Exemple #1
0
 def test_l1_fit_runs_correctly(self):
     # how low can we shrink this tolerance and still pass?
     tol = 0.03
     index = np.arange(self.num)
     result = l1_fit(index, self.y,
                     seasonality_matrix=self.seasonality_matrix)
     model = result['model']
     self.assertEquals(len(model), self.num)
     for x_value, y_value, model_value in zip(index, self.y, model):
         diff = model_value - y_value
         print x_value, y_value, model_value, diff
         self.assertLess(abs(diff), tol)
     assert True
Exemple #2
0
    def fit(self):
        self.solution = l1_fit(self.x,
                               self.y,
                               beta_d1=self.params['beta_d1'],
                               beta_d2=self.params['beta_d2'],
                               beta_seasonal=self.params['beta_seasonal'],
                               beta_step=self.params['beta_step'],
                               growth=self.params['growth'],
                               seasonality_matrix=self.seasonality_matrix)

        y2 = self.solution['base'][-1]
        y1 = self.solution['base'][-2]
        x2 = self.x[-1]
        x1 = self.x[-2]

        self.slope = (y2 - y1) / float(x2 - x1)
        self.offset = y2 - self.slope * x2

        # fill in the seasonal parameters
        # remember that the last one is 1-sum_of_rest
        # as they sum to zero
        seasonal_params = self.solution['seasonal_parameters']
        sum_seasonal = seasonal_params.sum()
        self.seasonal = np.array(list(seasonal_params) + [-sum_seasonal])

        # define this function to gracefully handle
        # unconstrained seasonal params

        def date_to_seasonal_component_function(the_date):
            the_index = self.seasonality_function(the_date)
            if the_index not in self.compression_dict:
                return 0.0

            compressed_index = self.compression_dict[the_index]
            return self.seasonal[compressed_index]

        self.date_to_seasonal_component = date_to_seasonal_component_function

        # set this function for interpolating
        self.interpolate = interp1d(self.x, self.solution['model'])
        self.extrapolate_without_seasonal = lambda new_x: self.offset + self.slope * new_x
Exemple #3
0
 def test_l1_fit_runs(self):
     index = np.arange(self.num)
     result = l1_fit(index, self.y,
                     seasonality_matrix=self.seasonality_matrix)
     self.assertEquals(len(result['model']), self.num)