Exemple #1
0
import ysfitsutilpy as yfu
from pathlib import Path

top = Path("2019-10-24")
ngc2639paths = top.glob("NGC2639*.fits")
preprocdir = top/"Preprocess"

mbiaspath = preprocdir/"bias.fits"
mflatpath = preprocdir/"flat.fits"
outdir = Path("test")
#%%
for fpath in ngc2639paths:
    ccd_xxx = yfu.load_ccd(fpath)
    exptime = ccd_xxx.header["EXPTIME"]
    ccd_bdx = yfu.bdf_process(ccd_xxx,
                              mbiaspath=mbiaspath,
                              mdarkpath=preprocdir/f"dark{exptime:.0f}s.fits",
                              output=outdir/f"{fpath.stem}_bdx.fits")
    ccd_bdf = yfu.bdf_process(ccd_xxx,
                              mbiaspath=mbiaspath,
                              mdarkpath=preprocdir/f"dark{exptime:.0f}s.fits",
                              mflatpath=mflatpath,
                              output=outdir/f"{fpath.stem}_bdf.fits")
    
    
Exemple #2
0
    def do_preproc(self,
                   savedir=None,
                   delimiter='-',
                   dtype='float32',
                   mbiaspath=None,
                   mdarkpath=None,
                   mflatpath=None,
                   do_bias=True,
                   do_dark=True,
                   do_flat=True,
                   do_crrej=False,
                   crrej_kwargs=None,
                   verbose_crrej=False,
                   verbose_bdf=True,
                   verbose_summary=False):
        ''' Conduct the preprocessing using simplified ``bdf_process``.
        Parameters
        ----------
        savedir: path-like, optional
            The directory where the frames will be saved.

        delimiter : str, optional.
            The delimiter for the renaming.

        dtype : str or numpy.dtype object, optional.
            The data type you want for the final master bias frame. It is
            recommended to use ``float32`` or ``int16`` if there is no
            specific reason.

        mbiaspath, mdarkpath, mflatpath : None, path-like, optional
            If you want to force a certain bias, dark, or flat to be used,
            then you can specify its path here.

        crrej_kwargs : dict or None, optional
            If ``None`` (default), uses some default values defined in
            ``~.misc.LACOSMIC_KEYS``. It is always discouraged to use
            default except for quick validity-checking, because even the
            official L.A. Cosmic codes in different versions (IRAF, IDL,
            Python, etc) have different default parameters, i.e., there is
            nothing which can be regarded as default.
            To see all possible keywords, do
            ``print(astroscrappy.detect_cosmics.__doc__)``
            Also refer to
            https://nbviewer.jupyter.org/github/ysbach/AO2019/blob/master/Notebooks/07-Cosmic_Ray_Rejection.ipynb
        '''
        # Initial settings
        self.initialize_self()

        if savedir is None:
            savedir = self.topdir

        savedir = Path(savedir)
        yfu.mkdir(savedir)

        savepaths = []
        # for i, row in self.summary_raw.iterrows():
        #     fpath = Path(row["file"])
        for fpath in self.objpaths:
            savepath = savedir / Path(fpath).name
            savepaths.append(savepath)
            row = self.summary_raw[self.summary_raw["file"].values == str(
                fpath)]

            if mbiaspath is not None:
                biaspath = mbiaspath
            elif do_bias:
                # corresponding key for biaspaths:
                corr_bias = tuple(self.bias_type_val)
                # if _group_key not empty, add appropriate ``group_val``:
                if self.bias_group_key:  # not empty
                    corr_bias += tuple(row[self.bias_group_key].iloc[0])
                # else: empty. path is fully specified by _type_val.
                try:
                    biaspath = self.biaspaths[corr_bias]
                except (KeyError):
                    biaspath = None
                    warn(f"Bias not available for {corr_bias}. " +
                         "Processing without bias.")

            if mdarkpath is not None:
                darkpath = mdarkpath
            elif do_dark:
                # corresponding key for darkpaths:
                corr_dark = tuple(self.dark_type_val)
                # if _group_key not empty, add appropriate ``group_val``:
                if self.dark_group_key:
                    corr_dark += tuple(row[self.dark_group_key].iloc[0])
                # else: empty. path is fully specified by _type_val.
                try:
                    darkpath = self.darkpaths[corr_dark]
                except (KeyError):
                    darkpath = None
                    warn(f"Dark not available for {corr_dark}. " +
                         "Processing without dark.")

            if mflatpath is not None:
                flatpath = mflatpath
            elif do_flat:
                # corresponding key for darkpaths:
                corr_flat = tuple(self.flat_type_val)
                # if _group_key not empty, add appropriate ``group_val``:
                if self.flat_group_key:
                    corr_flat += tuple(row[self.flat_group_key].iloc[0])
                # else: empty. path is fully specified by _type_val.
                try:
                    flatpath = self.flatpaths[corr_flat]
                except (KeyError):
                    flatpath = None
                    warn(f"Flat not available for {corr_flat}. " +
                         "Processing without flat.")

            objccd = CCDData.read(fpath)
            _ = yfu.bdf_process(
                objccd,  #
                output=savepath,  #
                unit=None,  #
                mbiaspath=biaspath,  #
                mdarkpath=darkpath,  #
                mflatpath=flatpath,  #
                do_crrej=do_crrej,  #
                crrej_kwargs=crrej_kwargs,  #
                verbose_crrej=verbose_crrej,  #
                verbose_bdf=verbose_bdf)

        self.reducedpaths = savepaths
        self.summary_red = yfu.make_summary(
            self.reducedpaths,
            output=self.topdir / "summary_reduced.csv",
            pandas=True,
            keywords=self.summary_keywords + ["PROCESS"],
            verbose=verbose_summary)
        return self.summary_red
Exemple #3
0
    def make_dark(self,
                  savedir=None,
                  do_bias=True,
                  mbiaspath=None,
                  dtype='float32',
                  delimiter='-',
                  comb_kwargs=MEDCOMB_KEYS):
        """ Makes and saves dark (bias subtracted) images.
        Parameters
        ----------
        savedir: path-like, optional
            The directory where the frames will be saved.

        do_bias : bool, optional
            If ``True``, subtracts bias from dark frames using
            self.biaspahts. You can also specify ``mbiaspath`` to ignore
            that in ``self.``.

        mbiaspath : None, path-like, optional
            If you want to force a certain bias to be used, then you can
            specify its path here.

        delimiter : str, optional.
            The delimiter for the renaming.

        dtype : str or numpy.dtype object, optional.
            The data type you want for the final master bias frame. It
            is recommended to use ``float32`` or ``int16`` if there is
            no specific reason.

        comb_kwargs : dict or None, optional
            The parameters for ``combine_ccd``.
        """
        # Initial settings
        self.initialize_self()

        if savedir is None:
            savedir = self.topdir

        yfu.mkdir(Path(savedir))
        darkpaths = {}

        # For simplicity, crop the original data by type_key and
        # type_val first.
        st = self.summary_raw.copy()
        for k, v in zip(self.dark_type_key, self.dark_type_val):
            st = st[st[k] == v]

        # For grouping, use _key (i.e., type_key + group_key). This is
        # because (1) it is not harmful cuz type_key will have unique
        # column values as ``st`` has already been cropped in above for
        # loop (2) by doing this we get more information from combining
        # process because, e.g., "images with ["OBJECT", "EXPTIME"] =
        # ["dark", 1.0] are loaded" will be printed rather than just
        # "images with ["EXPTIME"] = [1.0] are loaded".
        gs = st.groupby(self.dark_key)

        # Do dark combine:
        for dark_val, dark_group in gs:
            if not isinstance(dark_val, tuple):
                dark_val = tuple([dark_val])
            fname = delimiter.join([str(x) for x in dark_val]) + ".fits"
            fpath = Path(savedir) / fname

            mdark = yfu.combine_ccd(dark_group["file"].tolist(),
                                    output=None,
                                    dtype=dtype,
                                    **comb_kwargs,
                                    type_key=self.dark_key,
                                    type_val=dark_val)

            # set path to master bias
            if mbiaspath is not None:
                biaspath = mbiaspath
            elif do_bias:
                # corresponding key for biaspaths:
                corr_bias = tuple(self.bias_type_val)
                # if _group_key not empty, add appropriate ``group_val``:
                if self.bias_group_key:
                    corr_bias += tuple(dark_group[self.bias_group_key].iloc[0])
                # else: empty. path is fully specified by _type_val.
                try:
                    biaspath = self.biaspaths[corr_bias]
                except KeyError:
                    biaspath = None
                    warn(f"Bias not available for {corr_bias}. " +
                         "Processing without bias.")

            mdark = yfu.bdf_process(mdark,
                                    mbiaspath=biaspath,
                                    dtype=dtype,
                                    unit=None)

            mdark.write(fpath, output_verify='fix', overwrite=True)
            darkpaths[tuple(dark_val)] = fpath

        # Save list of file paths for future use.
        # It doesn't take much storage and easy to erase if you want.
        with open(self.listdir / 'darkpaths.list', 'w+') as ll:
            for p in list(darkpaths.values()):
                ll.write(f"{str(p)}\n")

        with open(self.listdir / 'darkpaths.pkl', 'wb') as pkl:
            pickle.dump(darkpaths, pkl)

        self.darkpaths = darkpaths
Exemple #4
0
    def make_flat(self,
                  savedir=None,
                  do_bias=True,
                  do_dark=True,
                  mbiaspath=None,
                  mdarkpath=None,
                  comb_kwargs=MEDCOMB_KEYS,
                  delimiter='-',
                  dtype='float32'):
        '''Makes and saves flat images.
        Parameters
        ----------
        savedir: path-like, optional
            The directory where the frames will be saved.

        do_bias, do_dark : bool, optional
            If ``True``, subtracts bias and dark frames using
            ``self.biaspahts`` and ``self.darkpaths``. You can also
            specify ``mbiaspath`` and/or ``mdarkpath`` to ignore those
            in ``self.``.

        mbiaspath, mdarkpath : None, path-like, optional
            If you want to force a certain bias or dark to be used, then
            you can specify its path here.

        comb_kwargs: dict or None, optional
            The parameters for ``combine_ccd``.

        delimiter : str, optional.
            The delimiter for the renaming.

        dtype : str or numpy.dtype object, optional.
            The data type you want for the final master bias frame. It
            is recommended to use ``float32`` or ``int16`` if there is
            no specific reason.
        '''
        # Initial settings
        self.initialize_self()

        if savedir is None:
            savedir = self.topdir

        yfu.mkdir(savedir)
        flatpaths = {}

        # For simplicity, crop the original data by type_key and
        # type_val first.
        st = self.summary_raw.copy()
        for k, v in zip(self.flat_type_key, self.flat_type_val):
            st = st[st[k] == v]

        # For grouping, use type_key + group_key. This is because (1) it
        # is not harmful cuz type_key will have unique column values as
        # ``st`` has already been cropped in above for loop (2) by doing
        # this we get more information from combining process because,
        # e.g., "images with ["OBJECT", "EXPTIME"] = ["dark", 1.0] are
        # loaded" will be printed rather than just "images with
        # ["EXPTIME"] = [1.0] are loaded".
        gs = st.groupby(self.flat_key)

        # Do flat combine:
        for flat_val, flat_group in gs:
            # set path to master bias
            if mbiaspath is not None:
                biaspath = mbiaspath
            elif do_bias:
                # corresponding key for biaspaths:
                corr_bias = tuple(self.bias_type_val)
                # if _group_key not empty, add appropriate ``group_val``:
                if self.bias_group_key:
                    corr_bias += tuple(flat_group[self.bias_group_key].iloc[0])
                # else: empty. path is fully specified by _type_val.
                biaspath = self.biaspaths[corr_bias]
                try:
                    biaspath = self.biaspaths[corr_bias]
                except KeyError:
                    biaspath = None
                    warn(f"Bias not available for {corr_bias}. " +
                         "Processing without bias.")

            # set path to master dark
            if mdarkpath is not None:
                darkpath = mdarkpath
            elif do_dark:
                # corresponding key for darkpaths:
                corr_dark = tuple(self.dark_type_val)
                # if _group_key not empty, add appropriate ``group_val``:
                if self.dark_group_key:
                    corr_dark += tuple(flat_group[self.dark_group_key].iloc[0])
                # else: empty. path is fully specified by _type_val.
                try:
                    darkpath = self.darkpaths[corr_dark]
                except (KeyError):
                    darkpath = None
                    warn(f"Dark not available for {corr_dark}. " +
                         "Processing without dark.")

            # Do BD preproc before combine
            flat_bd_paths = []
            for i, flat_row in flat_group.iterrows():
                flat_orig_path = Path(flat_row["file"])
                flat_bd_path = (flat_orig_path.parent /
                                (flat_orig_path.stem + "_BD.fits"))
                ccd = yfu.load_ccd(flat_orig_path, unit='adu')
                _ = yfu.bdf_process(ccd,
                                    output=flat_bd_path,
                                    mbiaspath=biaspath,
                                    mdarkpath=darkpath,
                                    dtype="int16",
                                    overwrite=True,
                                    unit=None)
                flat_bd_paths.append(flat_bd_path)

            if not isinstance(flat_val, tuple):
                flat_val = tuple([flat_val])
            fname = delimiter.join([str(x) for x in flat_val]) + ".fits"
            fpath = Path(savedir) / fname

            _ = yfu.combine_ccd(
                flat_bd_paths,
                output=fpath,
                dtype=dtype,
                **comb_kwargs,
                normalize_average=True,  # Since skyflat!!
                type_key=self.flat_key,
                type_val=flat_val)

            flatpaths[tuple(flat_val)] = fpath

        # Save list of file paths for future use.
        # It doesn't take much storage and easy to erase if you want.
        with open(self.listdir / 'flatpaths.list', 'w+') as ll:
            for p in list(flatpaths.values()):
                ll.write(f"{str(p)}\n")

        with open(self.listdir / 'flatpaths.pkl', 'wb') as pkl:
            pickle.dump(flatpaths, pkl)

        self.flatpaths = flatpaths
Exemple #5
0
_ = yfu.imcombine("calibration*bias.fit", output="mbias.fits", **comb_kw)

# ********************************************************************************************************** #
# *                                            MAKE MASTER DARK                                            * #
# ********************************************************************************************************** #
_ = yfu.group_combine(summary,
                      type_key=["IMAGETYP"],
                      type_val=["Dark Frame"],
                      group_key=["EXPTIME"],
                      fmt="mdark_{:03.0f}s",
                      **comb_kw)

_mdarkpaths = list(Path(".").glob("mdark*.fits"))
for _mdarkpath in _mdarkpaths:
    yfu.bdf_process(_mdarkpath,
                    mbiaspath="mbias.fits",
                    output=f"b_{_mdarkpath.name}")

# ********************************************************************************************************** #
# *                                            MAKE MASTER FLAT                                            * #
# ********************************************************************************************************** #
_flatpaths = list(Path(".").glob("skyflat*.fit"))
# -- First, save after bias and dark subtraciton
for _flatpath in _flatpaths:
    exptime = yfu.load_ccd(_flatpath).header["EXPTIME"]
    mdarkpath = Path(f"b_mdark_{exptime:03.0f}s.fits")
    # Bias and dark subtract
    output = Path(f"bd_{_flatpath.stem}.fits")
    if not output.exists():
        _ = yfu.bdf_process(_flatpath,
                            mbiaspath="mbias.fits",