def opt(self, objective, parameter):
        """
        The optimization procedure.

        :param objective: an Objective object
        :param parameter: a Parameter object
        :return: the best solution
        """
        self.clear()
        if parameter.get_noise_handling() is True and parameter.get_ponss(
        ) is True:
            self.__algorithm = PONSS()
        else:
            self.__algorithm = ParetoOpt()
        self.__best_solution = self.__algorithm.opt(objective, parameter)
        return self.__best_solution
Exemple #2
0
 def __init__(self):
     ParetoOpt.__init__(self)
     pass
 def test_mutation(self):
     a = [0, 1, 0, 1]
     n = 4
     res = ParetoOpt.mutation(a, n)
     assert res != a