def _unnormalized_pdf(self, x, norm_range=False): x = x.unstack_x() mu = self.params['mu'] sigma = self.params['sigma'] return ztf.exp( (-(x - mu)**2) / (2 * sigma**2)) # non-normalized gaussian
def _unnormalized_pdf(self, x, norm_range=False): x = x.unstack_x() return ztf.exp( (-(x - mu)**2) / (2 * sigma**2)) # non-normalized gaussian
def _func(self, x): mu = self.params['mu'] sigma = self.params['sigma'] x = ztf.unstack_x(x) return ztf.exp(-ztf.square((x - mu) / sigma))
def _unnormalized_pdf(self, x): mu = self.params['mu'] sigma = self.params['sigma'] x = ztf.unstack_x(x) return ztf.exp(-ztf.square((x - mu) / sigma))
def _numerics_shifted_exp(self, x, lambda_): # needed due to overflow in exp otherwise, prevents by shift return ztf.exp(lambda_ * (x - self._numerics_data_shift))
def _unnormalized_pdf(self, x): # implement function data = x.unstack_x() alpha = self.params['alpha'] return ztf.exp(alpha * data)