def test_tcn_forecaster_runtime_error(self):
     train_data, val_data, test_data = create_data()
     forecaster = TCNForecaster(past_seq_len=24,
                                future_seq_len=5,
                                input_feature_num=1,
                                output_feature_num=1,
                                kernel_size=3,
                                lr=0.01)
     with pytest.raises(RuntimeError):
         with tempfile.TemporaryDirectory() as tmp_dir_name:
             ckpt_name = os.path.join(tmp_dir_name, "ckpt")
             forecaster.save(ckpt_name)
     with pytest.raises(RuntimeError):
         forecaster.predict(test_data[0])
     with pytest.raises(RuntimeError):
         forecaster.evaluate(test_data[0], test_data[1])
Exemple #2
0
 def test_tcn_forecaster_save_restore(self):
     train_data, val_data, test_data = create_data()
     forecaster = TCNForecaster(past_seq_len=24,
                                future_seq_len=5,
                                input_feature_num=1,
                                output_feature_num=1,
                                kernel_size=3,
                                lr=0.01)
     train_mse = forecaster.fit(train_data[0], train_data[1], epochs=2)
     with tempfile.TemporaryDirectory() as tmp_dir_name:
         ckpt_name = os.path.join(tmp_dir_name, "ckpt")
         test_pred_save = forecaster.predict(test_data[0])
         forecaster.save(ckpt_name)
         forecaster.restore(ckpt_name)
         test_pred_restore = forecaster.predict(test_data[0])
     np.testing.assert_almost_equal(test_pred_save, test_pred_restore)