Exemple #1
0
    def __init__(self, ds, comm_rank=0, comm_size=1, left=None, right=None,
        min_level=None, max_level=None, data_source=None):

        self.ds = ds
        try:
            self._id_offset = ds.index.grids[0]._id_offset
        except AttributeError:
            self._id_offset = 0

        if data_source is None:
            data_source = ds.all_data()
        self.data_source = data_source
        if left is None:
            left = np.array([-np.inf]*3)
        if right is None:
            right = np.array([np.inf]*3)

        if min_level is None: min_level = 0
        if max_level is None: max_level = ds.index.max_level
        self.min_level = min_level
        self.max_level = max_level
        self.comm_rank = comm_rank
        self.comm_size = comm_size
        self.trunk = Node(None, None, None, left, right, -1, 1)
        self.build()
Exemple #2
0
    def rebuild_tree_from_array(self, nids, pids, lids,
                               rids, les, res, gids, splitdims, splitposs):
        del self.tree.trunk

        self.tree.trunk = Node(None,
                    None,
                    None,
                    les[0], res[0], gids[0], nids[0])

        N = nids.shape[0]
        for i in range(N):
            n = self.get_node(nids[i])
            n.set_left_edge(les[i])
            n.set_right_edge(res[i])
            if lids[i] != -1 and n.left is None:
                n.left = Node(n, None, None,
                              np.zeros(3, dtype='float64'),
                              np.zeros(3, dtype='float64'),
                              -1, lids[i])
            if rids[i] != -1 and n.right is None:
                n.right = Node(n, None, None,
                               np.zeros(3, dtype='float64'),
                               np.zeros(3, dtype='float64'),
                               -1, rids[i])
            if gids[i] != -1:
                n.grid = gids[i]

            if splitdims[i] != -1:
                n.create_split(splitdims[i], splitposs[i])

        mylog.info('AMRKDTree rebuilt, Final Volume: %e' % self.tree.trunk.kd_sum_volume())
        return self.tree.trunk
Exemple #3
0
class Tree(object):
    def __init__(self, ds, comm_rank=0, comm_size=1, left=None, right=None,
        min_level=None, max_level=None, data_source=None):

        self.ds = ds
        try:
            self._id_offset = ds.index.grids[0]._id_offset
        except AttributeError:
            self._id_offset = 0

        if data_source is None:
            data_source = ds.all_data()
        self.data_source = data_source
        if left is None:
            left = np.array([-np.inf]*3)
        if right is None:
            right = np.array([np.inf]*3)

        if min_level is None: min_level = 0
        if max_level is None: max_level = ds.index.max_level
        self.min_level = min_level
        self.max_level = max_level
        self.comm_rank = comm_rank
        self.comm_size = comm_size
        self.trunk = Node(None, None, None, left, right, -1, 1)
        self.build()

    def add_grids(self, grids):
        gles = np.array([g.LeftEdge for g in grids])
        gres = np.array([g.RightEdge for g in grids])
        gids = np.array([g.id for g in grids], dtype="int64")
        self.trunk.add_grids(gids.size, gles, gres, gids,
                    self.comm_rank, self.comm_size)
        del gles, gres, gids, grids

    def build(self):
        lvl_range = range(self.min_level, self.max_level+1)
        for lvl in lvl_range:
            #grids = self.data_source.select_grids(lvl)
            grids = np.array([b for b, mask in self.data_source.blocks if b.Level == lvl])
            if len(grids) == 0: continue
            self.add_grids(grids)

    def check_tree(self):
        for node in self.trunk.depth_traverse():
            if node.grid == -1:
                continue
            grid = self.ds.index.grids[node.grid - self._id_offset]
            dds = grid.dds
            gle = grid.LeftEdge
            nle = self.ds.arr(node.get_left_edge(), input_units="code_length")
            nre = self.ds.arr(node.get_right_edge(), input_units="code_length")
            li = np.rint((nle-gle)/dds).astype('int32')
            ri = np.rint((nre-gle)/dds).astype('int32')
            dims = (ri - li).astype('int32')
            assert(np.all(grid.LeftEdge <= nle))
            assert(np.all(grid.RightEdge >= nre))
            assert(np.all(dims > 0))
            # print grid, dims, li, ri

        # Calculate the Volume
        vol = self.trunk.kd_sum_volume()
        mylog.debug('AMRKDTree volume = %e' % vol)
        self.trunk.kd_node_check()

    def sum_cells(self, all_cells=False):
        cells = 0
        for node in self.trunk.depth_traverse():
            if node.grid == -1:
                continue
            if not all_cells and not node.kd_is_leaf():
                continue
            grid = self.ds.index.grids[node.grid - self._id_offset]
            dds = grid.dds
            gle = grid.LeftEdge
            nle = self.ds.arr(node.get_left_edge(), input_units="code_length")
            nre = self.ds.arr(node.get_right_edge(), input_units="code_length")
            li = np.rint((nle-gle)/dds).astype('int32')
            ri = np.rint((nre-gle)/dds).astype('int32')
            dims = (ri - li).astype('int32')
            cells += np.prod(dims)
        return cells