def test_zscore(self): #TODO split plate control and vehicle control into two functions r = norm.normalize(l) zv = zscore.calculate_zscore(r, plate_control=False) zp = zscore.calculate_zscore(r, plate_control=True) assert round(zv.data_df['test_CS0_X1:A'][0], 4) == -10.0 assert round(zv.data_df['test_CS0_X1:B'][2], 4) == -5.5729 assert round(zv.data_df['test_CS0_X1:D'][1], 4) == 0.6745 assert round(zp.data_df['test_CS0_X1:A'][0], 4) == -0.903 assert round(zp.data_df['test_CS0_X1:B'][2], 4) == -0.7558 assert round(zp.data_df['test_CS0_X1:D'][1], 4) == 0.8159
def normalize_data(): global data_matrix global progressbar_total sample_length = len(data_matrix[0]) sample_count = len(data_matrix) for attribute_index in range(sample_length - 1): attribute_list = list() normalized_attribute_list = list() for sample_index in range(sample_count): attribute_list.append(data_matrix[sample_index][attribute_index]) for attribute in attribute_list: z_score = zscore.calculate_zscore(attribute, attribute_list) rounded_zscore = math.ceil(z_score * 100000) / 100000 normalized_attribute_list.append(rounded_zscore) for sample_index in range(sample_count): data_matrix[sample_index][ attribute_index] = normalized_attribute_list[sample_index] progressbar.show(7, progressbar_total, prefix='Progress:', suffix='Complete', length=50)
def test_modz(self): l2 = pe( 'functional_tests/test_merino/assemble/test_CS0_X2/test_CS0_X2_MEDIAN.gct' ) l3 = pe( 'functional_tests/test_merino/assemble/test_CS0_X3/test_CS0_X3_MEDIAN.gct' ) r = norm.normalize(l) r2 = norm.normalize(l2) r3 = norm.normalize(l3) z = zscore.calculate_zscore(r, plate_control=True) z2 = zscore.calculate_zscore(r2, plate_control=True) z3 = zscore.calculate_zscore(r3, plate_control=True) modz_gct, ccq74, weights = distil.calculate_modz([z, z2, z3]) assert round(modz_gct.data_df['test_CS0X1:A'][0], 4) == -0.5816 assert round(modz_gct.data_df['test_CS0X1:B'][2], 4) == -0.4991 assert round(modz_gct.data_df['test_CS0X1:D'][1], 4) == 1.001