Exemple #1
0
    def __init__(self,
                       epochs,
                       loss = 'mean_squared_error',
                       init_method = 'he_uniform',
                       optimizer = {},
                       penalty = 'ridge',
                       penalty_weight = 0.5,
                       l1_ratio = 0.5):

        self.epochs = epochs
        self.loss = objective(loss)
        self.init_method = init(init_method)
        self.optimizer = optimize(optimizer)
        self.regularization = regularize(penalty, penalty_weight, l1_ratio = l1_ratio)
Exemple #2
0
    def __init__(self,
                 epochs,
                 loss='binary_crossentropy',
                 init_method='he_normal',
                 optimizer={},
                 penalty='lasso',
                 penalty_weight=0,
                 l1_ratio=0.5):

        self.epochs = epochs
        self.loss = objective(loss)
        self.init_method = init(init_method)
        self.optimizer = optimize(optimizer)
        self.activate = activation('sigmoid')
        self.regularization = regularize(penalty,
                                         penalty_weight,
                                         l1_ratio=l1_ratio)
Exemple #3
0
                                                                  test_size = 0.3)

opt = register_opt(optimizer_name = 'sgd', momentum = 0.01, learning_rate = 0.001)
model = PolynomialRegression(degree = 5,
                                         epochs = 100,
                                         optimizer = opt,
                                         penalty = 'elastic',
                                         penalty_weight = 0.5,
                                         l1_ratio = 0.3)

fit_stats = model.fit(train_data, train_label)

targets = np.expand_dims(test_label, axis = 1)
predictions = np.expand_dims(model.predict(test_data), axis = 1)

mse = objective('mean_squared_error').forward(predictions, targets)
print('Mean Squared Error: {:.2f}'.format(mse))

plot_metric('Accuracy vs Loss',
                                len(fit_stats['train_loss']),
                                fit_stats['train_acc'],
                                fit_stats['train_loss'],
                                legend = ['acc', 'loss'])

plot_regression_results(train_data, train_label,
                                                 test_data,
                                                 test_label,
                                                 input_data,
                                                 model.predict(input_data),
                                                 mse,
                                                'Polynomial Regression',