filtering 2D/3D human keypoints # filters_2d = constructFilters((1,16,2), freq=25, mincutoff=1, beta=0.01) # for test # filters_3d = constructFilters((1,16,3), freq=25, mincutoff=1, beta=0.01) # Run the yolov5 and resnet for 2d human pose estimation # with torch.no_grad(): # Run inference t0 = time.time() img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model_yolov5(img.half() if half else img ) if device.type != 'cpu' else None # run once # Process every video frame for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred_boxes = model_yolov5(img, augment=args.augment)[0] # Apply NMS pred_boxes = non_max_suppression(pred_boxes, args.conf_thres, args.iou_thres, classes=args.classes, agnostic=args.agnostic_nms) t2 = time_synchronized() # Can not find people and move to next frame if pred_boxes[0] is None: # show the frame with no human detected cv2.namedWindow("2D Human Pose Estimation", cv2.WINDOW_NORMAL) cv2.imshow("2D Human Pose Estimation", im0s[0].copy()) # wait manual operations # with kb.Listener(on_press=on_press) as listener: # listener.join() # return # if kb.is_pressed('t'): # return print("No Human Detected and Move on.") print("-" * 30) continue # Print time (inference + NMS) detect_time = t2 - t1 detect_fps = 1.0 / detect_time print("Human Detection Time: {}, Human Detection FPS: {}".format( detect_time, detect_fps)) # Apply Classifier if classify: # false pred_boxes = apply_classifier(pred_boxes, model_classifier, img, im0s) # Estimate 2d human pose(multiple person) centers = [] scales = [] for id, boxes in enumerate(pred_boxes): if boxes is not None and len(boxes): boxes[:, :4] = scale_coords(img.shape[2:], boxes[:, :4], im0s[id].copy().shape).round() # convert tensor to list format boxes = np.delete(boxes.cpu().numpy(), [-2, -1], axis=1).tolist() for l in range(len(boxes)): boxes[l] = [tuple(boxes[l][0:2]), tuple(boxes[l][2:4])] # convert box to center and scale for box in boxes: center, scale = box_to_center_scale(box, imgsz, imgsz) centers.append(center) scales.append(scale) t3 = time_synchronized() pred_pose_2d = get_pose_estimation_prediction(config, model_resnet, im0s[0], centers, scales, transform=pose_transform, device=device) t4 = time_synchronized() # Print time (2d human pose estimation) estimate_time = t4 - t3 estimate_fps = 1.0 / estimate_time print("Pose Estimation Time: {}, Pose Estimation FPS: {}".format( estimate_time, estimate_fps)) # Filter the predicted 2d human pose(multiple person) t5 = time_synchronized() # if False: # for test if config.EVAL.RESNET.USE_FILTERS_2D: # construct filters for every keypoints of every person in 2D filters_2d = constructFilters(pred_pose_2d.shape, freq=1, mincutoff=1, beta=0.01) print("Shape of filters_2d: ({}, {}, {})".format( len(filters_2d), len(filters_2d[0]), len(filters_2d[0][0]))) # for test for per in range(pred_pose_2d.shape[0]): for kp in range(pred_pose_2d.shape[1]): for coord in range(pred_pose_2d.shape[2]): pred_pose_2d[per][kp][coord] = filters_2d[per][kp][ coord](pred_pose_2d[per][kp][coord]) t6 = time_synchronized() # Print time (filter 2d human pose) filter_time_2d = t6 - t5 filter_fps_2d = 1.0 / filter_time_2d print("Filter 2D Pose Time: {}, Filter 2D Pose FPS: {}".format( filter_time_2d, filter_fps_2d)) # Process detections and estimations in 2D for i, box in enumerate(pred_boxes): if webcam: # batch_size >= 1 p, s, im0 = Path(path[i]), '%g: ' % i, im0s[i].copy() else: p, s, im0 = Path(path), '', im0s save_path = str(save_dir / p.name) txt_path = str(save_dir / 'labels' / p.stem) + ( '_%g' % dataset.frame if dataset.mode == 'video' else '') s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if box is not None and len(box): # Rescale boxes from img_size to im0 size box[:, :4] = scale_coords(img.shape[2:], box[:, :4], im0.shape).round() # Print results for c in box[:, -1].unique(): n = (box[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, names[int(c)]) # add to string # Write results for *xyxy, conf, cls in reversed(box): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if args.save_conf else ( cls, *xywh) # label format with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line) + '\n') % line) # Add bbox to image if save_img or view_img: label = '%s %.2f' % (names[int(cls)], conf) plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) # Draw joint keypoints, number orders and human skeletons for every detected people in 2D for person in pred_pose_2d: # draw the human keypoints for idx, coord in enumerate(person): x_coord, y_coord = int(coord[0]), int(coord[1]) cv2.circle(im0, (x_coord, y_coord), 1, (0, 0, 255), 5) cv2.putText(im0, str(idx), (x_coord, y_coord), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2, cv2.LINE_AA) # draw the human skeletons in PACIFIC mode for skeleton in PACIFIC_SKELETON_INDEXES: cv2.line(im0, (int(person[skeleton[0]][0]), int(person[skeleton[0]][1])), (int(person[skeleton[1]][0]), int(person[skeleton[1]][1])), skeleton[2], 2) # Print time (inference + NMS + estimation) print('%sDone. (%.3fs)' % (s, t4 - t1)) # Stream results if view_img: detect_text = "Detect FPS:{0:0>5.2f}/{1:0>6.2f}ms".format( detect_fps, detect_time * 1000) estimate_text = "Estimate FPS:{0:0>5.2f}/{1:0>6.2f}ms".format( estimate_fps, estimate_time * 1000) cv2.putText(im0, detect_text, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2, cv2.LINE_AA) cv2.putText(im0, estimate_text, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2, cv2.LINE_AA) cv2.namedWindow("2D Human Pose Estimation", cv2.WINDOW_NORMAL) cv2.imshow("2D Human Pose Estimation", im0) if cv2.waitKey(1) & 0xFF == ord('q'): # q to quit return # goto .mainFunc # Save results (image with detections) if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release( ) # release previous video writer fourcc = 'mp4v' # output video codec fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) vid_writer.write(im0) # Print time (inference + NMS + estimation + 2d filtering) all_process_time = t6 - t1 all_process_fps = 1.0 / all_process_time print("All Process Time: {}, All Process FPS: {}".format( all_process_time, all_process_fps)) print("-" * 30) # Goto label # label .mainFunc # Print saving results if save_txt or save_img: print('Results saved to %s' % save_dir) # Release video reader and writer, then destory all opencv windows dataset.vid_cap.release() vid_writer.release() cv2.destroyAllWindows() print('Present 2D Human Pose Inference Done. Total Time:(%.3f seconds)' % (time.time() - t0))
def __getitem__(self, index): index = self.indices[index] # linear, shuffled, or image_weights hyp = self.hyp mosaic = self.mosaic and random.random() < hyp['mosaic'] if mosaic: # Load mosaic img, labels = load_mosaic(self, index) shapes = None # MixUp https://arxiv.org/pdf/1710.09412.pdf if random.random() < hyp['mixup']: img2, labels2 = load_mosaic(self, random.randint(0, self.n - 1)) r = np.random.beta(8.0, 8.0) # mixup ratio, alpha=beta=8.0 img = (img * r + img2 * (1 - r)).astype(np.uint8) labels = np.concatenate((labels, labels2), 0) else: # Load image img, (h0, w0), (h, w) = load_image(self, index) # Letterbox shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment) shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling labels = self.labels[index].copy() if labels.size: # normalized xywh to pixel xyxy format labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1]) if self.augment: # Augment imagespace if not mosaic: img, labels = random_perspective(img, labels, degrees=hyp['degrees'], translate=hyp['translate'], scale=hyp['scale'], shear=hyp['shear'], perspective=hyp['perspective']) # Augment colorspace augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v']) # Apply cutouts # if random.random() < 0.9: # labels = cutout(img, labels) nL = len(labels) # number of labels if nL: labels[:, 1:5] = xyxy2xywh(labels[:, 1:5]) # convert xyxy to xywh labels[:, [2, 4]] /= img.shape[0] # normalized height 0-1 labels[:, [1, 3]] /= img.shape[1] # normalized width 0-1 if self.augment: # flip up-down if random.random() < hyp['flipud']: img = np.flipud(img) if nL: labels[:, 2] = 1 - labels[:, 2] # flip left-right if random.random() < hyp['fliplr']: img = np.fliplr(img) if nL: labels[:, 1] = 1 - labels[:, 1] labels_out = torch.zeros((nL, 6)) if nL: labels_out[:, 1:] = torch.from_numpy(labels) # Convert img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) return torch.from_numpy(img), labels_out, self.img_files[index], shapes
def detect(opt): memory = {} counter = 0 out, source, yolo_model, deep_sort_model, show_vid, save_vid, save_txt, imgsz, evaluate, half, project, name, exist_ok= \ opt.output, opt.source, opt.yolo_model, opt.deep_sort_model, opt.show_vid, opt.save_vid, \ opt.save_txt, opt.imgsz, opt.evaluate, opt.half, opt.project, opt.name, opt.exist_ok webcam = source == '0' or source.startswith('rtsp') or source.startswith( 'http') or source.endswith('.txt') # initialize deepsort cfg = get_config() cfg.merge_from_file(opt.config_deepsort) deepsort = DeepSort(deep_sort_model, torch.device("cpu"), max_dist=cfg.DEEPSORT.MAX_DIST, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET) # Initialize device = select_device(opt.device) half &= device.type != 'cpu' # half precision only supported on CUDA # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to # its own .txt file. Hence, in that case, the output folder is not restored if not evaluate: if os.path.exists(out): pass shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run save_dir.mkdir(parents=True, exist_ok=True) # make dir # Load model device = select_device(device) model = DetectMultiBackend(yolo_model, device=device, dnn=opt.dnn) stride, names, pt, jit, _ = model.stride, model.names, model.pt, model.jit, model.onnx imgsz = check_img_size(imgsz, s=stride) # check image size # Half half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA if pt: model.model.half() if half else model.model.float() # Set Dataloader vid_path, vid_writer = None, None # Check if environment supports image displays if show_vid: show_vid = check_imshow() # Dataloader if webcam: show_vid = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt and not jit) bs = len(dataset) # batch_size else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt and not jit) bs = 1 # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names # extract what is in between the last '/' and last '.' txt_file_name = source.split('/')[-1].split('.')[0] txt_path = str(Path(save_dir)) + '/' + txt_file_name + '.txt' if pt and device.type != 'cpu': model( torch.zeros(1, 3, *imgsz).to(device).type_as( next(model.model.parameters()))) # warmup dt, seen = [0.0, 0.0, 0.0, 0.0], 0 regionid = set() for frame_idx, (path, img, im0s, vid_cap, s) in enumerate(dataset): t1 = time_sync() img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) t2 = time_sync() dt[0] += t2 - t1 # Inference visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if opt.visualize else False pred = model(img, augment=opt.augment, visualize=visualize) t3 = time_sync() dt[1] += t3 - t2 # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms, max_det=opt.max_det) dt[2] += time_sync() - t3 # Process detections for i, det in enumerate(pred): # detections per image seen += 1 if webcam: # batch_size >= 1 p, im0, _ = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ... s += '%gx%g ' % img.shape[2:] # print string annotator = Annotator(im0, line_width=2, font='Arial.ttf', pil=not ascii) if det is not None and len(det): tboxes = [] indexIDs = [] previous = memory.copy() memory = {} # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string xywhs = xyxy2xywh(det[:, 0:4]) confs = det[:, 4] clss = det[:, 5] # pass detections to deepsort t4 = time_sync() outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) t5 = time_sync() dt[3] += t5 - t4 # draw boxes for visualization if len(outputs) > 0: for j, (output, conf) in enumerate(zip(outputs, confs)): bboxes = output[0:4] id = output[4] cls = output[5] roi = [(0, 0), (640, 0), (640, 380), (0, 380)] (x, y) = (int(bboxes[0]), int(bboxes[1])) (w, h) = (int(bboxes[2]), int(bboxes[3])) inside = cv2.pointPolygonTest(np.array(roi), (x, h), False) if inside > 0: regionid.add(id) c = int(cls) # integer class label = f' {names[c]} {conf:.2f}' cv2.putText(im0, "count =" + str(len(regionid)), (20, 50), 0, 1, (100, 200, 0), 2) annotator.box_label(bboxes, label, color=colors(c, True)) if save_txt: # to MOT format bbox_left = output[0] bbox_top = output[1] bbox_w = output[2] - output[0] bbox_h = output[3] - output[1] # Write MOT compliant results to file with open(txt_path, 'a') as f: f.write(('%g ' * 10 + '\n') % ( frame_idx + 1, id, bbox_left, # MOT format bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) LOGGER.info( f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)' ) LOGGER.info(f'counter = {len(regionid)}') else: deepsort.increment_ages() LOGGER.info('No detections') # Stream results im0 = annotator.result() if show_vid: cv2.imshow(str(p), im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_vid: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] vid_writer = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer.write(im0) # Print results t = tuple(x / seen * 1E3 for x in dt) # speeds per image LOGGER.info( f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms deep sort update \ per image at shape {(1, 3, *imgsz)}' % t) if save_txt or save_vid: print('Results saved to %s' % save_path) if platform == 'darwin': # MacOS os.system('open ' + save_path)
def detect(self): # pylint: disable=too-many-locals,too-many-branches,too-many-statements """ Start main code for object detection and distance calculations """ start_time = time.time() logger.info('Start detecting') logger.debug('Device: %s', self.device) window_name = 'Stream' if self.webcam: # Full screen cv2.namedWindow(window_name, cv2.WND_PROP_FULLSCREEN) cv2.setWindowProperty(window_name, cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_FULLSCREEN) # Run inference img = torch.zeros((1, 3, self.imgsz, self.imgsz), device=self.device) # init img _ = self.model(img.half() if self.half else img ) if self.half else None # run once frame_id = 0 for path, img, im0s, vid_cap in self.dataset: img, pred, prediction_time = self.get_predictions(img) objects_base = [] # Process detections for idx_image, det in enumerate(pred): # detections per image if self.webcam: # batch_size >= 1 path_frame, im0 = path[idx_image], im0s[idx_image].copy() print_details = '%g: ' % idx_image else: path_frame, im0 = path, im0s print_details = '' # Must be inside the for loop so code can be used with multiple files (e.g. images) save_path = str(Path(self.out) / Path(path_frame).name) if self.save_txt or self.debug: # normalization gain whwh gn_whwh = torch.tensor(im0.shape)[[1, 0, 1, 0]] # pylint: disable=not-callable print_details += '%gx%g ' % img.shape[2:] if det is not None and len(det) > 0: # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results if self.save_txt or self.debug: classes_cnt = Counter(det[:, -1].tolist()) for class_idx, class_cnt in classes_cnt.items(): print_details += '%g %ss, ' % ( class_cnt, self.class_names[int(class_idx)]) # Write results for *xyxy, conf, cls in det: if self.save_txt: # Write to file # normalized xywh xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn_whwh).view(-1).tolist() # pylint: disable=not-callable with open( save_path[:save_path.rfind('.')] + '.txt', 'a') as file: file.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format if self.save_img or self.view_img: # Add bbox to image label = '%s %.2f' % (self.class_names[int(cls)], conf) if label is not None: if (label.split())[0] == 'person': # Save bbox and initialize it with zero, the "safe" label objects_base.append([xyxy, 0]) # Plot lines connecting people and get highest label per person objects_base = self.monitor_distance_current_boxes( objects_base, im0, 1) # Plot box with highest label on person plot.draw_boxes(objects_base, im0, self.overlay_images, 1, True) # Count label occurrences per frame risk_count = self.label_occurrences(objects_base) if self.view_img: # Flip screen in horizontal direction im0 = im0[:, ::-1, :] # Plot legend if self.opt.add_legend: im0 = plot.add_risk_counts(im0, risk_count, LEGEND_HEIGHT, self.opt.lang) # Plot banner if self.opt.add_banner: im0 = plot.add_banner(im0, self.banner_icon, BANNER_WIDTH) if self.debug: # Print frames per second running_time = time.time() - start_time frame_id = frame_id + 1 logger.debug('Frame rate: %s', round(frame_id / running_time, 2)) # Print time (inference + NMS) logger.debug('%sDone. (%.3fs)', print_details, prediction_time) # Stream results if self.view_img: if self.resolution: # Interpolation INTER_AREA is better, INTER_LINEAR (default) is faster im0 = cv2.resize(im0, self.resolution) cv2.imshow(window_name, im0) # im0[:, ::-1, :] if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results if self.save_img: self.save_results(im0, vid_cap, save_path) logger.info('Results saved to %s', Path(self.out)) logger.info('Done. (%.3fs)', (time.time() - start_time))
def detect(save_img=False): out, source, weights, view_img, save_txt, imgsz = \ opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size webcam = source.isnumeric() or source.startswith( 'rtsp') or source.startswith('http') or source.endswith('.txt') # Initialize set_logging() device = select_device(opt.device) if os.path.exists(out): shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder half = device.type != 'cpu' # half precision only supported on CUDA # Load model model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size if half: model.half() # to FP16 # Second-stage classifier classify = False if classify: modelc = load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict( torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights modelc.to(device).eval() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = True cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz) else: save_img = True dataset = LoadImages(source, img_size=imgsz) # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] # Run inference t0 = time.time() img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img ) if device.type != 'cpu' else None # run once for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img, augment=opt.augment)[0] # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s save_path = str(Path(out) / Path(p).name) txt_path = str(Path(out) / Path(p).stem) + ( '_%g' % dataset.frame if dataset.mode == 'video' else '') s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, names[int(c)]) # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format if save_img or view_img: # Add bbox to image label = '%s %.2f' % (names[int(cls)], conf) plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) # Print time (inference + NMS) print('%sDone. (%.3fs)' % (s, t2 - t1)) # Stream results if view_img: # cv2.imshow(p, im0) cv2.imwrite("C:/Users/lenovo/Desktop/server/output/camera.jpg", im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIterationq # Save results (image with detections) if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release( ) # release previous video writer fourcc = 'mp4v' # output video codec fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) vid_writer = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc('X', '2', '6', '4'), fps, (w, h)) vid_writer.write(im0) if save_txt or save_img: print('Results saved to %s' % Path(out)) if platform.system() == 'Darwin' and not opt.update: # MacOS os.system('open ' + save_path) print('Done. (%.3fs)' % (time.time() - t0))
def run( weights=ROOT / 'yolov5s.pt', # model.pt path(s) source=ROOT / 'data/images', # file/dir/URL/glob, 0 for webcam data=ROOT / 'data/coco128.yaml', # dataset.yaml path imgsz=(640, 640), # inference size (height, width) conf_thres=0.25, # confidence threshold iou_thres=0.45, # NMS IOU threshold max_det=1000, # maximum detections per image device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=False, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / 'runs/detect', # save results to project/name name='exp', # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference ): source = str(source) save_img = not nosave and not source.endswith( '.txt') # save inference images is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS) is_url = source.lower().startswith( ('rtsp://', 'rtmp://', 'http://', 'https://')) webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file) if is_url and is_file: source = check_file(source) # download # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir( parents=True, exist_ok=True) # make dir # Load model device = select_device(device) model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data) stride, names, pt, jit, onnx, engine = model.stride, model.names, model.pt, model.jit, model.onnx, model.engine imgsz = check_img_size(imgsz, s=stride) # check image size # Half half &= ( pt or jit or onnx or engine ) and device.type != 'cpu' # FP16 supported on limited backends with CUDA if pt or jit: model.model.half() if half else model.model.float() # Dataloader if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) bs = len(dataset) # batch_size else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) bs = 1 # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Run inference model.warmup(imgsz=(1 if pt else bs, 3, *imgsz), half=half) # warmup dt, seen = [0.0, 0.0, 0.0], 0 for path, im, im0s, vid_cap, s in dataset: t1 = time_sync() im = torch.from_numpy(im).to(device) im = im.half() if half else im.float() # uint8 to fp16/32 im /= 255 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim t2 = time_sync() dt[0] += t2 - t1 # Inference visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False pred = model(im, augment=augment, visualize=visualize) t3 = time_sync() dt[1] += t3 - t2 # NMS pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) dt[2] += time_sync() - t3 # Second-stage classifier (optional) # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s) # Process predictions for i, det in enumerate(pred): # per image seen += 1 if webcam: # batch_size >= 1 p, im0, frame = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # im.jpg txt_path = str(save_dir / 'labels' / p.stem) + ( '' if dataset.mode == 'image' else f'_{frame}') # im.txt s += '%gx%g ' % im.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=line_thickness, example=str(names)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or save_crop or view_img: # Add bbox to image c = int(cls) # integer class label = None if hide_labels else ( names[c] if hide_conf else f'{names[c]} {conf:.2f}') annotator.box_label(xyxy, label, color=colors(c, True)) if save_crop: save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True) # Stream results im0 = annotator.result() if view_img: cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release( ) # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path = str(Path(save_path).with_suffix( '.mp4')) # force *.mp4 suffix on results videos vid_writer[i] = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer[i].write(im0) # Print time (inference-only) LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)') # Print results t = tuple(x / seen * 1E3 for x in dt) # speeds per image LOGGER.info( f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer(weights) # update model (to fix SourceChangeWarning)
def detect(save_img=False): out, source, weights, view_img, save_txt, imgsz = \ opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size webcam = source.isnumeric() or source.endswith( '.txt') or source.lower().startswith( ('rtsp://', 'rtmp://', 'http://')) or source.lower().startswith('intel') # Initialize set_logging() device = select_device(opt.device) folder_main = out.split('/')[0] if os.path.exists(out): shutil.rmtree(out) # delete output folder folder_features = folder_main + '/features' if os.path.exists(folder_features): shutil.rmtree(folder_features) # delete features output folder folder_crops = folder_main + '/image_crops' if os.path.exists(folder_crops): shutil.rmtree(folder_crops) # delete output folder with object crops os.makedirs(out) # make new output folder os.makedirs(folder_features) # make new output folder os.makedirs(folder_crops) # make new output folder half = device.type != 'cpu' # half precision only supported on CUDA # Load model model = torch.load(weights[0], map_location=device)['model'].float() # load to FP32 model.to(device).eval() imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size if half: model.half() # to FP16 # Second-stage classifier classify = False if classify: modelc = load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict( torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights modelc.to(device).eval() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = True cudnn.benchmark = True # set True to speed up constant image size inference if source.lower().startswith('intel'): dataset = LoadRealSense2() save_img = True else: dataset = LoadStreams(source, img_size=imgsz) else: save_img = True dataset = LoadImages(source, img_size=imgsz) # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] # frames per second # TODO if use intel or if use given footage fps = 30 # dataset.cap.get(cv2.CAP_PROP_FPS) critical_time_frames = opt.time * fps # COUNTER: initialization counter = VoteCounter(critical_time_frames, fps) print('CRITICAL TIME IS ', opt.time, 'sec, or ', counter.critical_time, ' frames') # Find index corresponding to a person idx_person = names.index("person") # Deep SORT: initialize the tracker cfg = get_config() cfg.merge_from_file(opt.config_deepsort) deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=True) # AlphaPose: initialization # args_p = update_config(opt.config_alphapose) # cfg_p = update_config(args_p.ALPHAPOSE.cfg) # # args_p.ALPHAPOSE.tracking = args_p.ALPHAPOSE.pose_track or args_p.ALPHAPOSE.pose_flow # # demo = SingleImageAlphaPose(args_p.ALPHAPOSE, cfg_p, device) # output_pose = opt.output.split('/')[0] + '/pose' # if not os.path.exists(output_pose): # os.mkdir(output_pose) # Run inference t0 = time.time() img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img ) if device.type != 'cpu' else None # run once for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img, augment=opt.augment)[0] # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # TODO => COUNTER: draw queueing ROI # compute urn centoid (1st frame only) and plot a bounding box around it # if dataset.frame == 1: # counter.read_urn_coordinates(opt.urn, im0s, opt.radius) # counter.plot_urn_bbox(im0s) # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 if source.lower().startswith('intel'): p, s, im0, frame = path, '%g: ' % i, im0s[i].copy( ), dataset.count else: p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s save_path = str(Path(out) / Path(p).name) print(save_path) txt_path = str(Path(out) / Path(p).stem) + ( '_%g' % dataset.frame if dataset.mode == 'video' else '') s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, names[int(c)]) # add to string # Deep SORT: person class only idxs_ppl = ( det[:, -1] == idx_person ).nonzero(as_tuple=False).squeeze( dim=1) # 1. List of indices with 'person' class detections dets_ppl = det[idxs_ppl, : -1] # 2. Torch.tensor with 'person' detections print('\n {} people were detected!'.format(len(idxs_ppl))) # Deep SORT: convert data into a proper format xywhs = xyxy2xywh(dets_ppl[:, :-1]).to("cpu") confs = dets_ppl[:, 4].to("cpu") # Deep SORT: feed detections to the tracker if len(dets_ppl) != 0: trackers, features = deepsort.update(xywhs, confs, im0) # tracks inside a critical sphere trackers_inside = [] for i, d in enumerate(trackers): plot_one_box(d[:-1], im0, label='ID' + str(int(d[-1])), color=colors[1], line_thickness=1) # TODO: queue COUNTER # d_include = counter.centroid_distance(d, im0, colors[1], dataset.frame) # if d_include: # trackers_inside.append(d) # ALPHAPOSE: show skeletons for bounding boxes inside the critical sphere # if len(trackers_inside) > 0: # pose = demo.process('frame_'+str(dataset.frame), im0, trackers_inside) # im0 = demo.vis(im0, pose) # demo.writeJson([pose], output_pose, form=args_p.ALPHAPOSE.format, for_eval=args_p.ALPHAPOSE.eval) # # counter.save_features_and_crops(im0, dataset.frame, trackers_inside, features, folder_main) cv2.putText(im0, 'Voted ' + str(len(counter.voters_count)), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2) print('NUM VOTERS', len(counter.voters)) print(list(counter.voters.keys())) # COUNTER if len(counter.voters) > 0: counter.save_voter_trajectory(dataset.frame, folder_main) # Print time (inference + NMS) print('%sDone. (%.3fs)' % (s, t2 - t1)) # Stream results if view_img: cv2.imshow(p, im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release( ) # release previous video writer fourcc = 'mp4v' # output video codec if type(vid_cap ) is dict: # estimate distance_in_meters # TODO hard code w, h, fps = 640, 480, 6 else: fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h)) vid_writer.write(im0) if save_txt or save_img: print('Results saved to %s' % Path(out)) if platform.system() == 'Darwin' and not opt.update: # MacOS os.system('open ' + save_path) print('Done. (%.3fs)' % (time.time() - t0))
def test(data, weights=None, batch_size=16, imgsz=640, conf_thres=0.001, iou_thres=0.6, # for NMS save_json=False, single_cls=False, augment=False, verbose=False, model=None, dataloader=None, save_dir=Path(''), # for saving images save_txt=False, # for auto-labelling save_conf=False, plots=True): # Initialize/load model and set device training = model is not None if training: # called by train.py device = next(model.parameters()).device # get model device else: # called directly set_logging() device = select_device(opt.device, batch_size=batch_size) save_txt = opt.save_txt # save *.txt labels # Remove previous if os.path.exists(save_dir): shutil.rmtree(save_dir) # delete dir os.makedirs(save_dir) # make new dir if save_txt: out = save_dir / 'autolabels' if os.path.exists(out): shutil.rmtree(out) # delete dir os.makedirs(out) # make new dir # Load model model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 # if device.type != 'cpu' and torch.cuda.device_count() > 1: # model = nn.DataParallel(model) # Half half = device.type != 'cpu' # half precision only supported on CUDA if half: model.half() # Configure model.eval() with open(data) as f: data = yaml.load(f, Loader=yaml.FullLoader) # model dict check_dataset(data) # check nc = 1 if single_cls else int(data['nc']) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95 niou = iouv.numel() # Dataloader if not training: img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once path = data['test'] if opt.task == 'test' else data['val'] # path to val/test images dataloader = create_dataloader(path, imgsz, batch_size, model.stride.max(), opt, hyp=None, augment=False, cache=False, pad=0.5, rect=True)[0] seen = 0 names = model.names if hasattr(model, 'names') else model.module.names coco91class = coco80_to_coco91_class() s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Targets', 'P', 'R', '[email protected]', '[email protected]:.95') p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0. loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class = [], [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): img = img.to(device, non_blocking=True) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width whwh = torch.Tensor([width, height, width, height]).to(device) # Disable gradients with torch.no_grad(): # Run model t = time_synchronized() inf_out, train_out = model(img, augment=augment) # inference and training outputs t0 += time_synchronized() - t # Compute loss if training: # if model has loss hyperparameters loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls # Run NMS t = time_synchronized() output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres) t1 += time_synchronized() - t # Statistics per image for si, pred in enumerate(output): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class seen += 1 if pred is None: if nl: stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) continue # Append to text file if save_txt: gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh x = pred.clone() x[:, :4] = scale_coords(img[si].shape[1:], x[:, :4], shapes[si][0], shapes[si][1]) # to original for *xyxy, conf, cls in x: xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, conf, *xywh) if save_conf else (cls, *xywh) # label format with open(str(out / Path(paths[si]).stem) + '.txt', 'a') as f: f.write(('%g ' * len(line) + '\n') % line) # Clip boxes to image bounds clip_coords(pred, (height, width)) # Append to pycocotools JSON dictionary if save_json: # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... image_id = Path(paths[si]).stem box = pred[:, :4].clone() # xyxy scale_coords(img[si].shape[1:], box, shapes[si][0], shapes[si][1]) # to original shape box = xyxy2xywh(box) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(pred.tolist(), box.tolist()): jdict.append({ 'image_id': int(image_id) if image_id.isnumeric() else image_id, 'category_id': coco91class[int(p[5])], 'bbox': [round(x, 3) for x in b], 'score': round(p[4], 5) }) # Assign all predictions as incorrect correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) if nl: detected = [] # target indices tcls_tensor = labels[:, 0] # target boxes tbox = xywh2xyxy(labels[:, 1:5]) * whwh # Per target class for cls in torch.unique(tcls_tensor): ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices # Search for detections if pi.shape[0]: # Prediction to target ious ious, i = box_iou(pred[pi, :4], tbox[ti]).max(1) # best ious, indices # Append detections detected_set = set() for j in (ious > iouv[0]).nonzero(as_tuple=False): d = ti[i[j]] # detected target if d.item() not in detected_set: detected_set.add(d.item()) detected.append(d) correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn if len(detected) == nl: # all targets already located in image break # Append statistics (correct, conf, pcls, tcls) stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # Plot images if plots and save_dir and batch_i < 1: f = save_dir / f'test_batch{batch_i}_gt.jpg' # filename plot_images(img, targets, paths, str(f), names) # ground truth f = save_dir / f'test_batch{batch_i}_pred.jpg' plot_images(img, output_to_target(output, width, height), paths, str(f), names) # predictions # Compute statistics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, fname=os.path.join(save_dir, 'precision-recall_curve.png')) p, r, ap50, ap = p[:, 0], r[:, 0], ap[:, 0], ap.mean(1) # [P, R, [email protected], [email protected]:0.95] mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = '%20s' + '%12.3g' * 6 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) # Print results per class if verbose and nc > 1 and len(stats): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple if not training: print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t) # Save JSON if save_json and len(jdict): w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights file = save_dir / f"detections_val2017_{w}_results.json" # predicted annotations file print('\nCOCO mAP with pycocotools... saving %s...' % file) with open(file, 'w') as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] cocoGt = COCO(glob.glob('../coco/annotations/instances_val*.json')[0]) # initialize COCO ground truth api cocoDt = cocoGt.loadRes(str(file)) # initialize COCO pred api cocoEval = COCOeval(cocoGt, cocoDt, 'bbox') cocoEval.params.imgIds = imgIds # image IDs to evaluate cocoEval.evaluate() cocoEval.accumulate() cocoEval.summarize() map, map50 = cocoEval.stats[:2] # update results ([email protected]:0.95, [email protected]) except Exception as e: print('ERROR: pycocotools unable to run: %s' % e) # Return results model.float() # for training maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def detect( weights="yolov5s.pt", source="yolov5/data/images", img_size=640, conf_thres=0.75, iou_thres=0.45, device="", view_img=False, save_txt=False, save_conf=False, classes=None, agnostic_nms=False, augment=False, update=False, project="runs/detect", name="exp", exist_ok=False, save_img=False, ): """ Args: weights: str model.pt path(s) source: str file/folder, 0 for webcam img_size: int inference size (pixels) conf_thres: float object confidence threshold iou_thres: float IOU threshold for NMS device: str cuda device, i.e. 0 or 0,1,2,3 or cpu view_img: bool display results save_txt: bool save results to *.txt save_conf: bool save confidences in save_txt labels classes: int filter by class: [0], or [0, 2, 3] agnostic-nms: bool class-agnostic NMS augment: bool augmented inference update: bool update all models project: str save results to project/name name: str save results to project/name exist_ok: bool existing project/name ok, do not increment """ source, weights, view_img, save_txt, imgsz = ( source, weights, view_img, save_txt, img_size, ) webcam = ( source.isnumeric() or source.endswith(".txt") or source.lower().startswith(("rtsp://", "rtmp://", "http://")) ) # Directories save_dir = Path( increment_path(Path(project) / name, exist_ok=exist_ok) ) # increment run (save_dir / "labels" if save_txt else save_dir).mkdir( parents=True, exist_ok=True ) # make dir # Initialize set_logging() device = select_device(device) half = device.type != "cpu" # half precision only supported on CUDA # Load model model = attempt_load(weights, map_location=device) # load FP32 model imgsz = check_img_size(imgsz, s=model.stride.max()) # check img_size if half: model.half() # to FP16 # Second-stage classifier classify = False if classify: modelc = load_classifier(name="resnet101", n=2) # initialize modelc.load_state_dict( torch.load("weights/resnet101.pt", map_location=device)["model"] ).to(device).eval() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = True cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz) else: save_img = True dataset = LoadImages(source, img_size=imgsz) # Get names and colors names = model.module.names if hasattr(model, "module") else model.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] # Run inference t0 = time.time() img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img) if device.type != "cpu" else None # run once for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img, augment=augment)[0] # Apply NMS pred = non_max_suppression( pred, conf_thres, iou_thres, classes=classes, agnostic=agnostic_nms, ) t2 = time_synchronized() # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0, frame = path[i], "%g: " % i, im0s[i].copy(), dataset.count else: p, s, im0, frame = path, "", im0s, getattr(dataset, "frame", 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # img.jpg txt_path = str(save_dir / "labels" / p.stem) + ( "" if dataset.mode == "image" else f"_{frame}" ) # img.txt s += "%gx%g " % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}s, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = ( (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn) .view(-1) .tolist() ) # normalized xywh line = ( (cls, *xywh, conf) if save_conf else (cls, *xywh) ) # label format with open(txt_path + ".txt", "a") as f: f.write(("%g " * len(line)).rstrip() % line + "\n") if save_img or view_img: # Add bbox to image label = f"{names[int(cls)]} {conf:.2f}" plot_one_box( xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3, ) # Print time (inference + NMS) print(f"{s}Done. ({t2 - t1:.3f}s)") # Stream results if view_img: cv2.imshow(str(p), im0) # Save results (image with detections) if save_img: if dataset.mode == "image": cv2.imwrite(save_path, im0) else: # 'video' if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fourcc = "mp4v" # output video codec fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (w, h) ) vid_writer.write(im0) if save_txt or save_img: s = ( f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else "" ) print(f"Results saved to {save_dir}{s}") print(f"Done. ({time.time() - t0:.3f}s)")
def detect(opt): out, source, yolo_model, deep_sort_model, show_vid, save_vid, save_txt, imgsz, evaluate, half, \ project, exist_ok, update, save_crop = \ opt.output, opt.source, opt.yolo_model, opt.deep_sort_model, opt.show_vid, opt.save_vid, \ opt.save_txt, opt.imgsz, opt.evaluate, opt.half, opt.project, opt.exist_ok, opt.update, opt.save_crop webcam = source == '0' or source.startswith( 'rtsp') or source.startswith('http') or source.endswith('.txt') # Initialize device = select_device(opt.device) half &= device.type != 'cpu' # half precision only supported on CUDA # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to # its own .txt file. Hence, in that case, the output folder is not restored if not evaluate: if os.path.exists(out): pass shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder # Directories if type(yolo_model) is str: # single yolo model exp_name = yolo_model.split(".")[0] elif type(yolo_model) is list and len(yolo_model) == 1: # single models after --yolo_model exp_name = yolo_model[0].split(".")[0] else: # multiple models after --yolo_model exp_name = "ensemble" exp_name = exp_name + "_" + deep_sort_model.split('/')[-1].split('.')[0] save_dir = increment_path(Path(project) / exp_name, exist_ok=exist_ok) # increment run if project name exists (save_dir / 'tracks' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir # Load model model = DetectMultiBackend(yolo_model, device=device, dnn=opt.dnn) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # check image size # Half half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA if pt: model.model.half() if half else model.model.float() # Set Dataloader vid_path, vid_writer = None, None # Check if environment supports image displays if show_vid: show_vid = check_imshow() # Dataloader if webcam: show_vid = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt) nr_sources = len(dataset) else: dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt) nr_sources = 1 vid_path, vid_writer, txt_path = [None] * nr_sources, [None] * nr_sources, [None] * nr_sources # initialize deepsort cfg = get_config() cfg.merge_from_file(opt.config_deepsort) # Create as many trackers as there are video sources deepsort_list = [] for i in range(nr_sources): deepsort_list.append( DeepSort( deep_sort_model, device, max_dist=cfg.DEEPSORT.MAX_DIST, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, ) ) outputs = [None] * nr_sources # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names # Run tracking model.warmup(imgsz=(1 if pt else nr_sources, 3, *imgsz)) # warmup dt, seen = [0.0, 0.0, 0.0, 0.0], 0 for frame_idx, (path, im, im0s, vid_cap, s) in enumerate(dataset): t1 = time_sync() im = torch.from_numpy(im).to(device) im = im.half() if half else im.float() # uint8 to fp16/32 im /= 255.0 # 0 - 255 to 0.0 - 1.0 if len(im.shape) == 3: im = im[None] # expand for batch dim t2 = time_sync() dt[0] += t2 - t1 # Inference visualize = increment_path(save_dir / Path(path[0]).stem, mkdir=True) if opt.visualize else False pred = model(im, augment=opt.augment, visualize=visualize) t3 = time_sync() dt[1] += t3 - t2 # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, opt.classes, opt.agnostic_nms, max_det=opt.max_det) dt[2] += time_sync() - t3 # Process detections for i, det in enumerate(pred): # detections per image seen += 1 if webcam: # nr_sources >= 1 p, im0, _ = path[i], im0s[i].copy(), dataset.count p = Path(p) # to Path s += f'{i}: ' txt_file_name = p.name save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ... else: p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0) p = Path(p) # to Path # video file if source.endswith(VID_FORMATS): txt_file_name = p.stem save_path = str(save_dir / p.name) # im.jpg, vid.mp4, ... # folder with imgs else: txt_file_name = p.parent.name # get folder name containing current img save_path = str(save_dir / p.parent.name) # im.jpg, vid.mp4, ... txt_path = str(save_dir / 'tracks' / txt_file_name) # im.txt s += '%gx%g ' % im.shape[2:] # print string imc = im0.copy() if save_crop else im0 # for save_crop annotator = Annotator(im0, line_width=2, pil=not ascii) if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string xywhs = xyxy2xywh(det[:, 0:4]) confs = det[:, 4] clss = det[:, 5] # pass detections to deepsort t4 = time_sync() outputs[i] = deepsort_list[i].update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) t5 = time_sync() dt[3] += t5 - t4 # draw boxes for visualization if len(outputs[i]) > 0: for j, (output, conf) in enumerate(zip(outputs[i], confs)): bboxes = output[0:4] id = output[4] cls = output[5] if save_txt: # to MOT format bbox_left = output[0] bbox_top = output[1] bbox_w = output[2] - output[0] bbox_h = output[3] - output[1] # Write MOT compliant results to file with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * 10 + '\n') % (frame_idx + 1, id, bbox_left, # MOT format bbox_top, bbox_w, bbox_h, -1, -1, -1, i)) if save_vid or save_crop or show_vid: # Add bbox to image c = int(cls) # integer class label = f'{id} {names[c]} {conf:.2f}' annotator.box_label(bboxes, label, color=colors(c, True)) if save_crop: txt_file_name = txt_file_name if (isinstance(path, list) and len(path) > 1) else '' save_one_box(bboxes, imc, file=save_dir / 'crops' / txt_file_name / names[c] / f'{id}' / f'{p.stem}.jpg', BGR=True) LOGGER.info(f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)') else: deepsort_list[i].increment_ages() LOGGER.info('No detections') # Stream results im0 = annotator.result() if show_vid: cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_vid: if vid_path[i] != save_path: # new video vid_path[i] = save_path if isinstance(vid_writer[i], cv2.VideoWriter): vid_writer[i].release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer[i].write(im0) # Print results t = tuple(x / seen * 1E3 for x in dt) # speeds per image LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS, %.1fms deep sort update \ per image at shape {(1, 3, *imgsz)}' % t) if save_txt or save_vid: s = f"\n{len(list(save_dir.glob('tracks/*.txt')))} tracks saved to {save_dir / 'tracks'}" if save_txt else '' LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}") if update: strip_optimizer(yolo_model) # update model (to fix SourceChangeWarning)
def detect(opt): out, source, yolo_weights, deep_sort_weights, show_vid, save_vid, save_txt, imgsz, evaluate = \ opt.output, opt.source, opt.yolo_weights, opt.deep_sort_weights, opt.show_vid, opt.save_vid, \ opt.save_txt, opt.img_size, opt.evaluate webcam = source == '0' or source.startswith( 'rtsp') or source.startswith('http') or source.endswith('.txt') # initialize deepsort cfg = get_config() cfg.merge_from_file(opt.config_deepsort) attempt_download(deep_sort_weights, repo='mikel-brostrom/Yolov5_DeepSort_Pytorch') deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=True) # Initialize device = select_device(opt.device) # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to # its own .txt file. Hence, in that case, the output folder is not restored if not evaluate: if os.path.exists(out): pass shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder half = device.type != 'cpu' # half precision only supported on CUDA # Load model model = attempt_load(yolo_weights, map_location=device) # load FP32 model stride = int(model.stride.max()) # model stride imgsz = check_img_size(imgsz, s=stride) # check img_size names = model.module.names if hasattr(model, 'module') else model.names # get class names if half: model.half() # to FP16 # Set Dataloader vid_path, vid_writer = None, None # Check if environment supports image displays if show_vid: show_vid = check_imshow() if webcam: cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride) else: dataset = LoadImages(source, img_size=imgsz, stride=stride) # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names # Run inference if device.type != 'cpu': model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once t0 = time.time() save_path = str(Path(out)) # extract what is in between the last '/' and last '.' txt_file_name = source.split('/')[-1].split('.')[0] txt_path = str(Path(out)) + '/' + txt_file_name + '.txt' for frame_idx, (path, img, im0s, vid_cap) in enumerate(dataset): img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_sync() pred = model(img, augment=opt.augment)[0] # Apply NMS pred = non_max_suppression( pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_sync() # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s s += '%gx%g ' % img.shape[2:] # print string save_path = str(Path(out) / Path(p).name) annotator = Annotator(im0, line_width=2, pil=not ascii) if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords( img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string xywhs = xyxy2xywh(det[:, 0:4]) confs = det[:, 4] clss = det[:, 5] # pass detections to deepsort outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) # draw boxes for visualization if len(outputs) > 0: for j, (output, conf) in enumerate(zip(outputs, confs)): bboxes = output[0:4] id = output[4] cls = output[5] c = int(cls) # integer class label = f'{id} {names[c]} {conf:.2f}' annotator.box_label(bboxes, label, color=colors(c, True)) if save_txt: # to MOT format bbox_left = output[0] bbox_top = output[1] bbox_w = output[2] - output[0] bbox_h = output[3] - output[1] # Write MOT compliant results to file with open(txt_path, 'a') as f: f.write(('%g ' * 10 + '\n') % (frame_idx, id, bbox_left, bbox_top, bbox_w, bbox_h, -1, -1, -1, -1)) # label format else: deepsort.increment_ages() # Print time (inference + NMS) print('%sDone. (%.3fs)' % (s, t2 - t1)) # Stream results im0 = annotator.result() if show_vid: cv2.imshow(p, im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_vid: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path += '.mp4' vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer.write(im0) if save_txt or save_vid: print('Results saved to %s' % os.getcwd() + os.sep + out) if platform == 'darwin': # MacOS os.system('open ' + save_path) print('Done. (%.3fs)' % (time.time() - t0))
def test( data, weights=None, # model.pt path(s) batch_size=32, # batch size imgsz=640, # inference size (pixels) conf_thres=0.001, # confidence threshold iou_thres=0.6, # NMS IoU threshold task='val', # train, val, test, speed or study device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu single_cls=False, # treat as single-class dataset augment=False, # augmented inference verbose=False, # verbose output save_txt=False, # save results to *.txt save_hybrid=False, # save label+prediction hybrid results to *.txt save_conf=False, # save confidences in --save-txt labels save_json=False, # save a cocoapi-compatible JSON results file project='runs/test', # save to project/name name='exp', # save to project/name exist_ok=False, # existing project/name ok, do not increment half=True, # use FP16 half-precision inference model=None, dataloader=None, save_dir=Path(''), plots=True, wandb_logger=None, compute_loss=None, ): # Initialize/load model and set device training = model is not None if training: # called by train.py device = next(model.parameters()).device # get model device else: # called directly set_logging() device = select_device(device, batch_size=batch_size) # Directories save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir( parents=True, exist_ok=True) # make dir # Load model model = attempt_load(weights, map_location=device) # load FP32 model gs = max(int(model.stride.max()), 32) # grid size (max stride) imgsz = check_img_size(imgsz, s=gs) # check image size # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 # if device.type != 'cpu' and torch.cuda.device_count() > 1: # model = nn.DataParallel(model) # Half half &= device.type != 'cpu' # half precision only supported on CUDA if half: model.half() # Configure model.eval() if isinstance(data, str): with open(data) as f: data = yaml.safe_load(f) check_dataset(data) # check is_coco = data['val'].endswith('coco/val2017.txt') # COCO dataset nc = 1 if single_cls else int(data['nc']) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95 niou = iouv.numel() # Logging log_imgs = 0 if wandb_logger and wandb_logger.wandb: log_imgs = min(wandb_logger.log_imgs, 100) # Dataloader if not training: if device.type != 'cpu': model( torch.zeros(1, 3, imgsz, imgsz).to(device).type_as( next(model.parameters()))) # run once task = task if task in ( 'train', 'val', 'test') else 'val' # path to train/val/test images dataloader = create_dataloader(data[task], imgsz, batch_size, gs, single_cls, pad=0.5, rect=True, prefix=colorstr(f'{task}: '))[0] seen = 0 confusion_matrix = ConfusionMatrix(nc=nc) names = { k: v for k, v in enumerate( model.names if hasattr(model, 'names') else model.module.names) } coco91class = coco80_to_coco91_class() s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', '[email protected]', '[email protected]:.95') p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): t_ = time_synchronized() img = img.to(device, non_blocking=True) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width t = time_synchronized() t0 += t - t_ # Run model out, train_out = model( img, augment=augment) # inference and training outputs t1 += time_synchronized() - t # Compute loss if compute_loss: loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls # Run NMS targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling t = time_synchronized() out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) t2 += time_synchronized() - t # Statistics per image for si, pred in enumerate(out): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class path = Path(paths[si]) seen += 1 if len(pred) == 0: if nl: stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls)) continue # Predictions if single_cls: pred[:, 5] = 0 predn = pred.clone() scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred # Append to text file if save_txt: gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0 ]] # normalization gain whwh for *xyxy, conf, cls in predn.tolist(): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') # W&B logging - Media Panel plots if len( wandb_images ) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0: box_data = [{ "position": { "minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3] }, "class_id": int(cls), "box_caption": "%s %.3f" % (names[cls], conf), "scores": { "class_score": conf }, "domain": "pixel" } for *xyxy, conf, cls in pred.tolist()] boxes = { "predictions": { "box_data": box_data, "class_labels": names } } # inference-space wandb_images.append( wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name)) wandb_logger.log_training_progress( predn, path, names) if wandb_logger and wandb_logger.wandb_run else None # Append to pycocotools JSON dictionary if save_json: # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... image_id = int( path.stem) if path.stem.isnumeric() else path.stem box = xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(pred.tolist(), box.tolist()): jdict.append({ 'image_id': image_id, 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]), 'bbox': [round(x, 3) for x in b], 'score': round(p[4], 5) }) # Assign all predictions as incorrect correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) if nl: detected = [] # target indices tcls_tensor = labels[:, 0] # target boxes tbox = xywh2xyxy(labels[:, 1:5]) scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels if plots: confusion_matrix.process_batch( predn, torch.cat((labels[:, 0:1], tbox), 1)) # Per target class for cls in torch.unique(tcls_tensor): ti = (cls == tcls_tensor).nonzero(as_tuple=False).view( -1) # target indices pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view( -1) # prediction indices # Search for detections if pi.shape[0]: # Prediction to target ious ious, i = box_iou(predn[pi, :4], tbox[ti]).max( 1) # best ious, indices # Append detections detected_set = set() for j in (ious > iouv[0]).nonzero(as_tuple=False): d = ti[i[j]] # detected target if d.item() not in detected_set: detected_set.add(d.item()) detected.append(d) correct[ pi[j]] = ious[j] > iouv # iou_thres is 1xn if len( detected ) == nl: # all targets already located in image break # Append statistics (correct, conf, pcls, tcls) stats.append( (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # Plot images if plots and batch_i < 3: f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start() f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start() # Compute statistics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95 mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = '%20s' + '%11i' * 2 + '%11.3g' * 4 # print format print(pf % ('all', seen, nt.sum(), mp, mr, map50, map)) # Print results per class if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1E3 for x in (t0, t1, t2)) # speeds per image if not training: shape = (batch_size, 3, imgsz, imgsz) print( f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}' % t) # Plots if plots: confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) if wandb_logger and wandb_logger.wandb: val_batches = [ wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg')) ] wandb_logger.log({"Validation": val_batches}) if wandb_images: wandb_logger.log({"Bounding Box Debugger/Images": wandb_images}) # Save JSON if save_json and len(jdict): w = Path(weights[0] if isinstance(weights, list) else weights ).stem if weights is not None else '' # weights anno_json = '../coco/annotations/instances_val2017.json' # annotations json pred_json = str(save_dir / f"{w}_predictions.json") # predictions json print('\nEvaluating pycocotools mAP... saving %s...' % pred_json) with open(pred_json, 'w') as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb check_requirements(['pycocotools']) from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval anno = COCO(anno_json) # init annotations api pred = anno.loadRes(pred_json) # init predictions api eval = COCOeval(anno, pred, 'bbox') if is_coco: eval.params.imgIds = [ int(Path(x).stem) for x in dataloader.dataset.img_files ] # image IDs to evaluate eval.evaluate() eval.accumulate() eval.summarize() map, map50 = eval.stats[: 2] # update results ([email protected]:0.95, [email protected]) except Exception as e: print(f'pycocotools unable to run: {e}') # Return results model.float() # for training if not training: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' print(f"Results saved to {save_dir}{s}") maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def detect(save_img=False): source, weights, view_img, save_txt, imgsz = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size save_img = not opt.nosave and not source.endswith( '.txt') # save inference images webcam = source.isnumeric() or source.endswith( '.txt') or source.lower().startswith(('rtsp://', 'rtmp://', 'http://')) # Directories save_dir = Path( increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run (save_dir / 'labels' if save_txt else save_dir).mkdir( parents=True, exist_ok=True) # make dir # Initialize set_logging() device = select_device(opt.device) half = device.type != 'cpu' # half precision only supported on CUDA # Load model model = attempt_load(weights, map_location=device) # load FP32 model stride = int(model.stride.max()) # model stride imgsz = check_img_size(imgsz, s=stride) # check img_size if half: model.half() # to FP16 # Second-stage classifier classify = False if classify: modelc = load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict( torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride) else: dataset = LoadImages(source, img_size=imgsz, stride=stride) # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in names] # Run inference if device.type != 'cpu': model( torch.zeros(1, 3, imgsz, imgsz).to(device).type_as( next(model.parameters()))) # run once t0 = time.time() for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img, augment=opt.augment)[0] # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy( ), dataset.count else: p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0) p = Path(p) # to Path save_path = str(save_dir / p.name) # img.jpg txt_path = str(save_dir / 'labels' / p.stem) + ( '' if dataset.mode == 'image' else f'_{frame}') # img.txt s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string # Write results for *xyxy, conf, cls in reversed(det): if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh line = (cls, *xywh, conf) if opt.save_conf else ( cls, *xywh) # label format with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * len(line)).rstrip() % line + '\n') if save_img or view_img: # Add bbox to image label = f'{names[int(cls)]} {conf:.2f}' plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) # Print time (inference + NMS) print(f'{s}Done. ({t2 - t1:.3f}s)') # Stream results if view_img: cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond # Save results (image with detections) if save_img: if dataset.mode == 'image': cv2.imwrite(save_path, im0) else: # 'video' or 'stream' if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release( ) # release previous video writer if vid_cap: # video fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) else: # stream fps, w, h = 30, im0.shape[1], im0.shape[0] save_path += '.mp4' vid_writer = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h)) vid_writer.write(im0) if save_txt or save_img: s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else '' print(f"Results saved to {save_dir}{s}") print(f'Done. ({time.time() - t0:.3f}s)')
def test( weights=None, data="yolov5/data/coco128.yaml", batch_size=32, image_size=640, conf_thres=0.001, iou_thres=0.6, # for NMS task="val", device="", single_cls=False, augment=False, verbose=False, save_txt=False, # for auto-labelling save_hybrid=False, # for hybrid auto-labelling save_conf=False, # save auto-label confidences save_json=False, project="runs/test", name="exp", exist_ok=False, model=None, dataloader=None, save_dir=Path(""), # for saving images plots=True, log_imgs=0, # number of logged images ): arguments = locals() # Initialize/load model and set device training = model is not None if training: # called by train.py device = next(model.parameters()).device # get model device else: # called directly set_logging() device = select_device(device, batch_size=batch_size) # Directories save_dir = Path(increment_path(Path(project) / name, exist_ok=exist_ok)) # increment run (save_dir / "labels" if save_txt else save_dir).mkdir( parents=True, exist_ok=True) # make dir # Load model model = attempt_load(weights, map_location=device) # load FP32 model image_size = check_img_size(image_size, s=model.stride.max()) # check img_size # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99 # if device.type != 'cpu' and torch.cuda.device_count() > 1: # model = nn.DataParallel(model) # Half half = device.type != "cpu" # half precision only supported on CUDA if half: model.half() # Configure model.eval() is_coco = data.endswith("coco.yaml") # is COCO dataset with open(data) as f: data = yaml.load(f, Loader=yaml.FullLoader) # model dict check_dataset(data) # check nc = 1 if single_cls else int(data["nc"]) # number of classes iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95 niou = iouv.numel() # Logging log_imgs, wandb = min(log_imgs, 100), None # ceil try: import wandb # Weights & Biases except ImportError: log_imgs = 0 # Dataloader if not training: img = torch.zeros((1, 3, image_size, image_size), device=device) # init img _ = (model(img.half() if half else img) if device.type != "cpu" else None) # run once path = (data["test"] if task == "test" else data["val"] ) # path to val/test images opt = OptFactory(arguments) dataloader = create_dataloader(path, image_size, batch_size, model.stride.max(), opt, pad=0.5, rect=True)[0] seen = 0 confusion_matrix = ConfusionMatrix(nc=nc) names = { k: v for k, v in enumerate( model.names if hasattr(model, "names") else model.module.names) } coco91class = coco80_to_coco91_class() s = ("%20s" + "%12s" * 6) % ( "Class", "Images", "Targets", "P", "R", "[email protected]", "[email protected]:.95", ) p, r, f1, mp, mr, map50, map, t0, t1 = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 loss = torch.zeros(3, device=device) jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): img = img.to(device, non_blocking=True) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width with torch.no_grad(): # Run model t = time_synchronized() inf_out, train_out = model( img, augment=augment) # inference and training outputs t0 += time_synchronized() - t # Compute loss if training: loss += compute_loss([x.float() for x in train_out], targets, model)[1][:3] # box, obj, cls # Run NMS targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels lb = ([targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] ) # for autolabelling t = time_synchronized() output = non_max_suppression(inf_out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb) t1 += time_synchronized() - t # Statistics per image for si, pred in enumerate(output): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class path = Path(paths[si]) seen += 1 if len(pred) == 0: if nl: stats.append(( torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls, )) continue # Predictions predn = pred.clone() scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred # Append to text file if save_txt: gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0 ]] # normalization gain whwh for *xyxy, conf, cls in predn.tolist(): xywh = ((xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()) # normalized xywh line = ((cls, *xywh, conf) if save_conf else (cls, *xywh)) # label format with open(save_dir / "labels" / (path.stem + ".txt"), "a") as f: f.write(("%g " * len(line)).rstrip() % line + "\n") # W&B logging if plots and len(wandb_images) < log_imgs: box_data = [{ "position": { "minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3], }, "class_id": int(cls), "box_caption": "%s %.3f" % (names[cls], conf), "scores": { "class_score": conf }, "domain": "pixel", } for *xyxy, conf, cls in pred.tolist()] boxes = { "predictions": { "box_data": box_data, "class_labels": names } } # inference-space wandb_images.append( wandb.Image(img[si], boxes=boxes, caption=path.name)) # Append to pycocotools JSON dictionary if save_json: # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... image_id = int( path.stem) if path.stem.isnumeric() else path.stem box = xyxy2xywh(predn[:, :4]) # xywh box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner for p, b in zip(pred.tolist(), box.tolist()): jdict.append({ "image_id": image_id, "category_id": coco91class[int(p[5])] if is_coco else int(p[5]), "bbox": [round(x, 3) for x in b], "score": round(p[4], 5), }) # Assign all predictions as incorrect correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) if nl: detected = [] # target indices tcls_tensor = labels[:, 0] # target boxes tbox = xywh2xyxy(labels[:, 1:5]) scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels if plots: confusion_matrix.process_batch( pred, torch.cat((labels[:, 0:1], tbox), 1)) # Per target class for cls in torch.unique(tcls_tensor): ti = ((cls == tcls_tensor).nonzero(as_tuple=False).view(-1) ) # prediction indices pi = ((cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) ) # target indices # Search for detections if pi.shape[0]: # Prediction to target ious ious, i = box_iou(predn[pi, :4], tbox[ti]).max( 1) # best ious, indices # Append detections detected_set = set() for j in (ious > iouv[0]).nonzero(as_tuple=False): d = ti[i[j]] # detected target if d.item() not in detected_set: detected_set.add(d.item()) detected.append(d) correct[ pi[j]] = ious[j] > iouv # iou_thres is 1xn if (len(detected) == nl ): # all targets already located in image break # Append statistics (correct, conf, pcls, tcls) stats.append( (correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # Plot images if plots and batch_i < 3: f = save_dir / f"test_batch{batch_i}_labels.jpg" # labels Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start() f = save_dir / f"test_batch{batch_i}_pred.jpg" # predictions Thread( target=plot_images, args=(img, output_to_target(output), paths, f, names), daemon=True, ).start() # Compute statistics stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy if len(stats) and stats[0].any(): p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, save_dir=save_dir, names=names) p, r, ap50, ap = ( p[:, 0], r[:, 0], ap[:, 0], ap.mean(1), ) # [P, R, [email protected], [email protected]:0.95] mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean() nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class else: nt = torch.zeros(1) # Print results pf = "%20s" + "%12.3g" * 6 # print format print(pf % ("all", seen, nt.sum(), mp, mr, map50, map)) # Print results per class if verbose and nc > 1 and len(stats): for i, c in enumerate(ap_class): print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i])) # Print speeds t = tuple(x / seen * 1e3 for x in (t0, t1, t0 + t1)) + ( image_size, image_size, batch_size, ) # tuple if not training: print( "Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g" % t) # Plots if plots: confusion_matrix.plot(save_dir=save_dir, names=list(names.values())) if wandb and wandb.run: wandb.log({"Images": wandb_images}) wandb.log({ "Validation": [ wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob("test*.jpg")) ] }) # Save JSON if save_json and len(jdict): w = (Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else "") # weights anno_json = "../coco/annotations/instances_val2017.json" # annotations json pred_json = str(save_dir / f"{w}_predictions.json") # predictions json print("\nEvaluating pycocotools mAP... saving %s..." % pred_json) with open(pred_json, "w") as f: json.dump(jdict, f) try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval anno = COCO(anno_json) # init annotations api pred = anno.loadRes(pred_json) # init predictions api eval = COCOeval(anno, pred, "bbox") if is_coco: eval.params.imgIds = [ int(Path(x).stem) for x in dataloader.dataset.img_files ] # image IDs to evaluate eval.evaluate() eval.accumulate() eval.summarize() map, map50 = eval.stats[: 2] # update results ([email protected]:0.95, [email protected]) except Exception as e: print(f"pycocotools unable to run: {e}") # Return results if not training: s = ( f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else "") print(f"Results saved to {save_dir}{s}") model.float() # for training maps = np.zeros(nc) + map for i, c in enumerate(ap_class): maps[c] = ap[i] return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
def detect(opt, save_img=False): out, source, weights, view_img, save_txt, imgsz = \ opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt') # initialize deepsort cfg = get_config() cfg.merge_from_file(opt.config_deepsort) deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=True) # Initialize device = select_device(opt.device) """ if os.path.exists(out): shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder """ half = device.type != 'cpu' # half precision only supported on CUDA # Load model #google_utils.attempt_download(weights) model = torch.load(weights, map_location=device)['model'].float() # load to FP32 #model = torch.save(torch.load(weights, map_location=device), weights) # update model if SourceChangeWarning # model.fuse() model.to(device).eval() if half: model.half() # to FP16 # Second-stage classifier classify = False if classify: modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights modelc.to(device).eval() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = True cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz) else: save_img = True dataset = LoadImages(source, img_size=imgsz) # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] # Run inference t0 = time.time() img = torch.zeros((1, 3, imgsz, imgsz), device=device) # init img _ = model(img.half() if half else img) if device.type != 'cpu' else None # run once for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img, augment=opt.augment)[0] # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s save_path = str(Path(out) / Path(p).name) txt_path = str(Path(out) / Path(p).stem) + ('_%g' % dataset.frame if dataset.mode == 'video' else '') s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += '%g %ss, ' % (n, names[int(c)]) # add to string bbox_xywh = [] confs = [] # Write results for *xyxy, conf, cls in det: img_h, img_w, _ = im0.shape # get image shape x_c, y_c, bbox_w, bbox_h = bbox_rel(img_w, img_h, *xyxy) obj = [x_c, y_c, bbox_w, bbox_h] bbox_xywh.append(obj) confs.append([conf.item()]) label = '%s %.2f' % (names[int(cls)], conf) outputs = deepsort.update((torch.Tensor(bbox_xywh)), (torch.Tensor(confs)) , im0) if save_txt: # Write to file xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh with open(txt_path + '.txt', 'a') as f: f.write(('%g ' * 5 + '\n') % (cls, *xywh)) # label format if save_img or view_img: # Add bbox to image label = '%s %.2f' % (names[int(cls)], conf) #plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=3) if len(outputs) > 0: bbox_xyxy = outputs[:, :4] identities = outputs[:, -1] draw_boxes(im0, bbox_xyxy, identities) # Print time (inference + NMS) print('%sDone. (%.3fs)' % (s, t2 - t1)) # Stream results if view_img: cv2.imshow(p, im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release() # release previous video writer fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h)) vid_writer.write(im0) if save_txt or save_img: print('Results saved to %s' % os.getcwd() + os.sep + out) if platform == 'darwin': # MacOS os.system('open ' + save_path) print('Done. (%.3fs)' % (time.time() - t0))
def rtsp_to_mongodb(): with open("/home/asyed/airflow/dags/parameters.json") as f: parms = json.load(f) agnostic_nms = parms["agnostic_nms"] augment = parms["augment"] classes = parms["classes"] conf_thres = parms["conf_thres"] config_deepsort = parms["config_deepsort"] deep_sort_model = parms["deep_sort_model"] device = parms["device"] dnn = False evaluate = parms["evaluate"] exist_ok = parms["exist_ok"] fourcc = parms["fourcc"] half = False print(device) imgsz = parms["imgsz"] iou_thres = parms["iou_thres"] max_det = parms["max_det"] name = parms["name"] # save_vid = parms["save_vid"] #show_vid = parms["show_vid"] source = parms["source"] visualize = parms["visualize"] yolo_model = parms["yolo_model"] webcam = parms["webcam"] save_txt = parms["save_txt"] homography = np.array(parms["homography"]) url = "mongodb://localhost:27017" client = MongoClient(url) db = client.trajectory_database today_date = date.today().strftime("%m-%d-%y") new = "file_image_coordinates_" + today_date collection = db[new] cfg = get_config() cfg.merge_from_file(config_deepsort) deepsort = DeepSort(deep_sort_model, max_dist=cfg.DEEPSORT.MAX_DIST, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=True) device = select_device(device) half &= device.type != 'cpu' # half precision only supported on CUDA # The MOT16 evaluation runs multiple inference streams in parallel, each one writing to # its own .txt file. Hence, in that case, the output folder is not restored # make new output folder # Load model device = select_device(device) model = DetectMultiBackend(yolo_model, device=device, dnn=dnn) stride, names, pt, jit, _ = model.stride, model.names, model.pt, model.jit, model.onnx imgsz = check_img_size(imgsz, s=stride) # check image size # Half half &= pt and device.type != 'cpu' # half precision only supported by PyTorch on CUDA if pt: model.model.half() if half else model.model.float() # Set Dataloader vid_path, vid_writer = None, None # Check if environment supports image displays cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt and not jit) bs = len(dataset) # batch_size vid_path, vid_writer = [None] * bs, [None] * bs # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names if pt and device.type != 'cpu': model( torch.zeros(1, 3, *imgsz).to(device).type_as( next(model.model.parameters()))) # warmup # global framess_im2 dt, seen = [0.0, 0.0, 0.0, 0.0], 0 # arr = None past = [] for frame_idx, (path, img, im0s, vid_cap, s) in enumerate(dataset): t1 = time_sync() img = torch.from_numpy(img).to(device) # print("raw_frame",img.shape) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) t2 = time_sync() dt[0] += t2 - t1 pred = model(img, augment=augment, visualize=visualize) t3 = time_sync() dt[1] += t3 - t2 pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) dt[2] += time_sync() - t3 # Process detections # dets_per_img = [] for i, det in enumerate(pred): # detections per image seen += 1 if webcam: # batch_size >= 1 p, im0, _ = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0) annotator = Annotator(im0, line_width=2, pil=not ascii) if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string xywhs = xyxy2xywh(det[:, 0:4]) confs = det[:, 4] clss = det[:, 5] # pass detections to deepsort t4 = time_sync() outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) t5 = time_sync() dt[3] += t5 - t4 if len(outputs) > 0: for j, (output, conf) in enumerate(zip(outputs, confs)): bboxes = output[0:4] id = output[4] cls = output[5] c = int(cls) # integer class label = f'{id} {names[c]} {conf:.2f}' annotator.box_label(bboxes, label, color=colors(c, True)) if save_txt: # to MOT format bbox_left = output[0] bbox_top = output[1] bbox_w = output[2] - output[0] bbox_h = output[3] - output[1] # bbox_left = bbox_left + bbox_h bbox_top = bbox_top + bbox_h agent_data = { 'frame': int(frame_idx + 1), 'agent_id': int(id), "labels": str(names[c]), "x": int(bbox_left), "y": int(bbox_top) } print("agent", agent_data) collection.insert_one(agent_data) #db.object_detection.insert_one(agent_data) #db.pedestrian_detection_15_june.insert_one(agent_data) #db.test_21_july.insert_one(agent_data) LOGGER.info( f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)' ) else: deepsort.increment_ages() LOGGER.info('No detections') im0 = annotator.result()
def detect(self, weights, step=1000, conf_thres=0.1, imgsz=640, targetfilepath=None, iou_thres=0.25, targetclasses=None): if self.model and self.model_path == weights: pass else: self.model_path = weights model = attempt_load(self.model_path, map_location=self.device) self.names = model.module.names if hasattr( model, 'module') else model.names model.float() self.model = model self.soundclasses = pd.read_csv( self.model_path.replace('best.pt', 'soundclass.csv'), encoding='utf8', index_col='sounclass_id').T.to_dict() if targetclasses: classes = [self.names.index(name) for name in targetclasses] else: classes = None self.tfr(targetfilepath=targetfilepath, spect_type='rainbow') # prepare input data clips dataset = [] for ts in range(0, self.duration, step): clip_start = round(ts / self.duration * self.rainbow_img.shape[1]) clip_end = clip_start + round( self.clip_length / self.duration * self.rainbow_img.shape[1]) if clip_end > self.rainbow_img.shape[1]: break img0 = self.rainbow_img[:, clip_start:clip_end] img = letterbox(img0, new_shape=imgsz)[0] # Convert img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416 img = np.ascontiguousarray(img) dataset.append([ os.path.join(self.audiopath, self.audiofilename), img, img0, ts ]) labels = [[ 'file', 'classid', 'species_name', 'sound_class', 'scientific_name', "time_begin", "time_end", "freq_low", "freq_high", "score" ]] for path, img, im0, time_start in dataset: img = torch.from_numpy(img).float().to(self.device) img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference pred = self.model(img, augment=False)[0] pred = non_max_suppression(pred, conf_thres=conf_thres, iou_thres=iou_thres, classes=classes) for det in pred: # detections per image gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if len(det): det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() for *xyxy, conf, cls in reversed(det): xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh ttff = self.xywh2ttff(xywh) ts, te, fl, fh = ttff classid = self.names[int(cls)] species_name = self.soundclasses[classid][ 'species_name'] sound_class = self.soundclasses[classid]['sound_class'] scientific_name = self.soundclasses[classid][ 'scientific_name'] labels.append([ path, classid, species_name, sound_class, scientific_name, round(time_start + ts), round(time_start + te), fl, fh, round(float(conf), 3) ]) return labels
def detect(opt, device, save_img=False): out, source, weights, view_img, save_txt, imgsz = \ opt.output, opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size webcam = source == '0' or source.startswith('rtsp') or source.startswith( 'http') or source.endswith('.txt') colorOrder = ['red', 'purple', 'blue', 'green', 'yellow', 'orange'] frame_num = 0 framestr = 'Frame {frame}' fpses = [] frame_catch_pairs = [] ball_person_pairs = {} for color in colorDict: ball_person_pairs[color] = 0 # Read Class Name Yaml with open(opt.data) as f: data_dict = yaml.load(f, Loader=yaml.FullLoader) names = data_dict['names'] # initialize deepsort cfg = get_config() cfg.merge_from_file(opt.config_deepsort) deepsort = DeepSort(cfg.DEEPSORT.REID_CKPT, max_dist=cfg.DEEPSORT.MAX_DIST, min_confidence=cfg.DEEPSORT.MIN_CONFIDENCE, nms_max_overlap=cfg.DEEPSORT.NMS_MAX_OVERLAP, max_iou_distance=cfg.DEEPSORT.MAX_IOU_DISTANCE, max_age=cfg.DEEPSORT.MAX_AGE, n_init=cfg.DEEPSORT.N_INIT, nn_budget=cfg.DEEPSORT.NN_BUDGET, use_cuda=True) # Initialize if os.path.exists(out): shutil.rmtree(out) # delete output folder os.makedirs(out) # make new output folder # Load model model = attempt_load(weights, map_location=device) # load FP32 model stride = int(model.stride.max()) # model stride imgsz = check_img_size(imgsz, s=stride) # check img_size if half: model.half() # to FP16 # Second-stage classifier classify = False if classify: modelc = load_classifier(name='resnet101', n=2) # initialize modelc.load_state_dict( torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval() # Set Dataloader vid_path, vid_writer = None, None if webcam: view_img = check_imshow() cudnn.benchmark = True # set True to speed up constant image size inference dataset = LoadStreams(source, img_size=imgsz, stride=stride) else: dataset = LoadImages(source, img_size=imgsz, stride=stride) # Get names and colors names = model.module.names if hasattr(model, 'module') else model.names colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))] # Run inference if device.type != 'cpu': model( torch.zeros(1, 3, imgsz, imgsz).to(device).type_as( next(model.parameters()))) # run once t0 = time.time() for path, img, im0s, vid_cap in dataset: img = torch.from_numpy(img).to(device) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) # Inference t1 = time_synchronized() pred = model(img, augment=opt.augment)[0] # Apply NMS pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms) t2 = time_synchronized() # Apply Classifier if classify: pred = apply_classifier(pred, modelc, img, im0s) # Process detections for i, det in enumerate(pred): # detections per image if webcam: # batch_size >= 1 p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() else: p, s, im0 = path, '', im0s save_path = str(Path(out) / Path(p).name) txt_path = str(Path(out) / Path(p).stem) + ( '_%g' % dataset.frame if dataset.mode == 'video' else '') s += '%gx%g ' % img.shape[2:] # print string gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() bbox_xywh = [] confs = [] clses = [] # Write results for *xyxy, conf, cls in det: img_h, img_w, _ = im0.shape # get image shape x_c, y_c, bbox_w, bbox_h = bbox_rel(img_w, img_h, *xyxy) obj = [x_c, y_c, bbox_w, bbox_h] bbox_xywh.append(obj) confs.append([conf.item()]) clses.append([cls.item()]) xywhs = torch.Tensor(bbox_xywh) confss = torch.Tensor(confs) clses = torch.Tensor(clses) # Pass detections to deepsort outputs = [] global groundtruths_path if not 'disable' in groundtruths_path: # print('\nenabled', groundtruths_path) groundtruths = solution.load_labels( groundtruths_path, img_w, img_h, frame_num) if (groundtruths.shape[0] == 0): outputs = deepsort.update(xywhs, confss, clses, im0) else: # print(groundtruths) xywhs = groundtruths[:, 2:] tensor = torch.tensor((), dtype=torch.int32) confss = tensor.new_ones((groundtruths.shape[0], 1)) clses = groundtruths[:, 0:1] outputs = deepsort.update(xywhs, confss, clses, im0) if frame_num >= 2: for real_ID in groundtruths[:, 1:].tolist(): for DS_ID in xyxy2xywh(outputs[:, :5]): if (abs(DS_ID[0] - real_ID[1]) / img_w < 0.005 ) and (abs(DS_ID[1] - real_ID[2]) / img_h < 0.005) and ( abs(DS_ID[2] - real_ID[3]) / img_w < 0.005) and ( abs(DS_ID[3] - real_ID[4]) / img_w < 0.005): id_mapping[DS_ID[4]] = int(real_ID[0]) else: outputs = deepsort.update(xywhs, confss, clses, im0) # draw boxes for visualization if len(outputs) > 0: bbox_xyxy = outputs[:, :4] identities = outputs[:, 4] clses = outputs[:, 5] scores = outputs[:, 6] #Temp solution to get correct id's mapped_id_list = [] for ids in identities: if (ids in id_mapping): mapped_id_list.append(int(id_mapping[ids])) else: mapped_id_list.append(ids) ball_detect, frame_catch_pairs, ball_person_pairs = solution.detect_catches( im0, bbox_xyxy, clses, mapped_id_list, frame_num, colorDict, frame_catch_pairs, ball_person_pairs, colorOrder, save_img) t3 = time_synchronized() draw_boxes(im0, bbox_xyxy, [names[i] for i in clses], scores, ball_detect, identities) else: t3 = time_synchronized() #Draw frame number tmp = framestr.format(frame=frame_num) t_size = cv2.getTextSize(tmp, cv2.FONT_HERSHEY_PLAIN, 2, 2)[0] cv2.putText(im0, tmp, (0, (t_size[1] + 10)), cv2.FONT_HERSHEY_PLAIN, 2, [255, 255, 255], 2) #Inference Time fps = (1 / (t3 - t1)) fpses.append(fps) print('FPS=%.2f' % fps) # Stream results if view_img: cv2.imshow(p, im0) if cv2.waitKey(1) == ord('q'): # q to quit raise StopIteration # Save results (image with detections) if save_img: if dataset.mode == 'images': cv2.imwrite(save_path, im0) else: if vid_path != save_path: # new video vid_path = save_path if isinstance(vid_writer, cv2.VideoWriter): vid_writer.release( ) # release previous video writer fps = vid_cap.get(cv2.CAP_PROP_FPS) w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) vid_writer = cv2.VideoWriter( save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h)) vid_writer.write(im0) frame_num += 1 #t4 = time_synchronized() avgFps = (sum(fpses) / len(fpses)) print('Average FPS = %.2f' % avgFps) #print('Total Runtime = %.2f' % (t4 - t0)) outpath = os.path.basename(source) outpath = outpath[:-4] outpath = out + '/' + outpath + '_out.csv' solution.write_catches(outpath, frame_catch_pairs, colorOrder) if save_txt or save_img: print('Results saved to %s' % os.getcwd() + os.sep + out) if platform == 'darwin': # MacOS os.system('open ' + save_path)
def my_gen(): # global framess_im2 dt, seen = [0.0, 0.0, 0.0, 0.0], 0 # arr = None for frame_idx, (path, img, im0s, vid_cap, s) in enumerate(dataset): t1 = time_sync() img = torch.from_numpy(img).to(device) # print("raw_frame",img.shape) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 if img.ndimension() == 3: img = img.unsqueeze(0) t2 = time_sync() dt[0] += t2 - t1 pred = model(img, augment=augment, visualize=visualize) t3 = time_sync() dt[1] += t3 - t2 pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) dt[2] += time_sync() - t3 # Process detections # dets_per_img = [] for i, det in enumerate(pred): # detections per image seen += 1 if webcam: # batch_size >= 1 p, im0, _ = path[i], im0s[i].copy(), dataset.count s += f'{i}: ' else: p, im0, _ = path, im0s.copy(), getattr(dataset, 'frame', 0) annotator = Annotator(im0, line_width=2, pil=not ascii) if det is not None and len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round() # Print results for c in det[:, -1].unique(): n = (det[:, -1] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string xywhs = xyxy2xywh(det[:, 0:4]) confs = det[:, 4] clss = det[:, 5] # pass detections to deepsort t4 = time_sync() outputs = deepsort.update(xywhs.cpu(), confs.cpu(), clss.cpu(), im0) t5 = time_sync() dt[3] += t5 - t4 dets_per_img = [] if len(outputs) > 0: for j, (output, conf) in enumerate(zip(outputs, confs)): bboxes = output[0:4] id = output[4] cls = output[5] c = int(cls) # integer class label = f'{id} {names[c]} {conf:.2f}' annotator.box_label(bboxes, label, color=colors(c, True)) if save_txt: # to MOT format bbox_left = output[0] bbox_top = output[1] bbox_w = output[2] - output[0] bbox_h = output[3] - output[1] # bbox_left = bbox_left + bbox_h bbox_top = bbox_top + bbox_h pts = np.array([[bbox_left, bbox_top, 1]]) arr_per = convert_bev(pts) # print("arr_per_to", arr_per) arr_per = np.append(id, arr_per) # print("arr_per1_to", arr_per1) dets_per_img.append(arr_per) LOGGER.info( f'{s}Done. YOLO:({t3 - t2:.3f}s), DeepSort:({t5 - t4:.3f}s)' ) else: deepsort.increment_ages() arr_per = None dets_per_img = [None, None] LOGGER.info('No detections') im0 = annotator.result() if len(dets_per_img) > 1: arr_per = np.stack(dets_per_img).tolist() elif len(dets_per_img) == 1: arr_per = np.array([dets_per_img[0]]) # print("not_stack",arr_per) elif dets_per_img is None: arr_per = None if save_vid: fps, w, h = 30, im0.shape[1], im0.shape[0] cv2.putText(im0, str(frame_idx), (500, 460), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 255), 2, cv2.LINE_AA) framess = cv2.imencode( '.jpg', im0)[1].tobytes() # Remove this line for test camera if arr_per is None: yield framess else: yield framess, arr_per