ds = Repository.get_instance().get_datasource_by_name( 'Pima Indians Diabetes') training_pipeline.add_datasource(ds) # Add a split training_pipeline.add_split(RandomSplit(split_map={'train': 0.7, 'eval': 0.3})) # Add a preprocessing unit training_pipeline.add_preprocesser( StandardPreprocesser(features=[ 'times_pregnant', 'pgc', 'dbp', 'tst', 'insulin', 'bmi', 'pedigree', 'age' ], labels=['has_diabetes'], overwrite={ 'has_diabetes': { 'transform': [{ 'method': 'no_transform', 'parameters': {} }] } })) # Add a trainer training_pipeline.add_trainer( TFFeedForwardTrainer(loss='binary_crossentropy', last_activation='sigmoid', output_units=1, metrics=['accuracy'], epochs=20))
except AlreadyExistsException: ds = repo.get_datasource_by_name("my_csv_datasource") training_pipeline.add_datasource(ds) # Add a split training_pipeline.add_split(CategoricalDomainSplit( categorical_column="name", split_map={'train': ["arnold", "nicholas"], 'eval': ["lülük"]})) # Add a preprocessing unit training_pipeline.add_preprocesser( StandardPreprocesser( features=["name", "age"], labels=['gpa'], overwrite={'gpa': { 'transform': [ {'method': 'no_transform', 'parameters': {}}]}} )) # Add a trainer training_pipeline.add_trainer(TFFeedForwardTrainer( batch_size=1, loss='binary_crossentropy', last_activation='sigmoid', output_units=1, metrics=['accuracy'], epochs=i)) # Run the pipeline locally training_pipeline.run()