Esempio n. 1
0
def total_iceshelf_area(roms_grid_file, fesom_mesh_path_lr,
                        fesom_mesh_path_hr):

    id = Dataset(roms_grid_file, 'r')
    lon = id.variables['lon_rho'][:-15, 1:-1]
    lat = id.variables['lat_rho'][:-15, 1:-1]
    zice = id.variables['zice'][:-15, 1:-1]
    id.close()
    dx, dy = cartesian_grid_2d(lon, lat)
    dA = ma.masked_where(zice == 0, dx * dy)
    print 'MetROMS: ' + str(sum(dA)) + ' m^2'

    elements_lr = fesom_grid(fesom_mesh_path_lr,
                             circumpolar=True,
                             cross_180=False)
    area_elm_lr = zeros(len(elements_lr))
    for i in range(len(elements_lr)):
        elm = elements_lr[i]
        if elm.cavity:
            area_elm_lr[i] = elm.area()
    print 'FESOM (low-res): ' + str(sum(area_elm_lr)) + ' m^2'

    elements_hr = fesom_grid(fesom_mesh_path_hr,
                             circumpolar=True,
                             cross_180=False)
    area_elm_hr = zeros(len(elements_hr))
    for i in range(len(elements_hr)):
        elm = elements_hr[i]
        if elm.cavity:
            area_elm_hr[i] = elm.area()
    print 'FESOM (high-res): ' + str(sum(area_elm_hr)) + ' m^2'
Esempio n. 2
0
def timeseries_seaice_formation(mesh_path, output_path, start_year, end_year,
                                log_file):

    # Naming conventions for FESOM output files
    file_head = output_path + 'MK44005.'
    file_tail = '.ice.diag.nc'
    num_years = end_year - start_year + 1
    # Parameters for selecting continental shelf
    lat0 = -60
    h0 = 1500
    # Seconds to years conversion
    sec_per_year = 365.25 * 24 * 60 * 60

    print 'Building mesh'
    elements = fesom_grid(mesh_path, circumpolar=True, cross_180=True)

    print 'Selecting continental shelf'
    # Set up an array of area of each element, zero if it's not on the
    # continental shelf
    shelf_areas = zeros(len(elements))
    for i in range(len(elements)):
        elm = elements[i]
        lat = mean(elm.lat)
        bathy = mean(
            array([(elm.nodes[0].find_bottom()).depth,
                   (elm.nodes[1].find_bottom()).depth,
                   (elm.nodes[2].find_bottom()).depth]))
        if lat < lat0 and bathy < h0 and not elm.cavity:
            shelf_areas[i] = elm.area()

    # Set up array for net sea ice formation on continental shelf
    formation = zeros(num_years)
    for year in range(start_year, end_year + 1):
        print 'Processing year ' + str(year)
        id = Dataset(file_head + str(year) + file_tail, 'r')
        # Read thdgr, annually average, and convert from m/s to m/y
        thdgr = mean(id.variables['thdgr'][:, :], axis=0) * sec_per_year
        id.close()
        # Average over elements
        thdgr_elm = zeros(len(elements))
        for i in range(len(elements)):
            elm = elements[i]
            thdgr_elm[i] = mean(
                array([
                    thdgr[elm.nodes[0].id], thdgr[elm.nodes[1].id],
                    thdgr[elm.nodes[2].id]
                ]))
        # Integrate and convert to thousand km^3/y
        formation[year - start_year] = sum(thdgr_elm * shelf_areas) * 1e-12

    print 'Saving results to log file'
    f = open(log_file, 'w')
    f.write('Net sea ice formation on continental shelf (thousand km^3/y):\n')
    for t in range(num_years):
        f.write(str(formation[t]) + '\n')
    f.close()
Esempio n. 3
0
def rcp_seaice_extent_change ():

    # File paths
    mesh_path = '/short/y99/kaa561/FESOM/mesh/meshB/'
    directory_beg = '/short/y99/kaa561/FESOM/highres_spinup/'
    directories = ['/short/y99/kaa561/FESOM/rcp45_M/', '/short/y99/kaa561/FESOM/rcp45_A/', '/short/y99/kaa561/FESOM/rcp85_M/', '/short/y99/kaa561/FESOM/rcp85_A/', '/short/y99/kaa561/FESOM/highres_spinup/']
    file_beg = 'avg.ice.mean.1996.2005.nc'
    file_end = 'avg.ice.mean.2091.2100.nc'
    # Titles
    expt_names = ['RCP 4.5 M', 'RCP 4.5 A', 'RCP 8.5 M', 'RCP 8.5 A', 'CONTROL']
    num_expts = len(directories)
    # Mesh parameters
    circumpolar = True
    cross_180 = False

    print 'Building mesh'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)
    num_elm = len(elements)

    print 'Reading data'
    print '...1996-2005'
    # Calculate monthly averages for September
    aice_nodes_beg = monthly_avg(directory_beg + file_beg, 'area', 8)
    n2d = size(aice_nodes_beg)
    aice_nodes_end = empty([num_expts, n2d])
    for expt in range(num_expts):
        print '...' + expt_names[expt]
        aice_nodes_end[expt,:] = monthly_avg(directories[expt] + file_end, 'area', 8)

    print 'Calculating element-averages'
    aice_beg = empty(num_elm)
    aice_end = empty([num_expts, num_elm])
    # Also save area of each element
    area_elm = empty(num_elm)
    for i in range(num_elm):
        elm = elements[i]
        area_elm[i] = elm.area()
        aice_beg[i] = (aice_nodes_beg[elm.nodes[0].id] + aice_nodes_beg[elm.nodes[1].id] + aice_nodes_beg[elm.nodes[2].id])/3.0
        for expt in range(num_expts):
            aice_end[expt,i] = (aice_nodes_end[expt,elm.nodes[0].id] + aice_nodes_end[expt,elm.nodes[1].id] + aice_nodes_end[expt,elm.nodes[2].id])/3.0

    print 'Sea ice extent:'
    # 1996-2005
    # Select elements with concentration >= 15%
    flag_beg = aice_beg > 0.15
    # Integrate the area of these elements and convert to million km^2
    extent_beg = sum(flag_beg*area_elm)*1e-12
    print '1996-2005: ' + str(extent_beg) + ' million km^2'
    # 2091-2100
    flag_end = aice_end > 0.15
    for expt in range(num_expts):
        extent_end = sum(flag_end[expt,:]*area_elm)*1e-12
        percent_change = (extent_end - extent_beg)/extent_beg*100
        print expt_names[expt] + ': ' + str(extent_end) + ' million km^2; change of ' + str(percent_change) + '%'
Esempio n. 4
0
def timeseries_seaice_extent_faster(mesh_path, output_path, start_year,
                                    end_year, log_file):

    circumpolar = True  # Only consider elements south of 30S
    cross_180 = False  # Don't make second copies of elements that cross 180E
    days_per_output = 5  # Number of days for each output step
    expt_name = 'MK44005'

    print 'Building grid'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)

    extent = []
    for year in range(start_year, end_year + 1):
        print year
        ice_file = output_path + expt_name + '.' + str(year) + '.ice.mean.nc'
        print 'Reading data'
        id = Dataset(ice_file, 'r')
        num_time = id.variables['time'].shape[0]
        aice = id.variables['area'][:, :]
        id.close()
        print 'Setting up arrays'
        # Sea ice concentration at each element
        aice_elm = zeros([num_time, len(elements)])
        # Area of each element
        area_elm = zeros(len(elements))
        # Loop over elements to fill these in
        for i in range(len(elements)):
            elm = elements[i]
            # Average aice over 3 component nodes
            aice_elm[:,
                     i] = (aice[:, elm.nodes[0].id] + aice[:, elm.nodes[1].id]
                           + aice[:, elm.nodes[2].id]) / 3
            # Call area function
            area_elm[i] = elm.area()
        # Select elements with concentration >= 15%
        flag = aice_elm >= 0.15
        print 'Building timeseries'
        for t in range(num_time):
            # Integrate extent and convert to million km^2
            extent.append(sum(flag[t, :] * area_elm) * 1e-12)

    print 'Saving results to log file'
    f = open(log_file, 'w')
    f.write('Sea Ice Extent (million km^2):\n')
    for elm in extent:
        f.write(str(elm) + '\n')
    f.close()
Esempio n. 5
0
def mip_calc_watermasses(roms_grid, roms_file, fesom_mesh_lr, fesom_mesh_hr,
                         fesom_file_lr, fesom_file_hr):

    # Sectors to consider
    sector_names = [
        'Filchner-Ronne Ice Shelf Cavity', 'Eastern Weddell Region Cavities',
        'Amery Ice Shelf Cavity', 'Australian Sector Cavities',
        'Ross Sea Cavities', 'Amundsen Sea Cavities',
        'Bellingshausen Sea Cavities', 'Larsen Ice Shelf Cavities',
        'All Ice Shelf Cavities'
    ]
    num_sectors = len(sector_names)
    # Water masses to consider
    wm_names = ['ISW', 'AASW', 'CDW', 'MCDW', 'WW', 'HSSW']
    num_watermasses = len(wm_names)
    # ROMS vertical grid parameters
    theta_s = 7.0
    theta_b = 2.0
    hc = 250
    N = 31
    # FESOM mesh parameters
    circumpolar = True
    cross_180 = False

    print 'Processing MetROMS'
    # Read ROMS grid variables we need
    id = Dataset(roms_grid, 'r')
    roms_lon = id.variables['lon_rho'][:, :]
    roms_lat = id.variables['lat_rho'][:, :]
    roms_h = id.variables['h'][:, :]
    roms_zice = id.variables['zice'][:, :]
    id.close()
    num_lat = size(roms_lat, 0)
    num_lon = size(roms_lon, 1)
    # Get integrands on 3D grid
    roms_dx, roms_dy, roms_dz, roms_z = cartesian_grid_3d(
        roms_lon, roms_lat, roms_h, roms_zice, theta_s, theta_b, hc, N)
    # Get volume integrand
    dV = roms_dx * roms_dy * roms_dz
    # Read ROMS output
    id = Dataset(roms_file, 'r')
    roms_temp = id.variables['temp'][0, :, :, :]
    roms_salt = id.variables['salt'][0, :, :, :]
    id.close()
    # Initialise volume of each water mass in each sector
    roms_vol_watermass = zeros([num_watermasses, num_sectors])
    # Calculate water mass breakdown
    for j in range(num_lat):
        for i in range(num_lon):
            # Select ice shelf points
            if roms_zice[j, i] < 0:
                # Figure out which sector this point falls into
                lon = roms_lon[j, i]
                if lon > 180:
                    lon -= 360
                lat = roms_lat[j, i]
                if lon >= -85 and lon < -30 and lat < -74:
                    # Filchner-Ronne
                    sector = 0
                elif lon >= -30 and lon < 65:
                    # Eastern Weddell region
                    sector = 1
                elif lon >= 65 and lon < 76:
                    # Amery
                    sector = 2
                elif lon >= 76 and lon < 165 and lat >= -74:
                    # Australian sector
                    sector = 3
                elif (lon >= 155 and lon < 165
                      and lat < -74) or (lon >= 165) or (lon < -140):
                    # Ross Sea
                    sector = 4
                elif (lon >= -140 and lon < -105) or (lon >= -105 and lon < -98
                                                      and lat < -73.1):
                    # Amundsen Sea
                    sector = 5
                elif (lon >= -104 and lon < -98
                      and lat >= -73.1) or (lon >= -98 and lon < -66
                                            and lat >= -75):
                    # Bellingshausen Sea
                    sector = 6
                elif lon >= -66 and lon < -59 and lat >= -74:
                    # Larsen Ice Shelves
                    sector = 7
                else:
                    print 'No region found for lon=', str(lon), ', lat=', str(
                        lat)
                    break  #return
                # Loop downward
                for k in range(N):
                    curr_temp = roms_temp[k, j, i]
                    curr_salt = roms_salt[k, j, i]
                    curr_volume = dV[k, j, i]
                    # Get surface freezing point at this salinity
                    curr_tfrz = curr_salt / (-18.48 + 18.48 / 1e3 * curr_salt)
                    # Figure out what water mass this is
                    if curr_temp < curr_tfrz:
                        # ISW
                        wm_key = 0
                    elif curr_salt < 34:
                        # AASW
                        wm_key = 1
                    elif curr_temp > 0:
                        # CDW
                        wm_key = 2
                    elif curr_temp > -1:
                        # MCDW
                        wm_key = 3
                    elif curr_salt < 34.5:
                        # WW
                        wm_key = 4
                    else:
                        # HSSW
                        wm_key = 5
                    # Integrate volume for the right water mass and sector
                    roms_vol_watermass[wm_key, sector] += curr_volume
                    # Also integrate total Antarctica
                    roms_vol_watermass[wm_key, -1] += curr_volume
    # Find total volume of each sector by adding up the volume of each
    # water mass
    roms_vol_sectors = sum(roms_vol_watermass, axis=0)
    # Calculate percentage of each water mass in each sector
    roms_percent_watermass = zeros([num_watermasses, num_sectors])
    for wm_key in range(num_watermasses):
        for sector in range(num_sectors):
            roms_percent_watermass[wm_key, sector] = roms_vol_watermass[
                wm_key, sector] / roms_vol_sectors[sector] * 100

    print 'Processing low-res FESOM'
    # Build mesh
    elements_lr = fesom_grid(fesom_mesh_lr, circumpolar, cross_180)
    id = Dataset(fesom_file_lr, 'r')
    temp_nodes_lr = id.variables['temp'][0, :]
    salt_nodes_lr = id.variables['salt'][0, :]
    id.close()
    fesom_vol_watermass_lr = zeros([num_watermasses, num_sectors])
    for i in range(len(elements_lr)):
        elm = elements_lr[i]
        if elm.cavity:
            lon = mean(elm.lon)
            lat = mean(elm.lat)
            if lon >= -85 and lon < -30 and lat < -74:
                sector = 0
            elif lon >= -30 and lon < 65:
                sector = 1
            elif lon >= 65 and lon < 76:
                sector = 2
            elif lon >= 76 and lon < 165 and lat >= -74:
                sector = 3
            elif (lon >= 155 and lon < 165
                  and lat < -74) or (lon >= 165) or (lon < -140):
                sector = 4
            elif (lon >= -140 and lon < -105) or (lon >= -105 and lon < -98
                                                  and lat < -73.1):
                sector = 5
            elif (lon >= -104 and lon < -98
                  and lat >= -73.1) or (lon >= -98 and lon < -66
                                        and lat >= -75):
                sector = 6
            elif lon >= -66 and lon < -59 and lat >= -74:
                sector = 7
            else:
                print 'No region found for lon=', str(lon), ', lat=', str(lat)
                break  #return
            # Get area of 2D element
            area = elm.area()
            nodes = [elm.nodes[0], elm.nodes[1], elm.nodes[2]]
            # Loop downward
            while True:
                if nodes[0].below is None or nodes[1].below is None or nodes[
                        2].below is None:
                    # Reached the bottom
                    break
                # Calculate average temperature, salinity, and
                # layer thickness for this 3D triangular prism
                temp_vals = []
                salt_vals = []
                dz_vals = []
                for n in range(3):
                    temp_vals.append(temp_nodes_lr[nodes[n].id])
                    salt_vals.append(salt_nodes_lr[nodes[n].id])
                    temp_vals.append(temp_nodes_lr[nodes[n].below.id])
                    salt_vals.append(salt_nodes_lr[nodes[n].below.id])
                    dz_vals.append(abs(nodes[n].depth - nodes[n].below.depth))
                    # Get ready for next iteration of loop
                    nodes[n] = nodes[n].below
                curr_temp = mean(array(temp_vals))
                curr_salt = mean(array(salt_vals))
                curr_volume = area * mean(array(dz_vals))
                curr_tfrz = -0.0575 * curr_salt + 1.7105e-3 * sqrt(
                    curr_salt**3) - 2.155e-4 * curr_salt**2
                if curr_temp < curr_tfrz:
                    wm_key = 0
                elif curr_salt < 34:
                    wm_key = 1
                elif curr_temp > 0:
                    wm_key = 2
                elif curr_temp > -1:
                    wm_key = 3
                elif curr_salt < 34.5:
                    wm_key = 4
                else:
                    wm_key = 5
                fesom_vol_watermass_lr[wm_key, sector] += curr_volume
                fesom_vol_watermass_lr[wm_key, -1] += curr_volume
    fesom_vol_sectors_lr = sum(fesom_vol_watermass_lr, axis=0)
    fesom_percent_watermass_lr = zeros([num_watermasses, num_sectors])
    for wm_key in range(num_watermasses):
        for sector in range(num_sectors):
            fesom_percent_watermass_lr[
                wm_key, sector] = fesom_vol_watermass_lr[
                    wm_key, sector] / fesom_vol_sectors_lr[sector] * 100

    print 'Processing high-res FESOM'
    elements_hr = fesom_grid(fesom_mesh_hr, circumpolar, cross_180)
    fesom_vol_watermass_hr = zeros([num_watermasses, num_sectors])
    id = Dataset(fesom_file_hr, 'r')
    temp_nodes_hr = id.variables['temp'][0, :]
    salt_nodes_hr = id.variables['salt'][0, :]
    id.close()
    for i in range(len(elements_hr)):
        elm = elements_hr[i]
        if elm.cavity:
            lon = mean(elm.lon)
            lat = mean(elm.lat)
            if lon >= -85 and lon < -30 and lat < -74:
                sector = 0
            elif lon >= -30 and lon < 65:
                sector = 1
            elif lon >= 65 and lon < 76:
                sector = 2
            elif lon >= 76 and lon < 165 and lat >= -74:
                sector = 3
            elif (lon >= 155 and lon < 165
                  and lat < -74) or (lon >= 165) or (lon < -140):
                sector = 4
            elif (lon >= -140 and lon < -105) or (lon >= -105 and lon < -98
                                                  and lat < -73.1):
                sector = 5
            elif (lon >= -104 and lon < -98
                  and lat >= -73.1) or (lon >= -98 and lon < -66
                                        and lat >= -75):
                sector = 6
            elif lon >= -66 and lon < -59 and lat >= -74:
                sector = 7
            else:
                print 'No region found for lon=', str(lon), ', lat=', str(lat)
                break  #return
            area = elm.area()
            nodes = [elm.nodes[0], elm.nodes[1], elm.nodes[2]]
            while True:
                if nodes[0].below is None or nodes[1].below is None or nodes[
                        2].below is None:
                    break
                temp_vals = []
                salt_vals = []
                dz_vals = []
                for n in range(3):
                    temp_vals.append(temp_nodes_hr[nodes[n].id])
                    salt_vals.append(salt_nodes_hr[nodes[n].id])
                    temp_vals.append(temp_nodes_hr[nodes[n].below.id])
                    salt_vals.append(salt_nodes_hr[nodes[n].below.id])
                    dz_vals.append(abs(nodes[n].depth - nodes[n].below.depth))
                    nodes[n] = nodes[n].below
                curr_temp = mean(array(temp_vals))
                curr_salt = mean(array(salt_vals))
                curr_volume = area * mean(array(dz_vals))
                curr_tfrz = -0.0575 * curr_salt + 1.7105e-3 * sqrt(
                    curr_salt**3) - 2.155e-4 * curr_salt**2
                if curr_temp < curr_tfrz:
                    wm_key = 0
                elif curr_salt < 34:
                    wm_key = 1
                elif curr_temp > 0:
                    wm_key = 2
                elif curr_temp > -1:
                    wm_key = 3
                elif curr_salt < 34.5:
                    wm_key = 4
                else:
                    wm_key = 5
                fesom_vol_watermass_hr[wm_key, sector] += curr_volume
                fesom_vol_watermass_hr[wm_key, -1] += curr_volume
    fesom_vol_sectors_hr = sum(fesom_vol_watermass_hr, axis=0)
    fesom_percent_watermass_hr = zeros([num_watermasses, num_sectors])
    for wm_key in range(num_watermasses):
        for sector in range(num_sectors):
            fesom_percent_watermass_hr[
                wm_key, sector] = fesom_vol_watermass_hr[
                    wm_key, sector] / fesom_vol_sectors_hr[sector] * 100

    # Print results
    for sector in range(num_sectors):
        print sector_names[sector]
        print 'MetROMS:'
        for wm_key in range(num_watermasses):
            print str(roms_percent_watermass[wm_key,
                                             sector]) + '% ' + wm_names[wm_key]
        print 'FESOM low-res:'
        for wm_key in range(num_watermasses):
            print str(
                fesom_percent_watermass_lr[wm_key,
                                           sector]) + '% ' + wm_names[wm_key]
        print 'FESOM high-res:'
        for wm_key in range(num_watermasses):
            print str(
                fesom_percent_watermass_hr[wm_key,
                                           sector]) + '% ' + wm_names[wm_key]
Esempio n. 6
0
def ts_animation(mesh_path, directory, start_year, end_year, fig_dir):

    # Northern boundary of water masses to consider
    nbdry = -50
    # Number of temperature and salinity bins
    num_bins = 1000
    # Plotting parameters
    circumpolar = False
    cross_180 = False
    # Bounds on temperature and salinity bins (pre-computed, change if needed)
    min_salt = 31.8
    max_salt = 35.2
    min_temp = -3
    max_temp = 12
    # Bounds on volume log scale (pre-computed, change if needed)
    min_vol = 18
    max_vol = 33
    # Naming conventions for FESOM oce.mean.nc files
    file_head = 'MK44005.'
    file_tail = '.oce.mean.nc'

    # Calculate boundaries of temperature bins
    temp_bins = linspace(min_temp, max_temp, num=num_bins)
    # Calculate centres of temperature bins (for plotting)
    temp_centres = 0.5 * (temp_bins[:-1] + temp_bins[1:])
    # Repeat for salinity
    salt_bins = linspace(min_salt, max_salt, num=num_bins)
    salt_centres = 0.5 * (salt_bins[:-1] + salt_bins[1:])

    # Calculate surface freezing point as a function of salinity: this is the
    # equation the FESOM sea ice code uses
    freezing_pt = -0.0575 * salt_centres + 1.7105e-3 * sqrt(
        salt_centres**3) - 2.155e-4 * salt_centres**2
    # Get 2D versions of the temperature and salinity bins
    salt_2d, temp_2d = meshgrid(salt_centres, temp_centres)
    # Calculate potential density of each combination of temperature and
    # salinity bins
    density = unesco(temp_2d, salt_2d, zeros(shape(temp_centres))) - 1000
    # Density contours to plot
    density_lev = arange(24.4, 28.4, 0.2)

    # Make FESOM grid elements
    elements = fesom_grid(mesh_path, circumpolar, cross_180)

    # Loop over years
    for year in range(start_year, end_year + 1):
        print 'Processing ' + str(year)
        # Read temperature and salinity at each 3D node, annually averaged
        id = Dataset(directory + file_head + str(year) + file_tail, 'r')
        temp = mean(id.variables['temp'][:, :], axis=0)
        salt = mean(id.variables['salt'][:, :], axis=0)
        id.close()
        # Set up a 2D array of temperature bins x salinity bins to increment
        # with volume of water masses
        ts_vals = zeros([size(temp_centres), size(salt_centres)])
        # Loop over elements
        for elm in elements:
            # See if we're in the region of interest
            if all(elm.lat < nbdry):
                # Get area of 2D triangle
                area = elm.area()
                nodes = [elm.nodes[0], elm.nodes[1], elm.nodes[2]]
                # Loop downward
                while True:
                    if nodes[0].below is None or nodes[
                            1].below is None or nodes[2].below is None:
                        # We've reached the bottom
                        break
                    # Calculate average temperature, salinity, and layer
                    # thickness over this 3D triangular prism
                    temp_vals = []
                    salt_vals = []
                    dz = []
                    for i in range(3):
                        # Average temperature over 6 nodes
                        temp_vals.append(temp[nodes[i].id])
                        temp_vals.append(temp[nodes[i].below.id])
                        # Average salinity over 6 nodes
                        salt_vals.append(salt[nodes[i].id])
                        salt_vals.append(salt[nodes[i].below.id])
                        # Average dz over 3 vertical edges
                        dz.append(abs(nodes[i].depth - nodes[i].below.depth))
                        # Get ready for next repetition of loop
                        nodes[i] = nodes[i].below
                    temp_elm = mean(array(temp_vals))
                    salt_elm = mean(array(salt_vals))
                    # Calculate volume of 3D triangular prism
                    volume = area * mean(array(dz))
                    # Figure out which bins this falls into
                    temp_index = nonzero(temp_bins > temp_elm)[0][0] - 1
                    salt_index = nonzero(salt_bins > salt_elm)[0][0] - 1
                    # Increment bins with volume
                    ts_vals[temp_index, salt_index] += volume
        # Mask bins with zero volume
        ts_vals = ma.masked_where(ts_vals == 0, ts_vals)
        # Plot
        fig = figure(figsize=(12, 12))
        # Log scale is more visible
        img = pcolor(salt_centres,
                     temp_centres,
                     log(ts_vals),
                     vmin=min_vol,
                     vmax=max_vol,
                     cmap='jet')
        # Add surface freezing point line
        plot(salt_centres, freezing_pt, color='black', linestyle='dashed')
        # Add density contours
        cs = contour(salt_centres,
                     temp_centres,
                     density,
                     density_lev,
                     colors=(0.6, 0.6, 0.6),
                     linestyles='dotted')
        # Label density contours
        manual_locations = [(32, 11.4), (32.3, 11.4),
                            (32.5, 11.4), (32.8, 11.4), (33.1, 11.4),
                            (33.3, 11.4), (33.5, 11.3), (33.8, 11.3),
                            (34.1, 11.3), (34.3, 11.3), (34.6, 11.3),
                            (34.8, 11.4), (35, 10.8), (35, 9.9), (35, 8.1),
                            (35, 7.5), (35, 6), (35, 4.4), (35, 2.6),
                            (35.1, 0)]
        clabel(cs,
               inline=1,
               fontsize=12,
               color=(0.6, 0.6, 0.6),
               fmt='%1.1f',
               manual=manual_locations)
        xlim([min_salt, max_salt])
        ylim([min_temp, max_temp])
        xlabel('Salinity (psu)', fontsize=16)
        ylabel(r'Temperature ($^{\circ}$C)', fontsize=16)
        title('Water masses south of ' + str(-nbdry) +
              r'$^{\circ}$S, log(volume)',
              fontsize=24)
        colorbar(img)
        # Add year in the bottom corner
        text(35.8, -4, str(year), fontsize=30)

        # Save figure with year in the filename
        fig.savefig(fig_dir + str(year) + '.png')
Esempio n. 7
0
def timeseries_watermass_meltpotential(mesh_path, output_path, start_year,
                                       end_year, log_file):

    # Titles for each sector
    sector_names = [
        'Filchner-Ronne Ice Shelf Cavity', 'Eastern Weddell Region Cavities',
        'Amery Ice Shelf Cavity', 'Australian Sector Cavities',
        'Ross Sea Cavities', 'Amundsen Sea Cavities',
        'Bellingshausen Sea Cavities', 'Larsen Ice Shelf Cavities',
        'All Ice Shelf Cavities'
    ]
    num_sectors = len(sector_names)
    # Water masses to consider
    wm_names = ['ISW', 'HSSW', 'LSSW', 'AASW', 'MCDW', 'CDW']
    num_watermasses = len(wm_names)
    # Only consider elements south of 30S
    circumpolar = True
    # Don't make second copies of elements that cross 180E
    cross_180 = False
    # Naming conventions for FESOM output files
    file_head = output_path + 'MK44005.'
    file_tail = '.oce.mean.nc'
    num_years = end_year - start_year + 1
    # Specific heat of seawater (J/K/kg)
    cpw = 4180
    # Coefficients for in-situ freezing point calculation
    a = -0.0575  # Salinity dependence (K/psu)
    b = 0.0901  # Surface freezing point at 0 salinity (C)
    c = 7.61e-4  # Depth dependence (K/m)

    print 'Building mesh'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)

    print 'Categorising elements into sectors'
    location_flag = zeros([num_sectors, len(elements)])
    for i in range(len(elements)):
        elm = elements[i]
        # Make sure we're actually in an ice shelf cavity
        if elm.cavity:
            # Figure out which sector this ice shelf element falls into
            lon = mean(elm.lon)
            lat = mean(elm.lat)
            if lon >= -85 and lon < -30 and lat < -74:
                # Filchner-Ronne
                location_flag[0, i] = 1
            elif lon >= -30 and lon < 65:
                # Eastern Weddell region
                location_flag[1, i] = 1
            elif lon >= 65 and lon < 76:
                # Amery
                location_flag[2, i] = 1
            elif lon >= 76 and lon < 165 and lat >= -74:
                # Australian sector
                location_flag[3, i] = 1
            elif (lon >= 155 and lon < 165
                  and lat < -74) or (lon >= 165) or (lon < -140):
                # Ross Sea
                location_flag[4, i] = 1
            elif (lon >= -140 and lon < -105) or (lon >= -105 and lon < -98
                                                  and lat < -73.1):
                # Amundsen Sea
                location_flag[5, i] = 1
            elif (lon >= -104 and lon < -98
                  and lat >= -73.1) or (lon >= -98 and lon < -66
                                        and lat >= -75):
                # Bellingshausen Sea
                location_flag[6, i] = 1
            elif lon >= -66 and lon < -59 and lat >= -74:
                # Larsen Ice Shelves
                location_flag[7, i] = 1
            else:
                print 'No region found for lon=', str(lon), ', lat=', str(lat)
                break  #return
            # All ice shelf elements are in Total Antarctica
            location_flag[8, i] = 1

    print 'Calculating melt potential'
    mp = zeros([num_watermasses, num_sectors, num_years])
    for year in range(start_year, end_year + 1):
        print 'Processing ' + str(year)
        # Read temperature and salinity
        id = Dataset(file_head + str(year) + file_tail, 'r')
        temp = mean(id.variables['temp'][:, :], axis=0)
        salt = mean(id.variables['salt'][:, :], axis=0)
        id.close()
        # Loop over elements
        for i in range(len(elements)):
            elm = elements[i]
            # Check if we're in an ice shelf cavity
            if elm.cavity:
                # Get area of 2D element
                area = elm.area()
                nodes = [elm.nodes[0], elm.nodes[1], elm.nodes[2]]
                # Loop downward
                while True:
                    if nodes[0].below is None or nodes[
                            1].below is None or nodes[2].below is None:
                        # Reached the bottom
                        break
                    # Calculate average temperature, salinity, depth, and
                    # layer thickness for this 3D triangular prism
                    temp_vals = []
                    salt_vals = []
                    z_vals = []
                    dz_vals = []
                    for n in range(3):
                        temp_vals.append(temp[nodes[n].id])
                        salt_vals.append(salt[nodes[n].id])
                        z_vals.append(nodes[n].depth)
                        temp_vals.append(temp[nodes[n].below.id])
                        salt_vals.append(salt[nodes[n].below.id])
                        z_vals.append(nodes[n].below.depth)
                        dz_vals.append(
                            abs(nodes[n].depth - nodes[n].below.depth))
                        # Get ready for next iteration of loop
                        nodes[n] = nodes[n].below
                    curr_temp = mean(array(temp_vals))
                    curr_salt = mean(array(salt_vals))
                    curr_z = mean(array(z_vals))
                    curr_volume = area * mean(array(dz_vals))
                    # Get surface freezing point at this salinity
                    curr_tfrz = -0.0575 * curr_salt + 1.7105e-3 * sqrt(
                        curr_salt**3) - 2.155e-4 * curr_salt**2
                    # Figure out what water mass this is
                    if curr_temp < curr_tfrz:
                        # ISW
                        wm_key = 0
                    elif curr_salt < 34:
                        # AASW
                        wm_key = 3
                    elif curr_temp > 0:
                        # CDW
                        wm_key = 5
                    elif curr_temp > -1.5:
                        # MCDW
                        wm_key = 4
                    elif curr_salt < 34.5:
                        # LSSW
                        wm_key = 2
                    else:
                        # HSSW
                        wm_key = 1
                    # Integrate melt potential
                    # First need (potential) density
                    curr_rho = unesco(curr_temp, curr_salt, 0)
                    # And in-situ freezing point
                    curr_tfrz_insitu = a * curr_salt + b + c * (-1 * curr_z)
                    curr_sectors = 0
                    for sector in range(num_sectors):
                        if location_flag[sector, i] == 1:
                            curr_sectors += 1
                            mp[wm_key, sector, year -
                               start_year] += (curr_temp - curr_tfrz_insitu
                                               ) * curr_volume * cpw * curr_rho
                    # Should be in exactly 2 sectors (1 + total Antarctica)
                    if curr_sectors != 2:
                        print 'Wrong number of sectors for element ' + str(i)

    print 'Saving results to log file'
    f = open(log_file, 'w')
    for wm_key in range(num_watermasses):
        for sector in range(num_sectors):
            f.write('Melt potential of ' + wm_names[wm_key] + ' in ' +
                    sector_names[sector] + '(J)\n')
            for t in range(num_years):
                f.write(str(mp[wm_key, sector, t]) + '\n')
    f.close()
def zonal_ts_before_after_ross_2094():

    # File paths
    mesh_path = '/short/y99/kaa561/FESOM/mesh/meshB/'
    file_beg = '/short/y99/kaa561/FESOM/highres_spinup/annual_avg.oce.mean.1996.2005.nc'
    file_end = '/short/y99/kaa561/FESOM/rcp85_A/output/MK44005.2094.oce.mean.nc'
    lon0 = -159
    lat_min = -85
    lat_max = -73

    print 'Building FESOM mesh'
    elm2D = fesom_grid(mesh_path)
    print 'Reading temperature and salinity data'
    id = Dataset(file_beg, 'r')
    temp_nodes_beg = id.variables['temp'][0, :]
    salt_nodes_beg = id.variables['salt'][0, :]
    id.close()
    # Annually average 2094
    id = Dataset(file_end, 'r')
    temp_nodes_end = mean(id.variables['temp'][:, :], axis=0)
    salt_nodes_end = mean(id.variables['salt'][:, :], axis=0)
    id.close()

    print 'Interpolating to ' + str(lon0)
    # Build arrays of SideElements making up zonal slices
    # Start with beginning
    selements_temp_beg = fesom_sidegrid(elm2D, temp_nodes_beg, lon0, lat_max)
    selements_salt_beg = fesom_sidegrid(elm2D, salt_nodes_beg, lon0, lat_max)
    # Build array of quadrilateral patches for the plots, and data values
    # corresponding to each SideElement
    patches = []
    temp_beg = []
    for selm in selements_temp_beg:
        # Make patch
        coord = transpose(vstack((selm.y, selm.z)))
        patches.append(Polygon(coord, True, linewidth=0.))
        # Save data value
        temp_beg.append(selm.var)
    temp_beg = array(temp_beg)
    # Salinity has same patches but different values
    salt_beg = []
    for selm in selements_salt_beg:
        salt_beg.append(selm.var)
    salt_beg = array(salt_beg)
    # Repeat for end
    selements_temp_end = fesom_sidegrid(elm2D, temp_nodes_end, lon0, lat_max)
    selements_salt_end = fesom_sidegrid(elm2D, salt_nodes_end, lon0, lat_max)
    temp_end = []
    for selm in selements_temp_end:
        temp_end.append(selm.var)
    temp_end = array(temp_end)
    salt_end = []
    for selm in selements_salt_end:
        salt_end.append(selm.var)
    salt_end = array(salt_end)
    # Find bounds on each variable
    temp_min = min(amin(temp_beg), amin(temp_end))
    temp_max = max(amax(temp_beg), amax(temp_end))
    salt_min = min(amin(salt_beg), amin(salt_end))
    salt_max = max(amax(salt_beg), amax(salt_end))
    # Find deepest depth
    # Start with 0
    depth_min = 0
    # Modify with patches
    for selm in selements_temp_beg:
        depth_min = min(depth_min, amin(selm.z))
    # Round down to nearest 50 metres
    depth_min = floor(depth_min / 50) * 50

    print 'Plotting'
    fig = figure(figsize=(16, 10))
    # Temperature
    gs_temp = GridSpec(1, 2)
    gs_temp.update(left=0.11,
                   right=0.9,
                   bottom=0.5,
                   top=0.9,
                   wspace=0.05,
                   hspace=0.5)
    # Beginning
    ax = subplot(gs_temp[0, 0])
    img = PatchCollection(patches, cmap='jet')
    img.set_array(temp_beg)
    img.set_edgecolor('face')
    img.set_clim(vmin=temp_min, vmax=temp_max)
    ax.add_collection(img)
    xlim([lat_min, lat_max])
    ylim([depth_min, 0])
    title(r'Temperature ($^{\circ}$C), 1996-2005', fontsize=24)
    ax.set_xticklabels([])
    ylabel('Depth (m)', fontsize=18)
    # End
    ax = subplot(gs_temp[0, 1])
    img = PatchCollection(patches, cmap='jet')
    img.set_array(temp_end)
    img.set_edgecolor('face')
    img.set_clim(vmin=temp_min, vmax=temp_max)
    ax.add_collection(img)
    xlim([lat_min, lat_max])
    ylim([depth_min, 0])
    title(r'Temperature ($^{\circ}$C), 2094', fontsize=24)
    ax.set_xticklabels([])
    ax.set_yticklabels([])
    # Add a colorbar on the right
    cbaxes = fig.add_axes([0.92, 0.55, 0.02, 0.3])
    cbar = colorbar(img, cax=cbaxes, extend='both')
    cbar.ax.tick_params(labelsize=16)
    # Salinity
    gs_salt = GridSpec(1, 2)
    gs_salt.update(left=0.11,
                   right=0.9,
                   bottom=0.05,
                   top=0.45,
                   wspace=0.05,
                   hspace=0.5)
    # Beginning
    ax = subplot(gs_salt[0, 0])
    img = PatchCollection(patches, cmap='jet')
    img.set_array(salt_beg)
    img.set_edgecolor('face')
    img.set_clim(vmin=salt_min, vmax=salt_max)
    ax.add_collection(img)
    xlim([lat_min, lat_max])
    ylim([depth_min, 0])
    title('Salinity (psu), 1996-2005', fontsize=24)
    xlabel('Latitude', fontsize=18)
    ylabel('Depth (m)', fontsize=18)
    # End
    ax = subplot(gs_salt[0, 1])
    img = PatchCollection(patches, cmap='jet')
    img.set_array(salt_end)
    img.set_edgecolor('face')
    img.set_clim(vmin=salt_min, vmax=salt_max)
    ax.add_collection(img)
    xlim([lat_min, lat_max])
    ylim([depth_min, 0])
    title('Salinity (psu), 2094', fontsize=24)
    xlabel('Latitude', fontsize=18)
    ax.set_yticklabels([])
    # Add a colorbar on the right
    cbaxes = fig.add_axes([0.92, 0.1, 0.02, 0.3])
    cbar = colorbar(img, cax=cbaxes, extend='both')
    cbar.ax.tick_params(labelsize=16)
    # Main title
    suptitle(r'RCP 8.5 A, 159$^{\circ}$W', fontsize=28)

    fig.show()
    fig.savefig('159W_rcp85_A_2094.png')
Esempio n. 9
0
# Command-line interface
if __name__ == "__main__":

    mesh_path = raw_input("Path to FESOM mesh directory: ")
    file_path = raw_input("Path to FESOM oce.mean.nc file: ")
    tstep = int(raw_input("Time index to plot (starting at 1): "))
    lon0 = float(raw_input("Longitude in degrees (-180 to 180): "))
    depth_min = -1*float(raw_input("Deepest depth to plot (positive, metres): "))
    action = raw_input("Save figure (s) or display in window (d)? ")
    if action == 's':
        save = True
        fig_name = raw_input("File name for figure: ")
    elif action == 'd':
        save = False
        fig_name = None    
    elm2D = fesom_grid(mesh_path)
    temp_salt_slice(elm2D, file_path, tstep, lon0, depth_min, save, fig_name)

    # Repeat until the user is finished
    while True:
        repeat = raw_input("Make another plot (y/n)? ")
        if repeat == 'y':
            update_mesh = False
            while True:                
                changes = raw_input("Enter a parameter to change: (1) mesh path, (2) file path, (3) timestep, (4) longitude, (5) deepest depth, (6) save/display; or enter to continue: ")
                if len(changes) == 0:
                    break
                else:
                    if int(changes) == 1:
                        update_mesh = True
                        mesh_path = raw_input("Path to FESOM mesh directory: ")
def massloss_percent_winds ():

    # File paths
    mesh_path = '/short/y99/kaa561/FESOM/mesh/meshB/'
    directory_winds = '/short/y99/kaa561/FESOM/rcp85_M/'
    directory_nowinds = '/short/y99/kaa561/FESOM/rcp85_M_no_wind_anom/'
    file_name = 'annual_avg.forcing.diag.2091.2100.nc'
    # Seconds per year
    sec_per_year = 365.25*24*3600
    # Density of ice in kg/m^3
    rho_ice = 916
    # Sectors to split Antarctica into
    sector_names = ['Filchner-Ronne Ice Shelf', 'Eastern Weddell Region', 'Amery Ice Shelf', 'Australian Sector', 'Ross Sea', 'Amundsen Sea', 'Bellingshausen Sea', 'Larsen Ice Shelves']
    # Number of sectors
    num_sectors = len(sector_names)

    print 'Building mesh'
    elements = fesom_grid(mesh_path, circumpolar=True, cross_180=False)

    print 'Reading data'
    id = Dataset(directory_winds + file_name, 'r')
    ismr_nodes_winds = id.variables['wnet'][0,:]*sec_per_year
    id.close()
    id = Dataset(directory_nowinds + file_name, 'r')
    ismr_nodes_nowinds = id.variables['wnet'][0,:]*sec_per_year
    id.close()
    # Average over elements in ice shelf cavities
    ismr_elm_winds = []
    ismr_elm_nowinds = []
    for elm in elements:
        if elm.cavity:
            ismr_elm_winds.append(mean([ismr_nodes_winds[elm.nodes[0].id], ismr_nodes_winds[elm.nodes[1].id], ismr_nodes_winds[elm.nodes[2].id]]))
            ismr_elm_nowinds.append(mean([ismr_nodes_nowinds[elm.nodes[0].id], ismr_nodes_nowinds[elm.nodes[1].id], ismr_nodes_nowinds[elm.nodes[2].id]]))
    ismr_elm_winds = array(ismr_elm_winds)
    ismr_elm_nowinds = array(ismr_elm_nowinds)

    print 'Integrating mass loss'
    total_massloss_winds = zeros(num_sectors)
    total_massloss_nowinds = zeros(num_sectors)
    # Loop over elements
    i = 0
    for elm in elements:
        if elm.cavity:
            # Figure out which sector this ice shelf element falls into
            # First get average lon and lat across 3 Nodes
            lon = mean(elm.lon)
            lat = mean(elm.lat)
            if lon >= -85 and lon < -30 and lat < -74:
                # Filchner-Ronne
                index = 0            
            elif lon >= -30 and lon < 65:
                # Eastern Weddell region
                index = 1            
            elif lon >= 65 and lon < 76:
                # Amery
                index = 2            
            elif lon >= 76 and lon < 165 and lat >= -74:
                # Australian sector
                index = 3            
            elif (lon >= 155 and lon < 165 and lat < -74) or (lon >= 165) or (lon < -140):
                # Ross Sea
                index = 4            
            elif (lon >= -140 and lon < -105) or (lon >= -105 and lon < -98 and lat < -73.1):
                # Amundsen Sea
                index = 5            
            elif (lon >= -104 and lon < -98 and lat >= -73.1) or (lon >= -98 and lon < -66 and lat >= -75):
                # Bellingshausen Sea
                index = 6            
            elif lon >= -66 and lon < -59 and lat >= -74:
                # Larsen Ice Shelves
                index = 7
            else:
                print 'No region found for lon=',str(lon),', lat=',str(lat)
                break #return
            # Integrate total mass loss in this sector
            total_massloss_winds[index] += ismr_elm_winds[i]*elm.area()*rho_ice*1e-12
            total_massloss_nowinds[index] += ismr_elm_nowinds[i]*elm.area()*rho_ice*1e-12
            i += 1

    # Calculate change in mass loss due to removing winds
    for index in range(num_sectors):
        massloss_winds = total_massloss_winds[index]
        massloss_nowinds = total_massloss_nowinds[index]
        percent_change = (massloss_nowinds - massloss_winds)/massloss_winds*1e2
        print sector_names[index] + ': ' + str(percent_change) + '%'
    # Total Antarctica
    massloss_winds = sum(total_massloss_winds)
    massloss_nowinds = sum(total_massloss_nowinds)
    percent_change = (massloss_nowinds - massloss_winds)/massloss_winds*1e2
    print 'Total Antarctica: ' + str(percent_change) + '%'
Esempio n. 11
0
def timeseries_amundsen(mesh_path, ice_diag_file, log_file):

    # Mesh parameters
    circumpolar = True
    cross_180 = False
    # Number of days for each output step
    days_per_output = 5
    # Bounds on Amundsen Sea box
    lon_min = -115
    lon_max = -100
    lat_max = -71

    avg_ice2ocn = []
    # Check if the log file exists
    if exists(log_file):
        print 'Reading previously calculated values'
        f = open(log_file, 'r')
        # Skip the first line (header)
        f.readline()
        for line in f:
            avg_ice2ocn.append(float(line))
        f.close()

    print 'Building grid'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)
    num_elm2D = len(elements)

    print 'Reading data'
    # Change sign on ice growth rate in m/s, multiply by 1e8 for visibility
    id = Dataset(ice_diag_file, 'r')
    ice2ocn = -1e8 * id.variables['thdgr'][:, :]
    id.close()
    num_time = size(ice2ocn, 0)

    print 'Setting up arrays'
    # Location flag for non-cavity elements in Amundsen Sea
    location_flag = zeros(num_elm2D)
    # Area of each element in Amundsen Sea
    area_elm = zeros(num_elm2D)
    # Ice to ocean freshwater flux timeseries at each element
    ice2ocn_elm = zeros([num_time, num_elm2D])
    # Loop over each element to fill these in
    for i in range(num_elm2D):
        elm = elements[i]
        # Ignore ice shelf cavities
        if not elm.cavity:
            # Check if we're within the given lon and lat bounds
            if all(elm.lon >= lon_min) and all(elm.lon <= lon_max) and all(
                    elm.lat <= lat_max):
                # Save area
                area_elm[i] = elm.area()
                # Set location flag
                location_flag[i] = 1
                # Average ice-ocean freshwater flux timeseries over 3 components
                ice2ocn_elm[:, i] = (ice2ocn[:, elm.nodes[0].id] +
                                     ice2ocn[:, elm.nodes[1].id] +
                                     ice2ocn[:, elm.nodes[2].id]) / 3.0

    print 'Building timeseries'
    for t in range(num_time):
        # Average over area of the correct elements
        avg_ice2ocn.append(
            sum(ice2ocn_elm[t, :] * area_elm * location_flag) /
            sum(area_elm * location_flag))

    print 'Saving results to log file'
    f = open(log_file, 'w')
    f.write('Average ice-to-ocean freshwater flux (1e-8 m/s): \n')
    for val in avg_ice2ocn:
        f.write(str(val) + '\n')
Esempio n. 12
0
def zonal_cavity_ts_res():

    # Paths to mesh directories
    mesh_path_low = '../FESOM/mesh/low_res/'
    mesh_path_high = '../FESOM/mesh/high_res/'
    # Paths to output files
    output_path_low = '../FESOM/lowres_spinup/rep3/'
    output_path_high = '../FESOM/highres_spinup/rep3/'
    file_name = 'annual_avg.oce.mean.nc'

    # Name of each ice shelf
    shelf_names = [
        'Larsen D Ice Shelf', 'Larsen C Ice Shelf',
        'Wilkins & George VI & Stange Ice Shelves', 'Ronne-Filchner Ice Shelf',
        'Abbot Ice Shelf', 'Pine Island Glacier Ice Shelf',
        'Thwaites Ice Shelf', 'Dotson Ice Shelf', 'Getz Ice Shelf',
        'Nickerson Ice Shelf', 'Sulzberger Ice Shelf', 'Mertz Ice Shelf',
        'Totten & Moscow University Ice Shelves', 'Shackleton Ice Shelf',
        'West Ice Shelf', 'Amery Ice Shelf', 'Prince Harald Ice Shelf',
        'Baudouin & Borchgrevink Ice Shelves', 'Lazarev Ice Shelf',
        'Nivl Ice Shelf', 'Fimbul & Jelbart & Ekstrom Ice Shelves',
        'Brunt & Riiser-Larsen Ice Shelves', 'Ross Ice Shelf'
    ]
    # Beginnings of filenames for figures
    fig_heads = [
        'larsen_d', 'larsen_c', 'wilkins_georgevi_stange', 'ronne_filchner',
        'abbot', 'pig', 'thwaites', 'dotson', 'getz', 'nickerson',
        'sulzberger', 'mertz', 'totten_moscowuni', 'shackleton', 'west',
        'amery', 'prince_harald', 'baudouin_borchgrevink', 'lazarev', 'nivl',
        'fimbul_jelbart_ekstrom', 'brunt_riiser_larsen', 'ross'
    ]
    # Longitudes intersecting each ice shelf
    lon0 = [
        -60, -62, -68, -55, -93, -101, -106, -113, -120, -145, -150, 145, 116,
        96, 85, 71, 36, 25, 15, 11, -1, -20, 180
    ]
    # Latitude bounds for each ice shelf
    lat_min = [
        -73.1, -69.35, -73.1, -82.6, -73.28, -75.4, -75.5, -75, -74.9, -75.9,
        -77.8, -67.7, -67.17, -66.67, -67.25, -72, -69.7, -71, -70.4, -70.75,
        -71.83, -75.6, -84.6
    ]
    lat_max = [
        -72, -66.13, -70, -75.5, -72.3, -74.4, -74.67, -74, -73.5, -75.3,
        -76.41, -67, -66.5, -64.83, -66.25, -68.5, -68.7, -69.9, -69.33,
        -69.83, -69.33, -72.9, -77
    ]
    num_shelves = len(shelf_names)

    print 'Building FESOM mesh'
    elm2D_low = fesom_grid(mesh_path_low)
    elm2D_high = fesom_grid(mesh_path_high)
    print 'Reading temperature and salinity data'
    id = Dataset(output_path_low + file_name, 'r')
    temp_nodes_low = id.variables['temp'][0, :]
    salt_nodes_low = id.variables['salt'][0, :]
    id.close()
    id = Dataset(output_path_high + file_name, 'r')
    temp_nodes_high = id.variables['temp'][0, :]
    salt_nodes_high = id.variables['salt'][0, :]
    id.close()

    # Loop over ice shelves
    for index in range(num_shelves):
        print 'Processing ' + shelf_names[index]
        # Figure out what to write on the title about longitude
        if lon0[index] < 0:
            lon_string = ' (' + str(-lon0[index]) + r'$^{\circ}$W)'
        else:
            lon_string = ' (' + str(lon0[index]) + r'$^{\circ}$E)'
        # Build arrays of SideElements making up zonal slices
        selements_temp_low = fesom_sidegrid(elm2D_low, temp_nodes_low,
                                            lon0[index], lat_max[index])
        selements_salt_low = fesom_sidegrid(elm2D_low, salt_nodes_low,
                                            lon0[index], lat_max[index])
        selements_temp_high = fesom_sidegrid(elm2D_high, temp_nodes_high,
                                             lon0[index], lat_max[index])
        selements_salt_high = fesom_sidegrid(elm2D_high, salt_nodes_high,
                                             lon0[index], lat_max[index])
        # Build array of quadrilateral patches for the plots, and data values
        # corresponding to each SideElement
        patches_low = []
        temp_low = []
        for selm in selements_temp_low:
            # Make patch
            coord = transpose(vstack((selm.y, selm.z)))
            patches_low.append(Polygon(coord, True, linewidth=0.))
            # Save data value
            temp_low.append(selm.var)
        temp_low = array(temp_low)
        # Salinity has same patches but different values
        salt_low = []
        for selm in selements_salt_low:
            salt_low.append(selm.var)
        salt_low = array(salt_low)
        # Repeat for high-res
        patches_high = []
        temp_high = []
        for selm in selements_temp_high:
            coord = transpose(vstack((selm.y, selm.z)))
            patches_high.append(Polygon(coord, True, linewidth=0.))
            temp_high.append(selm.var)
        temp_high = array(temp_high)
        salt_high = []
        for selm in selements_salt_high:
            salt_high.append(selm.var)
        salt_high = array(salt_high)
        # Find bounds on each variable
        temp_min = min(amin(temp_low), amin(temp_high))
        temp_max = max(amax(temp_low), amax(temp_high))
        salt_min = min(amin(salt_low), amin(salt_high))
        salt_max = max(amax(salt_low), amax(salt_high))
        # Find deepest depth
        # Start with 0
        depth_min = 0
        # Modify with low-res patches
        for selm in selements_temp_low:
            depth_min = min(depth_min, amin(selm.z))
        # Modify with high-res patches
        for selm in selements_temp_high:
            depth_min = min(depth_min, amin(selm.z))
        # Round down to nearest 50 metres
        depth_min = floor(depth_min / 50) * 50
        # Plot
        fig = figure(figsize=(18, 12))
        # Low-res temperature
        ax = fig.add_subplot(2, 2, 1)
        img1 = PatchCollection(patches_low, cmap='jet')
        img1.set_array(temp_low)
        img1.set_edgecolor('face')
        img1.set_clim(vmin=temp_min, vmax=temp_max)
        ax.add_collection(img1)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        title(r'Low-res temperature ($^{\circ}$C)', fontsize=20)
        ylabel('Depth (m)', fontsize=16)
        # High-res temperature
        ax = fig.add_subplot(2, 2, 2)
        img2 = PatchCollection(patches_high, cmap='jet')
        img2.set_array(temp_high)
        img2.set_edgecolor('face')
        img2.set_clim(vmin=temp_min, vmax=temp_max)
        ax.add_collection(img2)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        title(r'High-res temperature ($^{\circ}$C)', fontsize=20)
        # Add colorbar for temperature
        cbaxes_temp = fig.add_axes([0.92, 0.575, 0.01, 0.3])
        cbar_temp = colorbar(img2, cax=cbaxes_temp)
        cbar_temp.ax.tick_params(labelsize=16)
        # Low-res salinity
        ax = fig.add_subplot(2, 2, 3)
        img3 = PatchCollection(patches_low, cmap='jet')
        img3.set_array(salt_low)
        img3.set_edgecolor('face')
        img3.set_clim(vmin=salt_min, vmax=salt_max)
        ax.add_collection(img3)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        title('Low-res salinity (psu)', fontsize=20)
        xlabel('Latitude', fontsize=16)
        ylabel('Depth (m)', fontsize=16)
        # High-res salinity
        ax = fig.add_subplot(2, 2, 4)
        img4 = PatchCollection(patches_high, cmap='jet')
        img4.set_array(salt_high)
        img4.set_edgecolor('face')
        img4.set_clim(vmin=salt_min, vmax=salt_max)
        ax.add_collection(img4)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        title('High-res salinity (psu)', fontsize=20)
        xlabel('Latitude', fontsize=16)
        # Add colorbar for salinity
        cbaxes_salt = fig.add_axes([0.92, 0.125, 0.01, 0.3])
        cbar_salt = colorbar(img4, cax=cbaxes_salt)
        cbar_salt.ax.tick_params(labelsize=16)
        # Main title
        suptitle(shelf_names[index] + lon_string, fontsize=28)
        #fig.show()
        fig.savefig(fig_heads[index] + '_zonal_ts.png')
Esempio n. 13
0
def mip_seaice_tamura ():

    # File paths
    # ROMS grid (just for bathymetry)
    roms_grid = '/short/m68/kaa561/metroms_iceshelf/apps/common/grid/circ30S_quarterdegree.nc'
    # FESOM mesh paths
    fesom_mesh_path_lr = '/short/y99/kaa561/FESOM/mesh/meshA/'
    fesom_mesh_path_hr = '/short/y99/kaa561/FESOM/mesh/meshB/'
    # CICE 1992-2013 mean ice production (precomputed in calc_ice_prod.py)
    cice_file = '/short/m68/kaa561/metroms_iceshelf/tmproms/run/intercomparison/ice_prod_1992_2013.nc'
    # FESOM 1992-2013 mean ice production (precomputed in calc_annual_ice_prod.py in fesomtools)
    fesom_lr_file = '/short/y99/kaa561/FESOM/intercomparison_lowres/output/ice_prod_1992_2013.nc'
    fesom_hr_file = '/short/y99/kaa561/FESOM/intercomparison_highres/output/ice_prod_1992_2013.nc'
    # Tamura's 1992-2013 mean ice production (precomputed on desktop with Matlab)
    tamura_file = '/short/m68/kaa561/tamura_1992_2013_monthly_climatology.nc'
    # Output ASCII file
    output_file = 'seaice_prod_bins.log'
    # Size of longitude bin
    dlon_bin = 1.0
    # Definition of continental shelf: everywhere south of lat0 with
    # bathymetry shallower than h0
    lat0 = -60
    h0 = 1500
    # Radius of the Earth in metres
    r = 6.371e6
    # Degrees to radians conversion factor
    deg2rad = pi/180.0

    # Set up longitude bins
    bin_edges = arange(-180, 180+dlon_bin, dlon_bin)
    bin_centres = 0.5*(bin_edges[:-1] + bin_edges[1:])
    num_bins = len(bin_centres)

    print 'Processing MetROMS'
    # Read CICE grid
    id = Dataset(cice_file, 'r')
    cice_lon = id.variables['TLON'][:,:]
    cice_lat = id.variables['TLAT'][:,:]
    # Read sea ice production
    cice_data = id.variables['ice_prod'][:,:]
    id.close()
    # Get area integrands
    dx, dy = cartesian_grid_2d(cice_lon, cice_lat)
    dA = dx*dy
    # Make sure longitude is in the range [-180, 180]
    index = cice_lon > 180
    cice_lon[index] = cice_lon[index] - 360
    # Read bathymetry (ROMS grid file) and trim to CICE grid
    id = Dataset(roms_grid, 'r')
    cice_bathy = id.variables['h'][1:-1,1:-1]
    id.close()
    # Set up integral
    cice_data_bins = zeros(num_bins)
    # Loop over all cells
    num_lon = size(cice_lon,1)
    num_lat = size(cice_lat,0)
    for j in range(num_lat):
        for i in range(num_lon):
            # Check for land mask or ice shelves
            if cice_data[j,i] is ma.masked:
                continue
            # Check for continental shelf
            if cice_lat[j,i] < lat0 and cice_bathy[j,i] < h0:
                # Find the right bin
                bin_index = nonzero(bin_edges > cice_lon[j,i])[0][0] - 1
                # Integrate (m^3/y)
                cice_data_bins[bin_index] += cice_data[j,i]*dA[j,i]
    # Convert to 10^9 m^3/y
    cice_data_bins *= 1e-9

    print 'Processing low-res FESOM'
    # Build mesh
    elements_lr = fesom_grid(fesom_mesh_path_lr, circumpolar=True, cross_180=False)
    # Read sea ice production
    id = Dataset(fesom_lr_file, 'r')
    fesom_data_lr = id.variables['ice_prod'][:]
    id.close()
    # Set up integral
    fesom_data_bins_lr = zeros(num_bins)
    # Loop over elements
    for elm in elements_lr:
        # Exclude ice shelf cavities
        if not elm.cavity:
            # Check for continental shelf in 2 steps
            if all(elm.lat < lat0):
                elm_bathy = mean([elm.nodes[0].find_bottom().depth, elm.nodes[1].find_bottom().depth, elm.nodes[2].find_bottom().depth])
                if elm_bathy < h0:
                    # Get element-averaged sea ice production
                    elm_data = mean([fesom_data_lr[elm.nodes[0].id], fesom_data_lr[elm.nodes[1].id], fesom_data_lr[elm.nodes[2].id]])
                    # Find the right bin
                    elm_lon = mean(elm.lon)
                    if elm_lon < -180:
                        elm_lon += 360
                    elif elm_lon > 180:
                        elm_lon -= 360
                    bin_index = nonzero(bin_edges > elm_lon)[0][0] - 1
                    # Integrate (m^3/y)
                    fesom_data_bins_lr[bin_index] += elm_data*elm.area()
    # Convert to 10^9 m^3/y
    fesom_data_bins_lr *= 1e-9

    print 'Processing high-res FESOM'
    elements_hr = fesom_grid(fesom_mesh_path_hr, circumpolar=True, cross_180=False)
    id = Dataset(fesom_hr_file, 'r')
    fesom_data_hr = id.variables['ice_prod'][:]
    id.close()
    fesom_data_bins_hr = zeros(num_bins)
    for elm in elements_hr:
        if not elm.cavity:
            if all(elm.lat < lat0):
                elm_bathy = mean([elm.nodes[0].find_bottom().depth, elm.nodes[1].find_bottom().depth, elm.nodes[2].find_bottom().depth])
                if elm_bathy < h0:
                    elm_data = mean([fesom_data_hr[elm.nodes[0].id], fesom_data_hr[elm.nodes[1].id], fesom_data_hr[elm.nodes[2].id]])
                    elm_lon = mean(elm.lon)
                    if elm_lon < -180:
                        elm_lon += 360
                    elif elm_lon > 180:
                        elm_lon -= 360
                    bin_index = nonzero(bin_edges > elm_lon)[0][0] - 1
                    fesom_data_bins_hr[bin_index] += elm_data*elm.area()
    fesom_data_bins_hr *= 1e-9

    print 'Processing Tamura obs'
    id = Dataset(tamura_file, 'r')
    # Read grid and data
    tamura_lon = id.variables['longitude'][:,:]
    tamura_lat = id.variables['latitude'][:,:]
    # Read sea ice formation
    tamura_data = id.variables['ice_prod'][:,:]
    id.close()
    # Interpolate to a regular grid so we can easily integrate over area
    dlon_reg = 0.2
    dlat_reg = 0.1
    lon_reg_edges = arange(-180, 180+dlon_reg, dlon_reg)
    lon_reg = 0.5*(lon_reg_edges[:-1] + lon_reg_edges[1:])
    lat_reg_edges = arange(-80, -60+dlat_reg, dlat_reg)
    lat_reg = 0.5*(lat_reg_edges[:-1] + lat_reg_edges[1:])
    lon_reg_2d, lat_reg_2d = meshgrid(lon_reg, lat_reg)
    dx_reg = r*cos(lat_reg_2d*deg2rad)*dlon_reg*deg2rad
    dy_reg = r*dlat_reg*deg2rad
    dA_reg = dx_reg*dy_reg
    # Be careful with the periodic boundary here
    num_pts = size(tamura_lon)
    num_wrap1 = count_nonzero(tamura_lon < -179)
    num_wrap2 = count_nonzero(tamura_lon > 179)
    points = empty([num_pts+num_wrap1+num_wrap2,2])
    values = empty(num_pts+num_wrap1+num_wrap2)
    points[:num_pts,0] = ravel(tamura_lon)
    points[:num_pts,1] = ravel(tamura_lat)
    values[:num_pts] = ravel(tamura_data)
    # Wrap the periodic boundary on both sides
    index = tamura_lon < -179
    points[num_pts:num_pts+num_wrap1,0] = tamura_lon[index] + 360
    points[num_pts:num_pts+num_wrap1,1] = tamura_lat[index]
    values[num_pts:num_pts+num_wrap1] = tamura_data[index]
    index = tamura_lon > 179
    points[num_pts+num_wrap1:,0] = tamura_lon[index] - 360
    points[num_pts+num_wrap1:,1] = tamura_lat[index]
    values[num_pts+num_wrap1:] = tamura_data[index]
    values = ma.masked_where(isnan(values), values)
    xi = empty([size(lon_reg_2d),2])
    xi[:,0] = ravel(lon_reg_2d)
    xi[:,1] = ravel(lat_reg_2d)
    result = griddata(points, values, xi)
    tamura_data_reg = reshape(result, shape(lon_reg_2d))
    # Now, regrid the MetROMS bathymetry to this regular grid
    num_pts = size(cice_lon)
    num_wrap1 = count_nonzero(cice_lon < -179)
    num_wrap2 = count_nonzero(cice_lon > 179)
    points = empty([num_pts+num_wrap1+num_wrap2,2])
    values = empty(num_pts+num_wrap1+num_wrap2)
    points[:num_pts,0] = ravel(cice_lon)
    points[:num_pts,1] = ravel(cice_lat)
    values[:num_pts] = ravel(cice_bathy)
    index = cice_lon < -179
    points[num_pts:num_pts+num_wrap1,0] = cice_lon[index] + 360
    points[num_pts:num_pts+num_wrap1,1] = cice_lat[index]
    values[num_pts:num_pts+num_wrap1] = cice_bathy[index]
    index = cice_lon > 179
    points[num_pts+num_wrap1:,0] = cice_lon[index] - 360
    points[num_pts+num_wrap1:,1] = cice_lat[index]
    values[num_pts+num_wrap1:] = cice_bathy[index]
    values = ma.masked_where(isnan(values), values)
    xi = empty([size(lon_reg_2d),2])
    xi[:,0] = ravel(lon_reg_2d)
    xi[:,1] = ravel(lat_reg_2d)
    result = griddata(points, values, xi)
    bathy_reg = reshape(result, shape(lon_reg_2d))
    # Mask everything but the continental shelf from dA_reg
    dA_reg = ma.masked_where(lat_reg_2d > lat0, dA_reg)
    dA_reg = ma.masked_where(bathy_reg > h0, dA_reg)
    # Mask the land mask (and ice shelves) from tamura_data_reg
    tamura_data_reg = ma.masked_where(isnan(tamura_data_reg), tamura_data_reg)
    # Set up integral
    tamura_data_bins = zeros(num_bins)
    # Loop over longitude only
    for i in range(len(lon_reg)):
        # Find the right bin
        bin_index = nonzero(bin_edges > lon_reg[i])[0][0] - 1
        # Integrate (m^3/y)
        tamura_data_bins[bin_index] += sum(tamura_data_reg[:,i]*dA_reg[:,i])
    # Convert to 10^9 m^3/y
    tamura_data_bins *= 1e-9

    # Write data to ASCII file
    print 'Writing to file'
    f = open(output_file, 'w')
    f.write('Longitude:\n')
    for val in bin_centres:
        f.write(str(val) + '\n')
    f.write('MetROMS sea ice production (10^9 m^3/y):\n')
    for val in cice_data_bins:
        f.write(str(val) + '\n')
    f.write('FESOM (low-res) sea ice production (10^9 m^3/y):\n')
    for val in fesom_data_bins_lr:
        f.write(str(val) + '\n')
    f.write('FESOM (high-res) sea ice production (10^9 m^3/y):\n')
    for val in fesom_data_bins_hr:
        f.write(str(val) + '\n')
    f.write('Tamura sea ice production (10^9 m^3/y):\n')
    for val in tamura_data_bins:
        f.write(str(val) + '\n')
    f.close()
def timeseries_watermass_temp_salt(mesh_path, output_path, start_year,
                                   end_year, log_file):

    # Titles for each sector
    sector_names = [
        'Filchner-Ronne Ice Shelf Cavity', 'Eastern Weddell Region Cavities',
        'Amery Ice Shelf Cavity', 'Australian Sector Cavities',
        'Ross Sea Cavities', 'Amundsen Sea Cavities',
        'Bellingshausen Sea Cavities', 'Larsen Ice Shelf Cavities',
        'All Ice Shelf Cavities'
    ]
    num_sectors = len(sector_names)
    # Water masses to consider
    wm_names = ['ISW', 'HSSW', 'LSSW', 'AASW', 'MCDW', 'CDW']
    num_watermasses = len(wm_names)
    # Only consider elements south of 30S
    circumpolar = True
    # Don't make second copies of elements that cross 180E
    cross_180 = False
    # Naming conventions for FESOM output files
    file_head = output_path + 'MK44005.'
    file_tail = '.oce.mean.nc'
    num_years = end_year - start_year + 1

    temp_watermass = zeros([num_watermasses, num_sectors, num_years])
    salt_watermass = zeros([num_watermasses, num_sectors, num_years])

    print 'Building grid'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)

    print 'Categorising elements into sectors'
    location_flag = zeros([num_sectors, len(elements)])
    for i in range(len(elements)):
        elm = elements[i]
        # Make sure we're actually in an ice shelf cavity
        if elm.cavity:
            # Figure out which sector this ice shelf element falls into
            lon = mean(elm.lon)
            lat = mean(elm.lat)
            if lon >= -85 and lon < -30 and lat < -74:
                # Filchner-Ronne
                location_flag[0, i] = 1
            elif lon >= -30 and lon < 65:
                # Eastern Weddell region
                location_flag[1, i] = 1
            elif lon >= 65 and lon < 76:
                # Amery
                location_flag[2, i] = 1
            elif lon >= 76 and lon < 165 and lat >= -74:
                # Australian sector
                location_flag[3, i] = 1
            elif (lon >= 155 and lon < 165
                  and lat < -74) or (lon >= 165) or (lon < -140):
                # Ross Sea
                location_flag[4, i] = 1
            elif (lon >= -140 and lon < -105) or (lon >= -105 and lon < -98
                                                  and lat < -73.1):
                # Amundsen Sea
                location_flag[5, i] = 1
            elif (lon >= -104 and lon < -98
                  and lat >= -73.1) or (lon >= -98 and lon < -66
                                        and lat >= -75):
                # Bellingshausen Sea
                location_flag[6, i] = 1
            elif lon >= -66 and lon < -59 and lat >= -74:
                # Larsen Ice Shelves
                location_flag[7, i] = 1
            else:
                print 'No region found for lon=', str(lon), ', lat=', str(lat)
                break  #return
            # All ice shelf elements are in Total Antarctica
            location_flag[8, i] = 1

    print 'Calculating average temperature and salinity'
    # Loop over years
    for year in range(start_year, end_year + 1):
        print 'Processing year ' + str(year)
        # Initialise volume of each water mass in each sector
        vol_watermass = zeros([num_watermasses, num_sectors])
        # Read temperature and salinity for this year, annually average
        id = Dataset(file_head + str(year) + file_tail, 'r')
        temp = mean(id.variables['temp'][:, :], axis=0)
        salt = mean(id.variables['salt'][:, :], axis=0)
        id.close()
        # Loop over elements
        for i in range(len(elements)):
            elm = elements[i]
            # Check if we're in an ice shelf cavity
            if elm.cavity:
                # Get area of 2D element
                area = elm.area()
                nodes = [elm.nodes[0], elm.nodes[1], elm.nodes[2]]
                # Loop downward
                while True:
                    if nodes[0].below is None or nodes[
                            1].below is None or nodes[2].below is None:
                        # Reached the bottom
                        break
                    # Calculate average temperature, salinity, and
                    # layer thickness for this 3D triangular prism
                    temp_vals = []
                    salt_vals = []
                    dz_vals = []
                    for n in range(3):
                        temp_vals.append(temp[nodes[n].id])
                        salt_vals.append(salt[nodes[n].id])
                        temp_vals.append(temp[nodes[n].below.id])
                        salt_vals.append(salt[nodes[n].below.id])
                        dz_vals.append(
                            abs(nodes[n].depth - nodes[n].below.depth))
                        # Get ready for next iteration of loop
                        nodes[n] = nodes[n].below
                    curr_temp = mean(array(temp_vals))
                    curr_salt = mean(array(salt_vals))
                    curr_volume = area * mean(array(dz_vals))
                    # Get surface freezing point at this salinity
                    curr_tfrz = -0.0575 * curr_salt + 1.7105e-3 * sqrt(
                        curr_salt**3) - 2.155e-4 * curr_salt**2
                    # Figure out what water mass this is
                    if curr_temp < curr_tfrz:
                        # ISW
                        wm_key = 0
                    elif curr_salt < 34:
                        # AASW
                        wm_key = 3
                    elif curr_temp > 0:
                        # CDW
                        wm_key = 5
                    elif curr_temp > -1.5:
                        # MCDW
                        wm_key = 4
                    elif curr_salt < 34.5:
                        # LSSW
                        wm_key = 2
                    else:
                        # HSSW
                        wm_key = 1
                    # Integrate temperature and salinity, weighted with
                    # volume, for sector(s) the element is in
                    curr_sectors = 0
                    for sector in range(num_sectors):
                        if location_flag[sector, i] == 1:
                            curr_sectors += 1
                            temp_watermass[
                                wm_key, sector,
                                year - start_year] += curr_temp * curr_volume
                            salt_watermass[
                                wm_key, sector,
                                year - start_year] += curr_salt * curr_volume
                            vol_watermass[wm_key, sector] += curr_volume
                    # Should be in exactly 2 sectors (1 + total Antarctica)
                    if curr_sectors != 2:
                        print 'Wrong number of sectors for element ' + str(i)
        # Convert from integrals to averages
        for wm_key in range(num_watermasses):
            for sector in range(num_sectors):
                if vol_watermass[wm_key, sector] == 0:
                    # No such water mass, set average temp and salt to NaN
                    temp_watermass[wm_key, sector, year - start_year] = NaN
                    salt_watermass[wm_key, sector, year - start_year] = NaN
                else:
                    temp_watermass[wm_key, sector,
                                   year - start_year] = temp_watermass[
                                       wm_key, sector, year -
                                       start_year] / vol_watermass[wm_key,
                                                                   sector]
                    salt_watermass[wm_key, sector,
                                   year - start_year] = salt_watermass[
                                       wm_key, sector, year -
                                       start_year] / vol_watermass[wm_key,
                                                                   sector]

    print 'Saving results to log file'
    f = open(log_file, 'w')
    for wm_key in range(num_watermasses):
        for sector in range(num_sectors):
            f.write('Average temperature of ' + wm_names[wm_key] + ' in ' +
                    sector_names[sector] + '(C)\n')
            for t in range(num_years):
                f.write(str(temp_watermass[wm_key, sector, t]) + '\n')
    for wm_key in range(num_watermasses):
        for sector in range(num_sectors):
            f.write('Average salinity of ' + wm_names[wm_key] + ' in ' +
                    sector_names[sector] + '(psu)\n')
            for t in range(num_years):
                f.write(str(salt_watermass[wm_key, sector, t]) + '\n')
    f.close()
Esempio n. 15
0
def mip_circumpolar_drift():

    # File paths
    # ECCO2 initial conditions file for temperature
    ecco2_ini_file = '/short/m68/kaa561/metroms_iceshelf/data/originals/ECCO2/THETA.1440x720x50.199201.nc'
    # ROMS grid file
    roms_grid = '/short/m68/kaa561/metroms_iceshelf/apps/common/grid/circ30S_quarterdegree.nc'
    # ROMS January 2016 mean temp
    roms_end_file = '/short/m68/kaa561/metroms_iceshelf/tmproms/run/intercomparison/temp_salt_jan2016.nc'
    # FESOM mesh paths
    fesom_mesh_path_lr = '/short/y99/kaa561/FESOM/mesh/meshA/'
    fesom_mesh_path_hr = '/short/y99/kaa561/FESOM/mesh/meshB/'
    # FESOM January 2016 mean temp
    fesom_end_file_lr = '/short/y99/kaa561/FESOM/intercomparison_lowres/output/temp_salt_jan2016.nc'
    fesom_end_file_hr = '/short/y99/kaa561/FESOM/intercomparison_highres/output/temp_salt_jan2016.nc'
    # Depth bounds to average between
    shallow_bound = 300
    deep_bound = 1000
    # ROMS grid parameters
    theta_s = 7.0
    theta_b = 2.0
    hc = 250
    N = 31
    deg2rad = pi / 180
    # Bound for colour scale
    colour_bound = 3
    # Northern boundary for plot
    nbdry = -50 + 90

    print 'Processing ECCO2'
    id = Dataset(ecco2_ini_file, 'r')
    ecco_lon_tmp = id.variables['LONGITUDE_T'][:]
    ecco_lat = id.variables['LATITUDE_T'][:]
    ecco_depth = id.variables['DEPTH_T'][:]  # Depth is positive
    ecco_temp_3d_tmp = id.variables['THETA'][0, :, :, :]
    id.close()
    # Wrap periodic boundary
    ecco_lon = zeros(size(ecco_lon_tmp) + 2)
    ecco_lon[0] = ecco_lon_tmp[-1] - 360
    ecco_lon[1:-1] = ecco_lon_tmp
    ecco_lon[-1] = ecco_lon_tmp[0] + 360
    ecco_temp_3d = ma.array(
        zeros((size(ecco_depth), size(ecco_lat), size(ecco_lon))))
    ecco_temp_3d[:, :, 0] = ecco_temp_3d_tmp[:, :, -1]
    ecco_temp_3d[:, :, 1:-1] = ecco_temp_3d_tmp
    ecco_temp_3d[:, :, -1] = ecco_temp_3d_tmp[:, :, 0]
    # Calculate dz
    ecco_depth_edges = zeros(size(ecco_depth) + 1)
    ecco_depth_edges[1:-1] = 0.5 * (ecco_depth[:-1] + ecco_depth[1:])
    # Surface is zero
    # Extrapolate for bottom
    ecco_depth_edges[-1] = 2 * ecco_depth[-1] - ecco_depth_edges[-2]
    ecco_dz = ecco_depth_edges[1:] - ecco_depth_edges[:-1]
    # Average between bounds
    # Find the first level below shallow_bound
    k_start = nonzero(ecco_depth > shallow_bound)[0][0]
    # Find the first level below deep_bound
    # Don't worry about regions where this hits the seafloor, as they will
    # get masked out in the final plot
    k_end = nonzero(ecco_depth > deep_bound)[0][0]
    # Integrate between
    ecco_temp = sum(
        ecco_temp_3d[k_start:k_end, :, :] * ecco_dz[k_start:k_end, None, None],
        axis=0) / sum(ecco_dz[k_start:k_end])
    # Fill land mask with zeros
    index = ecco_temp.mask
    ecco_temp = ecco_temp.data
    ecco_temp[index] = 0.0
    # Prepare interpolation function
    interp_function = RegularGridInterpolator((ecco_lat, ecco_lon), ecco_temp)

    print 'Processing MetROMS'
    # Read grid
    id = Dataset(roms_grid, 'r')
    roms_h = id.variables['h'][:, :]
    roms_zice = id.variables['zice'][:, :]
    roms_mask = id.variables['mask_rho'][:, :]
    roms_lon = id.variables['lon_rho'][:, :]
    roms_lat = id.variables['lat_rho'][:, :]
    num_lon = size(roms_lon, 1)
    num_lat = size(roms_lat, 0)
    id.close()
    # Interpolate ECCO2 depth-averaged values to the ROMS grid
    roms_temp_ini = interp_function((roms_lat, roms_lon))
    # Apply ROMS land mask
    roms_temp_ini = ma.masked_where(roms_mask == 0, roms_temp_ini)
    # Read Jan 2016 values
    id = Dataset(roms_end_file, 'r')
    roms_temp_3d_end = id.variables['temp'][0, :, :, :]
    id.close()
    # Get z and dz
    roms_dx, roms_dy, roms_dz, roms_z = cartesian_grid_3d(
        roms_lon, roms_lat, roms_h, roms_zice, theta_s, theta_b, hc, N)
    # Vertically average between given depths
    roms_temp_end = average_btw_depths(roms_temp_3d_end, roms_z, roms_dz,
                                       [-1 * shallow_bound, -1 * deep_bound])
    # Mask regions shallower than 1000 m
    roms_temp_ini = ma.masked_where(roms_h < deep_bound, roms_temp_ini)
    roms_temp_end = ma.masked_where(roms_h < deep_bound, roms_temp_end)
    # Mask ice shelf cavities
    roms_temp_ini = ma.masked_where(roms_zice < 0, roms_temp_ini)
    roms_temp_end = ma.masked_where(roms_zice < 0, roms_temp_end)
    # Get difference
    roms_temp_drift = roms_temp_end - roms_temp_ini
    # Convert to spherical coordinates
    roms_x = -(roms_lat + 90) * cos(roms_lon * deg2rad + pi / 2)
    roms_y = (roms_lat + 90) * sin(roms_lon * deg2rad + pi / 2)

    print 'Processing low-res FESOM'
    print '...Building mesh'
    elements_lr = fesom_grid(fesom_mesh_path_lr, circumpolar=True)
    # Read rotated lat and lon for each 2D node
    f = open(fesom_mesh_path_lr + 'nod2d.out', 'r')
    f.readline()
    rlon_lr = []
    rlat_lr = []
    for line in f:
        tmp = line.split()
        lon_tmp = float(tmp[1])
        if lon_tmp < -180:
            lon_tmp += 360
        elif lon_tmp > 180:
            lon_tmp -= 360
        rlon_lr.append(lon_tmp)
        rlat_lr.append(float(tmp[2]))
    f.close()
    rlon_lr = array(rlon_lr)
    rlat_lr = array(rlat_lr)
    # Unrotate grid
    fesom_lon_lr, fesom_lat_lr = unrotate_grid(rlon_lr, rlat_lr)
    # Get longitude in the range (-180, 180) to match ECCO
    index = fesom_lon_lr < 0
    fesom_lon_lr[index] = fesom_lon_lr[index] + 360
    print '...Interpolating ECCO2'
    fesom_temp_nodes_ini_lr = interp_function((fesom_lat_lr, fesom_lon_lr))
    # Read January 2016 temp
    id = Dataset(fesom_end_file_lr, 'r')
    fesom_temp_3d_nodes_end_lr = id.variables['temp'][0, :]
    id.close()
    print '...Looping over elements'
    fesom_temp_ini_lr = []
    fesom_temp_end_lr = []
    patches_lr = []
    for elm in elements_lr:
        # Make sure we're not in an ice shelf cavity, or shallower than deep_bound
        if not elm.cavity:
            if all(
                    array([
                        elm.nodes[0].find_bottom().depth, elm.nodes[1].
                        find_bottom().depth, elm.nodes[2].find_bottom().depth
                    ]) > deep_bound):
                # Add a new patch
                coord = transpose(vstack((elm.x, elm.y)))
                patches_lr.append(Polygon(coord, True, linewidth=0.))
                # Average initial temp over element
                fesom_temp_ini_lr.append(
                    mean([
                        fesom_temp_nodes_ini_lr[elm.nodes[0].id],
                        fesom_temp_nodes_ini_lr[elm.nodes[1].id],
                        fesom_temp_nodes_ini_lr[elm.nodes[2].id]
                    ]))
                # Vertically integrate final temp for this element
                fesom_temp_end_lr.append(
                    fesom_element_average_btw_depths(
                        elm, shallow_bound, deep_bound,
                        fesom_temp_3d_nodes_end_lr))
    fesom_temp_ini_lr = array(fesom_temp_ini_lr)
    fesom_temp_end_lr = array(fesom_temp_end_lr)
    # Get difference
    fesom_temp_drift_lr = fesom_temp_end_lr - fesom_temp_ini_lr

    print 'Processing high-res FESOM'
    print '...Building mesh'
    elements_hr = fesom_grid(fesom_mesh_path_hr, circumpolar=True)
    f = open(fesom_mesh_path_hr + 'nod2d.out', 'r')
    f.readline()
    rlon_hr = []
    rlat_hr = []
    for line in f:
        tmp = line.split()
        lon_tmp = float(tmp[1])
        if lon_tmp < -180:
            lon_tmp += 360
        elif lon_tmp > 180:
            lon_tmp -= 360
        rlon_hr.append(lon_tmp)
        rlat_hr.append(float(tmp[2]))
    f.close()
    rlon_hr = array(rlon_hr)
    rlat_hr = array(rlat_hr)
    fesom_lon_hr, fesom_lat_hr = unrotate_grid(rlon_hr, rlat_hr)
    index = fesom_lon_hr < 0
    fesom_lon_hr[index] = fesom_lon_hr[index] + 360
    print '...Interpolating ECCO2'
    fesom_temp_nodes_ini_hr = interp_function((fesom_lat_hr, fesom_lon_hr))
    id = Dataset(fesom_end_file_hr, 'r')
    fesom_temp_3d_nodes_end_hr = id.variables['temp'][0, :]
    id.close()
    print '...Looping over elements'
    fesom_temp_ini_hr = []
    fesom_temp_end_hr = []
    patches_hr = []
    for elm in elements_hr:
        if not elm.cavity:
            if all(
                    array([
                        elm.nodes[0].find_bottom().depth, elm.nodes[1].
                        find_bottom().depth, elm.nodes[2].find_bottom().depth
                    ]) > deep_bound):
                coord = transpose(vstack((elm.x, elm.y)))
                patches_hr.append(Polygon(coord, True, linewidth=0.))
                fesom_temp_ini_hr.append(
                    mean([
                        fesom_temp_nodes_ini_hr[elm.nodes[0].id],
                        fesom_temp_nodes_ini_hr[elm.nodes[1].id],
                        fesom_temp_nodes_ini_hr[elm.nodes[2].id]
                    ]))
                fesom_temp_end_hr.append(
                    fesom_element_average_btw_depths(
                        elm, shallow_bound, deep_bound,
                        fesom_temp_3d_nodes_end_hr))
    fesom_temp_ini_hr = array(fesom_temp_ini_hr)
    fesom_temp_end_hr = array(fesom_temp_end_hr)
    fesom_temp_drift_hr = fesom_temp_end_hr - fesom_temp_ini_hr

    print 'Plotting'
    fig = figure(figsize=(19, 8))
    fig.patch.set_facecolor('white')
    gs = GridSpec(1, 3)
    gs.update(left=0.05, right=0.95, bottom=0.1, top=0.85, wspace=0.05)
    # ROMS
    ax = subplot(gs[0, 0], aspect='equal')
    ax.pcolor(roms_x,
              roms_y,
              roms_temp_drift,
              vmin=-colour_bound,
              vmax=colour_bound,
              cmap='RdBu_r')
    xlim([-nbdry, nbdry])
    ylim([-nbdry, nbdry])
    title('a) MetROMS', fontsize=28)
    ax.set_xticks([])
    ax.set_yticks([])
    # FESOM (low-res)
    ax = subplot(gs[0, 1], aspect='equal')
    img = PatchCollection(patches_lr, cmap='RdBu_r')
    img.set_array(fesom_temp_drift_lr)
    img.set_clim(vmin=-colour_bound, vmax=colour_bound)
    img.set_edgecolor('face')
    ax.add_collection(img)
    xlim([-nbdry, nbdry])
    ylim([-nbdry, nbdry])
    title('b) FESOM (low-res)', fontsize=28)
    ax.set_xticks([])
    ax.set_yticks([])
    # FESOM (high-res)
    ax = subplot(gs[0, 2], aspect='equal')
    img = PatchCollection(patches_hr, cmap='RdBu_r')
    img.set_array(fesom_temp_drift_hr)
    img.set_clim(vmin=-colour_bound, vmax=colour_bound)
    img.set_edgecolor('face')
    ax.add_collection(img)
    xlim([-nbdry, nbdry])
    ylim([-nbdry, nbdry])
    title('c) FESOM (high-res)', fontsize=28)
    ax.set_xticks([])
    ax.set_yticks([])
    # Add a horizontal colourbar on the bottom
    cbaxes = fig.add_axes([0.3, 0.05, 0.4, 0.04])
    cbar = colorbar(img,
                    orientation='horizontal',
                    cax=cbaxes,
                    ticks=arange(-colour_bound, colour_bound + 1, 1),
                    extend='both')
    cbar.ax.tick_params(labelsize=20)
    # Main title
    suptitle(r'Change in temperature from initial conditions ($^{\circ}$C), ' +
             str(shallow_bound) + '-' + str(deep_bound) + ' m average',
             fontsize=34)
    fig.show()
    fig.savefig('circumpolar_temp_drift.png')
Esempio n. 16
0
def zonal_slice_plot (mesh_path, file_path, var_name, tstep, lon0, depth_min, save=False, fig_name=None, set_limits=False, limits=None):

    # Set northern boundary and upper (surface) boundary
    lat_max = -50
    depth_max = 0
    # Font sizes for figure
    font_sizes = [30, 24, 20]

    # Read variable name and units for title
    id = Dataset(file_path, 'r')
    varid = id.variables[var_name]
    name = varid.getncattr('description')
    units = varid.getncattr('units')
    if lon0 < 0:
        lon_string = 'at ' + str(-lon0) + 'W'
    else:
        lon_string = 'at ' + str(lon0) + 'E'

    # Read data
    data = id.variables[var_name][tstep-1,:]
    # Check for vector variables that need to be unrotated
    if var_name in ['u', 'v']:
        # Read the rotated lat and lon
        fid = open(mesh_path + 'nod3d.out', 'r')
        fid.readline()
        lon = []
        lat = []
        for line in fid:
            tmp = line.split()
            lon_tmp = float(tmp[1])
            lat_tmp = float(tmp[2])
            if lon_tmp < -180:
                lon_tmp += 360
            elif lon_tmp > 180:
                lon_tmp -= 360
            lon.append(lon_tmp)
            lat.append(lat_tmp)
        fid.close()
        lon = array(lon)
        lat = array(lat)
        if var_name == 'u':
            u_data = data[:]
            v_data = id.variables['v'][tstep-1,:]
            u_data_lonlat, v_data_lonlat = unrotate_vector(lon, lat, u_data, v_data)
            data = u_data_lonlat[:]
        elif var_name == 'v':
            v_data = data[:]
            u_data = id.variables['u'][tstep-1,:]
            u_data_lonlat, v_data_lonlat = unrotate_vector(lon, lat, u_data, v_data)
            data = v_data_lonlat[:]
    id.close()    

    # Build the regular FESOM grid
    elm2D = fesom_grid(mesh_path)

    # Build the array of SideElements making up the zonal slice
    selements = fesom_sidegrid(elm2D, data, lon0, lat_max)

    # Build an array of quadrilateral patches for the plot, and of data values
    # corresponding to each SideElement
    # Also find the minimum latitude of any SideElement
    patches = []
    values = []
    lat_min = lat_max
    for selm in selements:
        # Make patch
        coord = transpose(vstack((selm.y,selm.z)))
        patches.append(Polygon(coord, True, linewidth=0.))
        # Save data value
        values.append(selm.var)
        # Update minimum latitude if needed
        lat_min = min(lat_min, amin(selm.y))
    # Set southern boundary to be just south of the minimum latitude
    lat_min = lat_min-1

    # Choose colour bounds
    if set_limits:
        # User-specified bounds
        var_min = limits[0]
        var_max = limits[1]
        if var_min == -var_max:
            # Bounds are centered on zero, so choose a blue-to-red colourmap
            # centered on yellow
            colour_map = 'RdYlBu_r'
        else:
            colour_map = 'jet'
    else:
        # Determine bounds automatically
        if var_name in ['u', 'v', 'w']:
            # Center levels on 0 for certain variables, with a blue-to-red
            # colourmap
            max_val = amax(abs(array(values)))
            var_min = -max_val
            var_max = max_val
            colour_map = 'RdYlBu_r'
        else:
            var_min = amin(array(values))
            var_max = amax(array(values))
            colour_map = 'jet'

    # Set up plot
    fig = figure(figsize=(16,8))
    ax = fig.add_subplot(1,1,1)
    # Set colourmap for patches, and refer it to the values array
    img = PatchCollection(patches, cmap=colour_map)
    img.set_array(array(values))
    img.set_edgecolor('face')
    # Add patches to plot
    ax.add_collection(img)

    # Configure plot
    xlim(lat_min, lat_max)
    ylim(depth_min, depth_max)
    title(name + ' (' + units + ') ' + lon_string, fontsize=font_sizes[0])
    xlabel('Latitude', fontsize=font_sizes[1])
    ylabel('Depth (m)', fontsize=font_sizes[1])
    setp(ax.get_xticklabels(), fontsize=font_sizes[2])
    setp(ax.get_yticklabels(), fontsize=font_sizes[2])
    cbar = colorbar(img)
    cbar.ax.tick_params(labelsize=font_sizes[2])
    img.set_clim(vmin=var_min, vmax=var_max)

    if save:
        fig.savefig(fig_name)
    else:
        fig.show()
def timeseries_massloss (mesh_path, diag_file, log_file):

    # Titles and figure names for each ice shelf
    names = ['All Ice Shelves', 'Larsen D Ice Shelf', 'Larsen C Ice Shelf', 'Wilkins & George VI & Stange Ice Shelves', 'Ronne-Filchner Ice Shelf', 'Abbot Ice Shelf', 'Pine Island Glacier Ice Shelf', 'Thwaites Ice Shelf', 'Dotson Ice Shelf', 'Getz Ice Shelf', 'Nickerson Ice Shelf', 'Sulzberger Ice Shelf', 'Mertz Ice Shelf', 'Totten & Moscow University Ice Shelves', 'Shackleton Ice Shelf', 'West Ice Shelf', 'Amery Ice Shelf', 'Prince Harald Ice Shelf', 'Baudouin & Borchgrevink Ice Shelves', 'Lazarev Ice Shelf', 'Nivl Ice Shelf', 'Fimbul & Jelbart & Ekstrom Ice Shelves', 'Brunt & Riiser-Larsen Ice Shelves', 'Ross Ice Shelf']
    fig_names = ['total_massloss.png', 'larsen_d.png', 'larsen_c.png', 'wilkins_georgevi_stange.png', 'ronne_filchner.png', 'abbot.png', 'pig.png', 'thwaites.png', 'dotson.png', 'getz.png', 'nickerson.png', 'sulzberger.png', 'mertz.png', 'totten_moscowuni.png', 'shackleton.png', 'west.png', 'amery.png', 'princeharald.png', 'baudouin_borchgrevink.png', 'lazarev.png', 'nivl.png', 'fimbul_jelbart_ekstrom.png', 'brunt_riiserlarsen.png', 'ross.png']
    # Limits on longitude and latitude for each ice shelf
    # These depend on the source geometry, in this case RTopo 1.05
    # Note there is one extra index at the end of each array; this is because
    # the Ross region crosses the line 180W and therefore is split into two
    # We have -181 and 181 not -180 and 180 at this boundary so that
    # elements which cross the boundary are still counted
    lon_min = [-181, -62.67, -65.5, -79.17, -85, -104.17, -102.5, -108.33, -114.5, -135.67, -149.17, -155, 144, 115, 94.17, 80.83, 65, 33.83, 19, 12.9, 9.33, -10.05, -28.33, -181, 158.33]
    lon_max = [181, -59.33, -60, -66.67, -28.33, -88.83, -99.17, -103.33, -111.5, -114.33, -140, -145, 146.62, 123.33, 102.5, 89.17, 75, 37.67, 33.33, 16.17, 12.88, 7.6, -10.33, -146.67, 181]
    lat_min = [-90, -73.03, -69.35, -74.17, -83.5, -73.28, -75.5, -75.5, -75.33, -74.9, -76.42, -78, -67.83, -67.17, -66.67, -67.83, -73.67, -69.83, -71.67, -70.5, -70.75, -71.83, -76.33, -85, -84.5]
    lat_max = [-30, -69.37, -66.13, -69.5, -74.67, -71.67, -74.17, -74.67, -73.67, -73, -75.17, -76.41, -66.67, -66.5, -64.83, -66.17, -68.33, -68.67, -68.33, -69.33, -69.83, -69.33, -71.5, -77.77, -77]
    # Observed mass loss (Rignot 2013) and uncertainty for each ice shelf, in Gt/y
    obs_massloss = [1325, 1.4, 20.7, 135.4, 155.4, 51.8, 101.2, 97.5, 45.2, 144.9, 4.2, 18.2, 7.9, 90.6, 72.6, 27.2, 35.5, -2, 21.6, 6.3, 3.9, 26.8, 9.7, 47.7]
    obs_massloss_error = [235, 14, 67, 40, 45, 19, 8, 7, 4, 14, 2, 3, 3, 8, 15, 10, 23, 3, 18, 2, 2, 14, 16, 34]
    # Observed ice shelf melt rates and uncertainty
    obs_ismr = [0.85, 0.1, 0.4, 3.1, 0.3, 1.7, 16.2, 17.7, 7.8, 4.3, 0.6, 1.5, 1.4, 7.7, 2.8, 1.7, 0.6, -0.4, 0.4, 0.7, 0.5, 0.5, 0.1, 0.1]
    obs_ismr_error = [0.1, 0.6, 1, 0.8, 0.1, 0.6, 1, 1, 0.6, 0.4, 0.3, 0.3, 0.6, 0.7, 0.6, 0.7, 0.4, 0.6, 0.4, 0.2, 0.2, 0.2, 0.2, 0.1]
    # Density of ice in kg/m^3
    rho_ice = 916

    circumpolar = True   # Only consider elements south of 30S
    cross_180 = False    # Don't make second copies of elements that cross 180E
    days_per_output = 5  # Number of days for each output step

    tmp_massloss = []
    # Check if the log file exists
    if exists(log_file):
        print 'Reading previously calculated values'
        f = open(log_file, 'r')
        # Skip the first line (header)
        f.readline()
        for line in f:
            try:
                tmp_massloss.append(float(line))
            except(ValueError):
                # Reached the header for the next variable
                break
        start_t = len(tmp_massloss)
        # Set up array for mass loss values at each ice shelf
        old_massloss = empty([len(names), start_t])
        # Fill in the first timeseries (entire continent)
        old_massloss[0,:] = tmp_massloss[:]
        index = 1
        # Loop over the individual ice shelves
        while index < len(names):
            t = 0
            for line in f:
                try:
                    old_massloss[index, t] = float(line)
                    t += 1
                except(ValueError):
                    # Reached the header for the next ice shelf
                    break
            index +=1
    else:
        start_t = 0

    print 'Building grid'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)

    print 'Reading data'
    id = Dataset(diag_file, 'r')
    num_time = id.variables['time'].shape[0]
    # Set up array of mass loss values
    massloss = empty([len(names), start_t+num_time])
    if exists(log_file):
        # Fill first start_t timesteps with existing values
        massloss[:,0:start_t] = old_massloss[:,:]
    # Read melt rate and convert from m/s to m/y
    ismr = id.variables['wnet'][:,:]*365.25*24*60*60
    id.close()

    print 'Setting up arrays'
    # Melt rate timeseries at each element
    ismr_elm = zeros([num_time, len(elements)])
    # Area of each element
    area_elm = zeros(len(elements))
    # Flag to indicate which ice shelves the element is part of
    location_flag = zeros([len(names), len(elements)])
    # Loop over each element to fill these in
    for i in range(len(elements)):
        elm = elements[i]
        # Make sure we're actually in an ice shelf cavity
        if elm.cavity:
            # Average ice shelf melt rate timeseries over 3 component nodes
            ismr_elm[:,i] = (ismr[:,elm.nodes[0].id] + ismr[:,elm.nodes[1].id] + ismr[:,elm.nodes[2].id])/3
            # Call area function
            area_elm[i] = elm.area()
            # Loop over ice shelves
            for index in range(len(names)):
                # Figure out whether or not this element is part of the given
                # ice shelf
                if all(elm.lon >= lon_min[index]) and all(elm.lon <= lon_max[index]) and all(elm.lat >= lat_min[index]) and all(elm.lat <= lat_max[index]):
                    location_flag[index,i] = 1
                if index == len(names)-1:
                    # Ross region is split into two
                    if all(elm.lon >= lon_min[index+1]) and all(elm.lon <= lon_max[index+1]) and all(elm.lat >= lat_min[index+1]) and all(elm.lat <= lat_max[index+1]):
                        location_flag[index,i] = 1

    # Calculate conversion factors from mass loss to area-averaged melt rate
    # for each ice shelf
    factors = empty(len(names))
    for index in range(len(names)):
        # Calculate area of the ice shelf
        tmp_area = sum(area_elm*location_flag[index,:])
        factors[index] = 1e12/(rho_ice*tmp_area)
        print 'Area of ' + names[index] + ': ' + str(tmp_area) + ' m^2'

    # Build timeseries
    for t in range(num_time):
        # Loop over ice shelves
        for index in range(len(names)):
            # Integrate ice shelf melt rate over area to get volume loss
            volumeloss = sum(ismr_elm[t,:]*area_elm*location_flag[index,:])
            # Convert to mass loss in Gt/y
            massloss[index,start_t+t] = 1e-12*rho_ice*volumeloss

    # Calculate time values
    time = arange(size(massloss,1))*days_per_output/365.

    print 'Plotting'
    for index in range(len(names)):
        # Calculate the bounds on observed mass loss and melt rate
        massloss_low = obs_massloss[index] - obs_massloss_error[index]
        massloss_high = obs_massloss[index] + obs_massloss_error[index]
        ismr_low = obs_ismr[index] - obs_ismr_error[index]
        ismr_high = obs_ismr[index] + obs_ismr_error[index]
        # Set up plot: mass loss and melt rate are directly proportional (with
        # a different constant of proportionality for each ice shelf depending
        # on its area) so plot one line with two y-axes
        fig, ax1 = subplots()
        ax1.plot(time, massloss[index,:], color='black')
        # In blue, add dashed lines for observed mass loss
        ax1.axhline(massloss_low, color='b', linestyle='dashed')
        ax1.axhline(massloss_high, color='b', linestyle='dashed')
        # Make sure y-limits won't cut off observed melt rate
        ymin = amin([ismr_low/factors[index], massloss_low, amin(massloss[index,:])])
        ymax = amax([ismr_high/factors[index], massloss_high, amax(massloss[index,:])])
        # Adjust y-limits to line up with ticks
        ticks = ax1.get_yticks()
        min_tick = ticks[0]
        max_tick = ticks[-1]
        dtick = ticks[1]-ticks[0]
        while min_tick >= ymin:
            min_tick -= dtick
        while max_tick <= ymax:
            max_tick += dtick
        ax1.set_ylim([min_tick, max_tick])
        # Title and ticks in blue for this side of the plot
        ax1.set_ylabel('Basal Mass Loss (Gt/y)', color='b')
        for t1 in ax1.get_yticklabels():
            t1.set_color('b')
        ax1.set_xlabel('Years')
        ax1.grid(True)
        # Twin axis for melt rates
        ax2 = ax1.twinx()
        # Make sure the scales line up
        limits = ax1.get_ylim()
        ax2.set_ylim([limits[0]*factors[index], limits[1]*factors[index]])
        # In red, add dashed lines for observed ice shelf melt rates
        ax2.axhline(ismr_low, color='r', linestyle='dashed')
        ax2.axhline(ismr_high, color='r', linestyle='dashed')
        # Title and ticks in red for this side of the plot
        ax2.set_ylabel('Area-Averaged Ice Shelf Melt Rate (m/y)', color='r')
        for t2 in ax2.get_yticklabels():
            t2.set_color('r')
        # Name of the ice shelf for the main title
        title(names[index])
        fig.savefig(fig_names[index])     

    print 'Saving results to log file'
    f = open(log_file, 'w')
    for index in range(len(names)):
        f.write(names[index] + ' Basal Mass Loss\n')
        for t in range(size(time)):
            f.write(str(massloss[index, t]) + '\n')
    f.close()       
Esempio n. 18
0
def timeseries_seaice (mesh_path, ice_file, log_file):

    circumpolar = True   # Only consider elements south of 30S
    cross_180 = False    # Don't make second copies of elements that cross 180E
    days_per_output = 5  # Number of days for each output step

    total_area = []
    total_volume = []
    # Check if the log file exists
    if exists(log_file):
        print 'Reading previously calculated values'
        f = open(log_file, 'r')
        # Skip the first line (header)
        f.readline()
        for line in f:
            try:
                total_area.append(float(line))
            except(ValueError):
                # Reached the header for the next variable
                break
        for line in f:
            total_volume.append(float(line))
        f.close()

    print 'Building grid'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)

    print 'Reading data'
    id = Dataset(ice_file, 'r')
    num_time = id.variables['time'].shape[0]
    aice = id.variables['area'][:,:]
    hice = id.variables['hice'][:,:]
    id.close()

    print 'Setting up arrays'
    # Sea ice concentration at each element
    aice_elm = zeros([num_time, len(elements)])
    # Sea ice height at each element
    hice_elm = zeros([num_time, len(elements)])
    # Area of each element
    area_elm = zeros(len(elements))
    # Loop over elements to fill these in
    for i in range(len(elements)):
        elm = elements[i]
        # Average aice and hi over 3 component nodes
        aice_elm[:,i] = (aice[:,elm.nodes[0].id] + aice[:,elm.nodes[1].id] + aice[:,elm.nodes[2].id])/3
        hice_elm[:,i] = (hice[:,elm.nodes[0].id] + hice[:,elm.nodes[1].id] + hice[:,elm.nodes[2].id])/3
        # Call area function
        area_elm[i] = elm.area()

    # Build timeseries
    for t in range(num_time):
        # Integrate area and convert to million km^2
        total_area.append(sum(aice_elm[t,:]*area_elm)*1e-12)
        # Integrate volume and convert to million km^3
        total_volume.append(sum(aice_elm[t,:]*hice_elm[t,:]*area_elm)*1e-12)

    # Calculate time values
    time = arange(len(total_area))*days_per_output/365.

    print 'Plotting total sea ice area'
    clf()
    plot(time, total_area)
    xlabel('Years')
    ylabel(r'Total Sea Ice Area (million km$^2$)')
    grid(True)
    savefig('seaice_area.png')

    print 'Plotting total sea ice volume'
    clf()
    plot(time, total_volume)
    xlabel('Years')
    ylabel(r'Total Sea Ice Volume (million km$^2$)')
    grid(True)
    savefig('seaice_volume.png')

    print 'Saving results to log file'
    f = open(log_file, 'w')
    f.write('Total Sea Ice Area (million km^2):\n')
    for elm in total_area:
        f.write(str(elm) + '\n')
    f.write('Total Sea Ice Volume (million km^3):\n')
    for elm in total_volume:
        f.write(str(elm) + '\n')
    f.close()
Esempio n. 19
0
def wind_stress_curl():

    # File paths
    mesh_path = '/short/y99/kaa561/FESOM/mesh/meshB/'
    directory_beg = '/short/y99/kaa561/FESOM/highres_spinup/'
    directories = [
        '/short/y99/kaa561/FESOM/rcp45_M/', '/short/y99/kaa561/FESOM/rcp45_A/',
        '/short/y99/kaa561/FESOM/rcp85_M/', '/short/y99/kaa561/FESOM/rcp85_A/'
    ]
    file_beg = 'annual_avg.forcing.diag.1996.2005.nc'
    file_end = 'annual_avg.forcing.diag.2091.2100.nc'
    # Titles for plotting
    expt_names = [
        'RCP 4.5 MMM', 'RCP 4.5 ACCESS', 'RCP 8.5 MMM', 'RCP 8.5 ACCESS'
    ]
    expt_filenames = ['rcp45_m', 'rcp45_a', 'rcp85_m', 'rcp85_a']
    num_expts = len(directories)
    colours = ['blue', 'cyan', 'green', 'magenta']
    # Bounds on regular grid
    lon_min = -180
    lon_max = 180
    lat_min = -75
    lat_max = -50
    # Number of points on regular grid
    num_lon = 1000
    num_lat = 200
    # Radius of the Earth in metres
    r = 6.371e6
    # Degrees to radians coversion factor
    deg2rad = pi / 180.0
    # Don't consider values above this threshold (small, negative)
    threshold = -5e-8

    print 'Building mesh'
    elements = fesom_grid(mesh_path, circumpolar=True, cross_180=True)
    # Read (rotated) lon and lat at each 2D node
    f = open(mesh_path + 'nod2d.out', 'r')
    n2d = int(f.readline())
    rlon = []
    rlat = []
    for line in f:
        tmp = line.split()
        lon_tmp = float(tmp[1])
        lat_tmp = float(tmp[2])
        if lon_tmp < -180:
            lon_tmp += 360
        elif lon_tmp > 180:
            lon_tmp -= 360
        rlon.append(lon_tmp)
        rlat.append(lat_tmp)
    f.close()
    rlon = array(rlon)
    rlat = array(rlat)

    print 'Reading data'
    print '...1996-2005'
    # Read rotated wind stress components
    id = Dataset(directory_beg + file_beg, 'r')
    stress_xr = id.variables['stress_x'][0, :]
    stress_yr = id.variables['stress_y'][0, :]
    id.close()
    # Unrotate
    stress_x_beg, stress_y_beg = unrotate_vector(rlon, rlat, stress_xr,
                                                 stress_yr)
    # Set up array for wind stress in each RCP experiment
    stress_x_end = zeros([num_expts, n2d])
    stress_y_end = zeros([num_expts, n2d])
    for expt in range(num_expts):
        print '...' + expt_names[expt]
        id = Dataset(directories[expt] + file_end, 'r')
        stress_xr = id.variables['stress_x'][0, :]
        stress_yr = id.variables['stress_y'][0, :]
        id.close()
        stress_x_tmp, stress_y_tmp = unrotate_vector(rlon, rlat, stress_xr,
                                                     stress_yr)
        stress_x_end[expt, :] = stress_x_tmp
        stress_y_end[expt, :] = stress_y_tmp

    print 'Interpolating to regular grid'
    # Set up regular grid
    # Start with boundaries
    lon_reg_edges = linspace(lon_min, lon_max, num_lon + 1)
    lat_reg_edges = linspace(lat_min, lat_max, num_lat + 1)
    # Now get centres
    lon_reg = 0.5 * (lon_reg_edges[:-1] + lon_reg_edges[1:])
    lat_reg = 0.5 * (lat_reg_edges[:-1] + lat_reg_edges[1:])
    # Also get differentials in lon-lat space
    dlon = lon_reg_edges[1:] - lon_reg_edges[:-1]
    dlat = lat_reg_edges[1:] - lat_reg_edges[:-1]
    # Make 2D versions
    lon_reg_2d, lat_reg_2d = meshgrid(lon_reg, lat_reg)
    dlon_2d, dlat_2d = meshgrid(dlon, dlat)
    # Calculate differentials in Cartesian space
    dx = r * cos(lat_reg_2d * deg2rad) * dlon_2d * deg2rad
    dy = r * dlat_2d * deg2rad
    # Set up arrays for result
    stress_x_reg_beg = zeros([num_lat, num_lon])
    stress_y_reg_beg = zeros([num_lat, num_lon])
    stress_x_reg_end = zeros([num_expts, num_lat, num_lon])
    stress_y_reg_end = zeros([num_expts, num_lat, num_lon])
    # For each element, check if a point on the regular lat-lon grid lies
    # within. If so, do barycentric interpolation to that point.
    for elm in elements:
        # Check if we are within domain of regular grid
        if amin(elm.lat) > lat_max:
            continue
        # Find largest regular longitude value west of Element
        tmp = nonzero(lon_reg > amin(elm.lon))[0]
        if len(tmp) == 0:
            # Element crosses the western boundary
            iW = 0
        else:
            iW = tmp[0] - 1
        # Find smallest regular longitude value east of Element
        tmp = nonzero(lon_reg > amax(elm.lon))[0]
        if len(tmp) == 0:
            # Element crosses the eastern boundary
            iE = num_lon
        else:
            iE = tmp[0]
        # Find largest regular latitude value south of Element
        tmp = nonzero(lat_reg > amin(elm.lat))[0]
        if len(tmp) == 0:
            # Element crosses the southern boundary
            jS = 0
        else:
            jS = tmp[0] - 1
        # Find smallest regular latitude value north of Element
        tmp = nonzero(lat_reg > amax(elm.lat))[0]
        if len(tmp) == 0:
            # Element crosses the northern boundary
            jN = num_lat
        else:
            jN = tmp[0]
        for i in range(iW + 1, iE):
            for j in range(jS + 1, jN):
                # There is a chance that the regular gridpoint at (i,j)
                # lies within this element
                lon0 = lon_reg[i]
                lat0 = lat_reg[j]
                if in_triangle(elm, lon0, lat0):
                    # Get area of entire triangle
                    area = triangle_area(elm.lon, elm.lat)
                    # Get area of each sub-triangle formed by
                    # (lon0, lat0)
                    area0 = triangle_area([lon0, elm.lon[1], elm.lon[2]],
                                          [lat0, elm.lat[1], elm.lat[2]])
                    area1 = triangle_area([lon0, elm.lon[0], elm.lon[2]],
                                          [lat0, elm.lat[0], elm.lat[2]])
                    area2 = triangle_area([lon0, elm.lon[0], elm.lon[1]],
                                          [lat0, elm.lat[0], elm.lat[1]])
                    # Find fractional area of each
                    cff = [area0 / area, area1 / area, area2 / area]
                    # 1996-2005
                    # Find value of stress_x and stress_y at each Node
                    vals_x = []
                    vals_y = []
                    for n in range(3):
                        vals_x.append(stress_x_beg[elm.nodes[n].id])
                        vals_y.append(stress_y_beg[elm.nodes[n].id])
                    # Barycentric interpolation to lon0, lat0
                    stress_x_reg_beg[j, i] = sum(array(cff) * array(vals_x))
                    stress_y_reg_beg[j, i] = sum(array(cff) * array(vals_y))
                    # RCPs
                    for expt in range(num_expts):
                        vals_x = []
                        vals_y = []
                        for n in range(3):
                            vals_x.append(stress_x_end[expt, elm.nodes[n].id])
                            vals_y.append(stress_y_end[expt, elm.nodes[n].id])
                        stress_x_reg_end[expt, j,
                                         i] = sum(array(cff) * array(vals_x))
                        stress_y_reg_end[expt, j,
                                         i] = sum(array(cff) * array(vals_y))

    print 'Calculating curl'
    # 1996-2005
    # First calculate the two derivatives
    dv_dx = zeros(shape(stress_x_reg_beg))
    du_dy = zeros(shape(stress_x_reg_beg))
    # Forward difference approximation
    dv_dx[:, :-1] = (stress_y_reg_beg[:, 1:] -
                     stress_y_reg_beg[:, :-1]) / dx[:, :-1]
    du_dy[:-1, :] = (stress_x_reg_beg[1:, :] -
                     stress_x_reg_beg[:-1, :]) / dy[:-1, :]
    # Backward difference for the last row
    dv_dx[:,
          -1] = (stress_y_reg_beg[:, -1] - stress_y_reg_beg[:, -2]) / dx[:, -1]
    du_dy[-1, :] = (stress_x_reg_beg[-1, :] -
                    stress_x_reg_beg[-2, :]) / dy[-1, :]
    curl_beg = dv_dx - du_dy
    # RCPs
    curl_end_tmp = zeros(shape(stress_x_reg_end))
    for expt in range(num_expts):
        dv_dx = zeros(shape(stress_x_reg_beg))
        du_dy = zeros(shape(stress_x_reg_beg))
        dv_dx[:, :-1] = (stress_y_reg_end[expt, :, 1:] -
                         stress_y_reg_end[expt, :, :-1]) / dx[:, :-1]
        du_dy[:-1, :] = (stress_x_reg_end[expt, 1:, :] -
                         stress_x_reg_end[expt, :-1, :]) / dy[:-1, :]
        dv_dx[:, -1] = (stress_y_reg_end[expt, :, -1] -
                        stress_y_reg_end[expt, :, -2]) / dx[:, -1]
        du_dy[-1, :] = (stress_x_reg_end[expt, -1, :] -
                        stress_x_reg_end[expt, -2, :]) / dy[-1, :]
        curl_end_tmp[expt, :, :] = dv_dx - du_dy

    print 'Plotting zonal averages'
    # Calculate zonal averages
    curl_beg_avg = mean(curl_beg, axis=1)
    curl_end_avg = mean(curl_end_tmp, axis=2)
    # Plot zonal averages
    fig, ax = subplots(figsize=(10, 6))
    ax.plot(curl_beg_avg,
            lat_reg,
            label='1996-2005',
            color='black',
            linewidth=2)
    for expt in range(num_expts):
        ax.plot(curl_end_avg[expt, :],
                lat_reg,
                label=expt_names[expt],
                color=colours[expt],
                linewidth=2)
    title('Curl of wind stress (2091-2100)', fontsize=18)
    xlabel(r'N/m$^3$', fontsize=14)
    ylabel('latitude', fontsize=14)
    ylim([lat_min, lat_max])
    grid(True)
    # Move plot over to make room for legend
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    # Make legend
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
    fig.show()
    fig.savefig('windstress_curl_rcp.png')
    # Plot anomalies in zonal averages
    fig, ax = subplots(figsize=(10, 6))
    for expt in range(num_expts):
        ax.plot(curl_end_avg[expt, :] - curl_beg_avg,
                lat_reg,
                label=expt_names[expt],
                color=colours[expt],
                linewidth=2)
    title('Anomalies in curl of wind stress (2091-2100 minus 1996-2005)',
          fontsize=18)
    xlabel(r'N/m$^3$', fontsize=14)
    ylabel('latitude', fontsize=14)
    ylim([lat_min, lat_max])
    grid(True)
    # Move plot over to make room for legend
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    # Make legend
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
    fig.show()
    fig.savefig('windstress_curl_diff_rcp.png')
    # Plot percent change in zonal averages
    fig, ax = subplots(figsize=(10, 6))
    for expt in range(num_expts):
        ax.plot((curl_end_avg[expt, :] - curl_beg_avg) / curl_beg_avg * 100,
                lat_reg,
                label=expt_names[expt],
                color=colours[expt],
                linewidth=2)
    title('Percent change in curl of wind stress (2091-2100 minus 1996-2005)',
          fontsize=18)
    xlabel('%', fontsize=14)
    ylabel('latitude', fontsize=14)
    xlim([-20, 20])
    ylim([-65.5, -58])
    grid(True)
    # Move plot over to make room for legend
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    # Make legend
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
    fig.show()
    fig.savefig('windstress_curl_percent_rcp.png')

    print 'Plotting 2D fields'
    # First mask out regions above threshold at beginning
    curl_beg = ma.masked_where(curl_beg > threshold, curl_beg)
    curl_end = ma.empty(shape(curl_end_tmp))
    for expt in range(num_expts):
        curl_end[expt, :, :] = ma.masked_where(curl_beg > threshold,
                                               curl_end_tmp[expt, :, :])
    # Calculate percent change for each RCP
    percent_change = ma.empty(shape(curl_end))
    for expt in range(num_expts):
        percent_change[expt, :, :] = (curl_end[expt, :, :] -
                                      curl_beg) / curl_beg * 100
    # 1996-2005
    fig, ax = subplots(figsize=(10, 6))
    bound = 1e-6
    lev = linspace(-bound, bound, num=50)
    img = ax.contourf(lon_reg, lat_reg, curl_beg, lev, cmap='RdBu_r')
    xlabel('Longitude')
    ylabel('Latitude')
    xlim([lon_min, lon_max])
    ylim([lat_min, lat_max])
    title('Wind stress curl, 1996-2005 (N/m^3)', fontsize=18)
    colorbar(img)
    fig.show()
    fig.savefig('windstress_curl_2D_beg.png')
    for expt in range(num_expts):
        bound = 50
        lev = linspace(-bound, bound, num=50)
        fig, ax = subplots(figsize=(10, 6))
        img = ax.contourf(lon_reg,
                          lat_reg,
                          percent_change[expt, :, :],
                          lev,
                          cmap='RdBu_r')
        xlabel('Longitude')
        ylabel('Latitude')
        xlim([lon_min, lon_max])
        ylim([lat_min, lat_max])
        title(
            'Percent change in wind stress curl, 2091-2100 versus 1996-2005 ('
            + expt_names[expt] + ')',
            fontsize=18)
        colorbar(img)
        fig.show()
        fig.savefig('windstress_curl_2D_percent_' + expt_filenames[expt] +
                    '.png')
Esempio n. 20
0
def hssw_aabw_distribution ():

    # File paths
    mesh_path = '/short/y99/kaa561/FESOM/mesh/meshB/'
    directory_beg = '/short/y99/kaa561/FESOM/highres_spinup/'
    directories = ['/short/y99/kaa561/FESOM/rcp45_M/', '/short/y99/kaa561/FESOM/rcp45_A/', '/short/y99/kaa561/FESOM/rcp85_M/', '/short/y99/kaa561/FESOM/rcp85_A/', '/short/y99/kaa561/FESOM/highres_spinup/']
    file_beg = 'annual_avg.oce.mean.1996.2005.nc'
    file_end = 'annual_avg.oce.mean.2091.2100.nc'
    # Titles for plotting
    expt_names = ['RCP 4.5 MMM', 'RCP 4.5 ACCESS', 'RCP 8.5 MMM', 'RCP 8.5 ACCESS', 'CONTROL']
    num_expts = len(directories)
    # Mesh parameters
    circumpolar = False
    cross_180 = False
    # Northern boundary of water masses to consider
    nbdry = -65
    # Number of temperature and salinity bins
    num_bins = 1000
    # Bounds on temperature and salinity bins (pre-computed, change if needed)
    min_salt = 32.3
    max_salt = 35.1
    min_temp = -3.1
    max_temp = 3.8
    # Bounds to plot for HSSW and AABW
    hssw_salt_bounds = [34.3, 35]
    hssw_temp_bounds = [-2.25, -1.25]
    aabw_salt_bounds = [34.55, 34.8]
    aabw_temp_bounds = [-1, 2.5]
    # More readable labels
    hssw_salt_ticks = arange(34.3, 35+0.1, 0.1)
    hssw_salt_labels = ['', '', '34.5', '', '', '', '', '35']
    hssw_temp_ticks = arange(-2.25, -1.25+0.25, 0.25)
    hssw_temp_labels = ['', '-2', '', '-1.5', '']
    aabw_salt_ticks = arange(34.55, 34.8+0.05, 0.05)
    aabw_salt_labels = ['', '34.6', '', '34.7', '', '']
    aabw_temp_ticks = arange(-1, 2.5+0.5, 0.5)
    aabw_temp_labels = ['', '', '0', '', '1', '', '2', '']

    print 'Setting up bins'
    # Calculate boundaries of temperature bins
    temp_bins = linspace(min_temp, max_temp, num=num_bins)
    # Calculate centres of temperature bins (for plotting)
    temp_centres = 0.5*(temp_bins[:-1] + temp_bins[1:])
    # Repeat for salinity
    salt_bins = linspace(min_salt, max_salt, num=num_bins)
    salt_centres = 0.5*(salt_bins[:-1] + salt_bins[1:])
    # Set up a 3D array of experiment x temperature bins x salinity bins to
    # increment with volume of water masses
    ts_vals = zeros([num_expts+1, size(temp_centres), size(salt_centres)])
    # Calculate surface freezing point as a function of salinity as seen by
    # sea ice model
    freezing_pt = -0.0575*salt_centres + 1.7105e-3*sqrt(salt_centres**3) - 2.155e-4*salt_centres**2

    print 'Building mesh'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)

    print 'Reading data'
    # 1996-2005
    id = Dataset(directory_beg + file_beg)
    n3d = id.variables['temp'].shape[1]
    temp_nodes = empty([num_expts+1, n3d])
    salt_nodes = empty([num_expts+1, n3d])
    temp_nodes[0,:] = id.variables['temp'][0,:]
    salt_nodes[0,:] = id.variables['salt'][0,:]
    id.close()
    # Loop over RCPs
    for expt in range(num_expts):
        id = Dataset(directories[expt] + file_end)
        temp_nodes[expt+1,:] = id.variables['temp'][0,:]
        salt_nodes[expt+1,:] = id.variables['salt'][0,:]
        id.close()

    print 'Binning elements'
    for elm in elements:
        # See if we're in the region of interest
        if all(elm.lat < nbdry):
            # Get area of 2D triangle
            area = elm.area()
            nodes = [elm.nodes[0], elm.nodes[1], elm.nodes[2]]
            # Loop downward
            while True:
                if nodes[0].below is None or nodes[1].below is None or nodes[2].below is None:
                    # We've reached the bottom
                    break
                # Calculate average temperature and salinity for each
                # experiment, as well as layer thickness, over this 3D
                # triangular prism.
                temp_vals = empty([num_expts+1, 6])
                salt_vals = empty([num_expts+1, 6])
                dz = empty(3)
                for i in range(3):
                    # Loop over experiments
                    for expt in range(num_expts+1):
                        # Average temperature over 6 nodes
                        temp_vals[expt,i] = temp_nodes[expt,nodes[i].id]
                        temp_vals[expt,i+3] = temp_nodes[expt,nodes[i].below.id]
                        salt_vals[expt,i] = salt_nodes[expt,nodes[i].id]
                        salt_vals[expt,i+3] = salt_nodes[expt,nodes[i].below.id]
                    # Average dz over 3 vertical edges
                    dz[i] = abs(nodes[i].depth - nodes[i].below.depth)
                    # Get ready for next repetition of loop
                    nodes[i] = nodes[i].below
                temp_elm = mean(temp_vals, axis=1)
                salt_elm = mean(salt_vals, axis=1)
                # Calculate volume of 3D triangular prism
                volume = area*mean(dz)
                # Loop over experiments again
                for expt in range(num_expts+1):
                    # Figure out which bins this falls into
                    temp_index = nonzero(temp_bins > temp_elm[expt])[0][0] - 1
                    salt_index = nonzero(salt_bins > salt_elm[expt])[0][0] - 1
                    # Increment bins with volume
                    ts_vals[expt, temp_index, salt_index] += volume
    # Mask bins with zero volume
    ts_vals = ma.masked_where(ts_vals==0, ts_vals)

    # Find the volume bounds for plotting
    min_val = log(amin(ts_vals))
    max_val = log(amax(ts_vals))

    print 'Plotting'
    fig = figure(figsize=(20,11))
    # HSSW
    gs_a = GridSpec(1,num_expts+1)
    gs_a.update(left=0.05, right=0.98, bottom=0.66, top=0.86, wspace=0.16)
    for expt in range(num_expts+1):
        ax = subplot(gs_a[0,expt])
        # Log scale is more visible
        img = pcolor(salt_centres, temp_centres, log(ts_vals[expt,:,:]), vmin=min_val, vmax=max_val, cmap='jet')
        plot(salt_centres, freezing_pt, color='black', linestyle='dashed', linewidth=2)
        grid(True)
        xlim(hssw_salt_bounds)
        ylim(hssw_temp_bounds)
        ax.set_xticks(hssw_salt_ticks)
        ax.set_xticklabels(hssw_salt_labels)
        ax.set_yticks(hssw_temp_ticks)
        ax.set_yticklabels(hssw_temp_labels)
        ax.tick_params(axis='x', labelsize=18)
        ax.tick_params(axis='y', labelsize=18)
        # Labels and titles
        if expt == 0:
            xlabel('Salinity (psu)', fontsize=20)
            ylabel(r'Temperature ($^{\circ}$C)', fontsize=20)
            title('1996-2005', fontsize=22)
        elif expt == 1:
            title('(2091-2100)\n' + expt_names[expt-1], fontsize=22)
        else:
            title(expt_names[expt-1], fontsize=22)
        # HSSW title
        if expt == 2:
            text(34.83, hssw_temp_bounds[1]+0.2, 'a) HSSW', ha='left', fontsize=30)
    # AABW
    gs_b = GridSpec(1,num_expts+1)
    gs_b.update(left=0.05, right=0.98, bottom=0.12, top=0.54, wspace=0.16)
    for expt in range(num_expts+1):
        ax = subplot(gs_b[0,expt])
        img = pcolor(salt_centres, temp_centres, log(ts_vals[expt,:,:]), vmin=min_val, vmax=max_val, cmap='jet')
        grid(True)
        xlim(aabw_salt_bounds)
        ylim(aabw_temp_bounds)
        ax.set_xticks(aabw_salt_ticks)
        ax.set_xticklabels(aabw_salt_labels)
        ax.set_yticks(aabw_temp_ticks)
        ax.set_yticklabels(aabw_temp_labels)
        ax.tick_params(axis='x', labelsize=18)
        ax.tick_params(axis='y', labelsize=18)
        if expt == 0:
            xlabel('Salinity (psu)', fontsize=20)
            ylabel(r'Temperature ($^{\circ}$C)', fontsize=20)
            title('1996-2005', fontsize=22)
        elif expt == 1:
            title('(2091-2100)\n' + expt_names[expt-1], fontsize=22)
        else:
            title(expt_names[expt-1], fontsize=22)
        # AABW title
        if expt == 2:
            text(34.71, aabw_temp_bounds[1]+0.4, 'b) AABW', ha='left', fontsize=30)
        # Horizontal colourbar at the bottom
        if expt == num_expts:
            cbaxes = fig.add_axes([0.35, 0.06, 0.3, 0.02])
            cbar = colorbar(img, cax=cbaxes, orientation='horizontal', ticks=arange(18, 30+2, 2))
            cbar.ax.tick_params(labelsize=18)
            text(0.5, 0.01, 'log of volume', fontsize=20, transform=fig.transFigure, ha='center')
    # Main title
    suptitle(r'Water masses south of 65$^{\circ}$S', fontsize=30)
    fig.show()
    fig.savefig('hssw_aabw_distribution.png')
def interpolate_nick_climatology(melt_file, temp_file, out_file):

    nick_grid = '/short/y99/kaa561/nick_interpolation/lonlatPISM.nc'
    mesh_path = '/short/y99/kaa561/FESOM/mesh/meshB/'

    # Read Nick's lat and lon points
    id = Dataset(nick_grid, 'r')
    nick_lat = id.variables['lat'][:, :]
    nick_lon = id.variables['lon'][:, :]
    id.close()

    # Set up arrays for interpolated melt rate and surface temp
    melt_reg = ma.empty(shape(nick_lat))
    temp_reg = ma.empty(shape(nick_lat))
    # Fill with NaNs
    melt_reg[:, :] = NaN
    temp_reg[:, :] = NaN

    # Build FESOM mesh
    elements = fesom_grid(mesh_path, circumpolar=True, cross_180=True)
    # Read melt rate and temperature on FESOM mesh
    id = Dataset(melt_file, 'r')
    melt_nodes = mean(id.variables['wnet'][:, :], axis=0)
    id.close()
    id = Dataset(temp_file, 'r')
    temp_nodes = mean(id.variables['temp'][:, :], axis=0)
    id.close()

    # Loop over all cavity elements
    for elm in elements:
        if elm.cavity:
            # Find all grid points which may fall within this triangle
            tmp = where(
                (nick_lat >= amin(elm.lat)) * (nick_lat <= amax(elm.lat)) *
                (nick_lon >= amin(elm.lon)) * (nick_lon <= amax(elm.lon)))
            j_vals = tmp[0]
            i_vals = tmp[1]
            # Loop over each such grid point
            for point in range(len(j_vals)):
                j = j_vals[point]
                i = i_vals[point]
                lon0 = nick_lon[j, i]
                lat0 = nick_lat[j, i]
                if in_triangle(elm, lon0, lat0):
                    # This point does fall in the triangle
                    # Get area of entire triangle
                    area = triangle_area(elm.lon, elm.lat)
                    # Get area of each sub-triangle formed by (lon0, lat0)
                    area0 = triangle_area([lon0, elm.lon[1], elm.lon[2]],
                                          [lat0, elm.lat[1], elm.lat[2]])
                    area1 = triangle_area([lon0, elm.lon[0], elm.lon[2]],
                                          [lat0, elm.lat[0], elm.lat[2]])
                    area2 = triangle_area([lon0, elm.lon[0], elm.lon[1]],
                                          [lat0, elm.lat[0], elm.lat[1]])
                    # Find fractional area of each
                    cff = [area0 / area, area1 / area, area2 / area]
                    # Find melt rate and temperature at each node
                    melt_vals = []
                    temp_vals = []
                    for n in range(3):
                        melt_vals.append(melt_nodes[elm.nodes[n].id])
                        # This is implicitly surface temp
                        temp_vals.append(temp_nodes[elm.nodes[n].id])
                    # Barycentric interpolation to lon0, lat0
                    melt_reg[j, i] = sum(array(cff) * array(melt_vals))
                    temp_reg[j, i] = sum(array(cff) * array(temp_vals))

    # Mask NaNs
    melt_reg = ma.masked_where(isnan(melt_reg), melt_reg)
    temp_reg = ma.masked_where(isnan(temp_reg), temp_reg)

    # Conversions
    # m/s to mm/s
    melt_reg *= 1e3
    # C to K
    temp_reg += 273.15

    # Output to NetCDF file
    id = Dataset(out_file, 'w')
    id.createDimension('y', size(nick_lat, 0))
    id.createDimension('x', size(nick_lat, 1))
    id.createDimension('time', None)
    id.createVariable('longitude', 'f8', ('y', 'x'))
    id.variables['longitude'][:, :] = nick_lon
    id.createVariable('latitude', 'f8', ('y', 'x'))
    id.variables['latitude'][:, :] = nick_lat
    id.createVariable('melt', 'f8', ('y', 'x'))
    id.variables['melt'].units = 'mm/s'
    id.variables['melt'][:, :] = melt_reg
    id.createVariable('temp', 'f8', ('y', 'x'))
    id.variables['temp'].units = 'K'
    id.variables['temp'][:, :] = temp_reg
    id.close()
Esempio n. 22
0
def timeseries_watermass_sectors(mesh_path,
                                 output_path,
                                 start_year,
                                 end_year,
                                 log_file,
                                 fig_dir=''):

    # Titles and figure names for each sector
    sector_names = [
        'Filchner-Ronne Ice Shelf Cavity', 'Eastern Weddell Region Cavities',
        'Amery Ice Shelf Cavity', 'Australian Sector Cavities',
        'Ross Sea Cavities', 'Amundsen Sea Cavities',
        'Bellingshausen Sea Cavities', 'Larsen Ice Shelf Cavities',
        'All Ice Shelf Cavities'
    ]
    fig_names = [
        'filchner_ronne_watermass.png', 'eweddell_watermass.png',
        'amery_watermass.png', 'australian_watermass.png',
        'ross_watermass.png', 'amundsen_watermass.png',
        'bellingshausen_watermass.png', 'larsen_watermass.png',
        'total_antarctica_watermass.png'
    ]
    num_sectors = len(sector_names)
    # Water masses to consider
    wm_names = ['ISW', 'HSSW', 'LSSW', 'AASW', 'MCDW', 'CDW']
    num_watermasses = len(wm_names)
    wm_colours = ['cyan', 'black', 'blue', 'green', 'magenta', 'red']
    # Only consider elements south of 30S
    circumpolar = True
    # Don't make second copies of elements that cross 180E
    cross_180 = False
    # Naming conventions for FESOM output files
    file_head = output_path + 'MK44005.'
    file_tail = '.oce.mean.nc'
    num_years = end_year - start_year + 1

    prev_years = 0
    # Check if the log file exists
    if exists(log_file):
        print 'Reading previously calculated values'
        # First just figure out how many years are in the log file
        f = open(log_file, 'r')
        f.readline()
        for line in f:
            try:
                tmp = float(line)
                prev_years += 1
            except (ValueError):
                break
        f.close()
        # Now set up array of water mass proportions in each sector
        percent_watermass = empty(
            [num_watermasses, num_sectors, prev_years + num_years])
        # Fill the first prev_years
        f = open(log_file, 'r')
        f.readline()
        wm_key = 0
        while wm_key < num_watermasses:
            sector = 0
            while sector < num_sectors:
                year = 0
                for line in f:
                    try:
                        percent_watermass[wm_key, sector, year] = float(line)
                        year += 1
                    except (ValueError):
                        break
                sector += 1
            wm_key += 1
        f.close()
    else:
        # Set up empty array for water mass proportions
        percent_watermass = empty([num_watermasses, num_sectors, num_years])

    print 'Building grid'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)

    print 'Categorising elements into sectors'
    location_flag = zeros([num_sectors, len(elements)])
    for i in range(len(elements)):
        elm = elements[i]
        # Make sure we're actually in an ice shelf cavity
        if elm.cavity:
            # Figure out which sector this ice shelf element falls into
            lon = mean(elm.lon)
            lat = mean(elm.lat)
            if lon >= -85 and lon < -30 and lat < -74:
                # Filchner-Ronne
                location_flag[0, i] = 1
            elif lon >= -30 and lon < 65:
                # Eastern Weddell region
                location_flag[1, i] = 1
            elif lon >= 65 and lon < 76:
                # Amery
                location_flag[2, i] = 1
            elif lon >= 76 and lon < 165 and lat >= -74:
                # Australian sector
                location_flag[3, i] = 1
            elif (lon >= 155 and lon < 165
                  and lat < -74) or (lon >= 165) or (lon < -140):
                # Ross Sea
                location_flag[4, i] = 1
            elif (lon >= -140 and lon < -105) or (lon >= -105 and lon < -98
                                                  and lat < -73.1):
                # Amundsen Sea
                location_flag[5, i] = 1
            elif (lon >= -104 and lon < -98
                  and lat >= -73.1) or (lon >= -98 and lon < -66
                                        and lat >= -75):
                # Bellingshausen Sea
                location_flag[6, i] = 1
            elif lon >= -66 and lon < -59 and lat >= -74:
                # Larsen Ice Shelves
                location_flag[7, i] = 1
            else:
                print 'No region found for lon=', str(lon), ', lat=', str(lat)
                break  #return
            # All ice shelf elements are in Total Antarctica
            location_flag[8, i] = 1

    print 'Calculating water mass breakdown'
    # Loop over years
    for year in range(start_year, end_year + 1):
        print 'Processing year ' + str(year)
        # Initialise volume of each water mass in each sector
        vol_watermass = zeros([num_watermasses, num_sectors])
        # Read temperature and salinity for this year, annually average
        id = Dataset(file_head + str(year) + file_tail, 'r')
        temp = mean(id.variables['temp'][:, :], axis=0)
        salt = mean(id.variables['salt'][:, :], axis=0)
        id.close()
        # Loop over elements
        for i in range(len(elements)):
            elm = elements[i]
            # Check if we're in an ice shelf cavity
            if elm.cavity:
                # Get area of 2D element
                area = elm.area()
                nodes = [elm.nodes[0], elm.nodes[1], elm.nodes[2]]
                # Loop downward
                while True:
                    if nodes[0].below is None or nodes[
                            1].below is None or nodes[2].below is None:
                        # Reached the bottom
                        break
                    # Calculate average temperature, salinity, and
                    # layer thickness for this 3D triangular prism
                    temp_vals = []
                    salt_vals = []
                    dz_vals = []
                    for n in range(3):
                        temp_vals.append(temp[nodes[n].id])
                        salt_vals.append(salt[nodes[n].id])
                        temp_vals.append(temp[nodes[n].below.id])
                        salt_vals.append(salt[nodes[n].below.id])
                        dz_vals.append(
                            abs(nodes[n].depth - nodes[n].below.depth))
                        # Get ready for next iteration of loop
                        nodes[n] = nodes[n].below
                    curr_temp = mean(array(temp_vals))
                    curr_salt = mean(array(salt_vals))
                    curr_volume = area * mean(array(dz_vals))
                    # Get surface freezing point at this salinity
                    curr_tfrz = -0.0575 * curr_salt + 1.7105e-3 * sqrt(
                        curr_salt**3) - 2.155e-4 * curr_salt**2
                    # Figure out what water mass this is
                    if curr_temp < curr_tfrz:
                        # ISW
                        wm_key = 0
                    elif curr_salt < 34:
                        # AASW
                        wm_key = 3
                    elif curr_temp > 0:
                        # CDW
                        wm_key = 5
                    elif curr_temp > -1.5:
                        # MCDW
                        wm_key = 4
                    elif curr_salt < 34.5:
                        # LSSW
                        wm_key = 2
                    else:
                        # HSSW
                        wm_key = 1
                    # Integrate its volume for sector(s) the element is in
                    curr_sectors = 0
                    for sector in range(num_sectors):
                        if location_flag[sector, i] == 1:
                            curr_sectors += 1
                            vol_watermass[wm_key, sector] += curr_volume
                    # Should be in exactly 2 sectors (1 + total Antarctica)
                    if curr_sectors != 2:
                        print 'Wrong number of sectors for element ' + str(i)
        if year == start_year:
            # Find the total volume of each sector by adding up the volume
            # of each water mass. Only need to do this once because shouldn't
            # change over time.
            vol_sectors = sum(vol_watermass, axis=0)
        # Calculate percentage of each water mass in each sector
        for wm_key in range(num_watermasses):
            for sector in range(num_sectors):
                percent_watermass[wm_key, sector, year - start_year +
                                  prev_years] = vol_watermass[
                                      wm_key,
                                      sector] / vol_sectors[sector] * 100

    # Make time axis
    time = range(start_year - prev_years, end_year + 1)

    print 'Plotting'
    # One plot for each sector
    for sector in range(num_sectors):
        fig = figure()
        ax = fig.add_subplot(1, 1, 1)
        # Loop over water masses
        for wm_key in range(num_watermasses):
            plot(time,
                 percent_watermass[wm_key, sector, :],
                 color=wm_colours[wm_key],
                 label=wm_names[wm_key],
                 linewidth=2)
        xlabel('year')
        ylabel('percent volume')
        xlim([start_year - prev_years, end_year])
        title(sector_names[sector])
        grid(True)
        # Move plot over to make room for legend
        box = ax.get_position()
        ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
        # Make legend
        ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
        fig.savefig(fig_dir + fig_names[sector])

    print 'Saving results to log file'
    f = open(log_file, 'w')
    for wm_key in range(num_watermasses):
        for sector in range(num_sectors):
            f.write(wm_names[wm_key] + 'in ' + sector_names[sector] + '(%)\n')
            for t in range(prev_years + num_years):
                f.write(str(percent_watermass[wm_key, sector, t]) + '\n')
    f.close()
Esempio n. 23
0
def ross_plots ():

    # File paths
    mesh_path = '/short/y99/kaa561/FESOM/mesh/meshB/'
    forcing_file_beg = '/short/y99/kaa561/FESOM/highres_spinup/annual_avg.forcing.diag.1996.2005.nc'
    forcing_file_end = '/short/y99/kaa561/FESOM/rcp85_A/annual_avg.forcing.diag.2091.2100.nc'
    forcing_file_2094 = '/short/y99/kaa561/FESOM/rcp85_A/annual_avg.forcing.diag.2094.nc'
    oce_file_beg = '/short/y99/kaa561/FESOM/highres_spinup/annual_avg.oce.mean.1996.2005.nc'
    oce_file_end = '/short/y99/kaa561/FESOM/rcp85_A/annual_avg.oce.mean.2091.2100.nc'
    oce_file_2094 = '/short/y99/kaa561/FESOM/rcp85_A/annual_avg.oce.mean.2094.nc'
    oce2_file_beg = '/short/y99/kaa561/FESOM/highres_spinup/seasonal_climatology_oce_1996_2005.nc'
    oce2_file_end = '/short/y99/kaa561/FESOM/rcp85_A/seasonal_climatology_oce_2091_2100.nc'
    oce2_file_2094 = '/short/y99/kaa561/FESOM/rcp85_A/seasonal_climatology_oce_2094.nc'
    ice_file_beg = '/short/y99/kaa561/FESOM/highres_spinup/seasonal_climatology_ice_1996_2005.nc'
    ice_file_end = '/short/y99/kaa561/FESOM/rcp85_A/seasonal_climatology_ice_2091_2100.nc'
    ice_file_2094 = '/short/y99/kaa561/FESOM/rcp85_A/seasonal_climatology_ice_2094.nc'
    # Bounds on plot (in polar coordinate transformation)
    x_min = -5.5
    x_max = 4
    y_min = -13.8
    y_max = -4.75
    # Plotting parameters
    circumpolar = True
    # Season names for plot titles
    season_names = ['DJF', 'MAM', 'JJA', 'SON']
    # Degrees to radians conversion factor
    deg2rad = pi/180.0
    # Seconds per year
    sec_per_year = 365.25*24*3600    

    print 'Building mesh'
    elements = fesom_grid(mesh_path, circumpolar)
    # Build one set of plotting patches with all elements, one with
    # ice shelf cavities masked, and one with open ocean masked
    patches_all = []
    patches_ice = []
    patches_ocn = []
    for elm in elements:
        coord = transpose(vstack((elm.x, elm.y)))
        patches_all.append(Polygon(coord, True, linewidth=0.))
        if elm.cavity:
            patches_ice.append(Polygon(coord, True, linewidth=0.))
        else:
            patches_ocn.append(Polygon(coord, True, linewidth=0.))
    num_elm = len(patches_all)
    num_elm_ice = len(patches_ice)
    num_elm_ocn = len(patches_ocn)
    # Build ice shelf front contours
    contour_lines = []
    for elm in elements:
        # Select elements where exactly 2 of the 3 nodes are in a cavity
        if count_nonzero(elm.cavity_nodes) == 2:
            # Save the coastal flags and x- and y- coordinates of these 2
            coast_tmp = []
            x_tmp = []
            y_tmp = []
            for i in range(3):
                if elm.cavity_nodes[i]:
                    coast_tmp.append(elm.coast_nodes[i])
                    x_tmp.append(elm.x[i])
                    y_tmp.append(elm.y[i])
            # Select elements where at most 1 of these 2 nodes are coastal
            if count_nonzero(coast_tmp) < 2:
                # Draw a line between the 2 nodes
                contour_lines.append([(x_tmp[0], y_tmp[0]), (x_tmp[1], y_tmp[1])])
    # Set up a grey square to fill the background with land
    x_reg, y_reg = meshgrid(linspace(x_min, x_max, num=100), linspace(y_min, y_max, num=100))
    land_square = zeros(shape(x_reg))

    print 'Processing ice shelf melt rate'
    # Read annually averaged data, and convert from m/s to m/y
    id = Dataset(forcing_file_beg, 'r')
    wnet_nodes_beg = id.variables['wnet'][0,:]*sec_per_year
    id.close()
    id = Dataset(forcing_file_end, 'r')
    # Get difference from beginning
    wnet_nodes_end_diff = id.variables['wnet'][0,:]*sec_per_year - wnet_nodes_beg
    id.close()
    id = Dataset(forcing_file_2094, 'r')
    wnet_nodes_2094_diff = id.variables['wnet'][0,:]*sec_per_year - wnet_nodes_beg
    id.close()
    # Now average over each cavity element
    ismr_beg = []
    ismr_end_diff = []
    ismr_2094_diff = []
    for elm in elements:
        if elm.cavity:
            ismr_beg.append(mean([wnet_nodes_beg[elm.nodes[0].id], wnet_nodes_beg[elm.nodes[1].id], wnet_nodes_beg[elm.nodes[2].id]]))
            ismr_end_diff.append(mean([wnet_nodes_end_diff[elm.nodes[0].id], wnet_nodes_end_diff[elm.nodes[1].id], wnet_nodes_end_diff[elm.nodes[2].id]]))
            ismr_2094_diff.append(mean([wnet_nodes_2094_diff[elm.nodes[0].id], wnet_nodes_2094_diff[elm.nodes[1].id], wnet_nodes_2094_diff[elm.nodes[2].id]]))
    # Figure out bounds for colour scale
    # Min and max of beginning
    # Initialise with something impossible
    var_min = amax(array(ismr_beg))
    var_max = amin(array(ismr_beg))
    # Modify as needed
    i = 0
    for elm in elements:
        if elm.cavity:
            if any(elm.x >= x_min) and any(elm.x <= x_max) and any(elm.y >= y_min) and any(elm.y <= y_max):
                if ismr_beg[i] < var_min:
                    var_min = ismr_beg[i]
                if ismr_beg[i] > var_max:
                    var_max = ismr_beg[i]
            i += 1
    # Max absolute difference
    diff_max = 0
    i = 0
    for elm in elements:
        if elm.cavity:
            if any(elm.x >= x_min) and any(elm.x <= x_max) and any(elm.y >= y_min) and any(elm.y <= y_max):
                if abs(ismr_end_diff[i]) > diff_max:
                    diff_max = abs(ismr_end_diff[i])
                if abs(ismr_2094_diff[i]) > diff_max:
                    diff_max = abs(ismr_2094_diff[i])
            i += 1
    # Special colour map for absolute melt
    change_points = [0.5, 2, 3.5]
    if var_min < 0:
        # There is refreezing here; include blue for elements < 0
        cmap_vals = array([var_min, 0, change_points[0], change_points[1], change_points[2], var_max])
        cmap_colors = [(0.26, 0.45, 0.86), (1, 1, 1), (1, 0.9, 0.4), (0.99, 0.59, 0.18), (0.5, 0.0, 0.08), (0.96, 0.17, 0.89)]
        cmap_vals_norm = (cmap_vals - var_min)/(var_max - var_min)
        cmap_vals_norm[-1] = 1
        cmap_list = []
        for i in range(size(cmap_vals)):
            cmap_list.append((cmap_vals_norm[i], cmap_colors[i]))
        mf_cmap = LinearSegmentedColormap.from_list('melt_freeze', cmap_list)
    else:
        # No refreezing
        cmap_vals = array([0, change_points[0], change_points[1], change_points[2], var_max])
        cmap_colors = [(1, 1, 1), (1, 0.9, 0.4), (0.99, 0.59, 0.18), (0.5, 0.0, 0.08), (0.96, 0.17, 0.89)]
        cmap_vals_norm = cmap_vals/var_max
        cmap_vals_norm[-1] = 1
        cmap_list = []
        for i in range(size(cmap_vals)):
            cmap_list.append((cmap_vals_norm[i], cmap_colors[i]))
        mf_cmap = LinearSegmentedColormap.from_list('melt_freeze', cmap_list)
    # Plot
    fig = figure(figsize=(22,7))
    # 1996-2005
    ax = fig.add_subplot(1, 3, 1, aspect='equal')
    # Start with land background
    contourf(x_reg, y_reg, land_square, 1, colors=(('0.6', '0.6', '0.6')))
    # Add ice shelf elements
    img = PatchCollection(patches_ice, cmap=mf_cmap)
    img.set_array(array(ismr_beg))
    img.set_edgecolor('face')
    img.set_clim(vmin=var_min, vmax=var_max)
    ax.add_collection(img)
    # Mask out the open ocean in white
    overlay = PatchCollection(patches_ocn, facecolor=(1,1,1))
    overlay.set_edgecolor('face')
    ax.add_collection(overlay)
    xlim([x_min, x_max])
    ylim([y_min, y_max])
    ax.set_xticks([])
    ax.set_yticks([])
    title('1996-2005', fontsize=20)
    # Colourbar on the left
    cbaxes = fig.add_axes([0.05, 0.25, 0.02, 0.5])
    cbar = colorbar(img, cax=cbaxes)
    # 2091-2100
    ax = fig.add_subplot(1, 3, 2, aspect='equal')
    contourf(x_reg, y_reg, land_square, 1, colors=(('0.6', '0.6', '0.6')))
    img = PatchCollection(patches_ice, cmap='RdBu_r')
    img.set_array(array(ismr_end_diff))
    img.set_edgecolor('face')
    img.set_clim(vmin=-diff_max, vmax=diff_max)
    ax.add_collection(img)
    overlay = PatchCollection(patches_ocn, facecolor=(1,1,1))
    overlay.set_edgecolor('face')
    ax.add_collection(overlay)
    xlim([x_min, x_max])
    ylim([y_min, y_max])
    ax.set_xticks([])
    ax.set_yticks([])
    title('2091-2100 anomalies', fontsize=20)
    # 2094
    ax = fig.add_subplot(1, 3, 3, aspect='equal')
    contourf(x_reg, y_reg, land_square, 1, colors=(('0.6', '0.6', '0.6')))
    img = PatchCollection(patches_ice, cmap='RdBu_r')
    img.set_array(array(ismr_2094_diff))
    img.set_edgecolor('face')
    img.set_clim(vmin=-diff_max, vmax=diff_max)
    ax.add_collection(img)
    overlay = PatchCollection(patches_ocn, facecolor=(1,1,1))
    overlay.set_edgecolor('face')
    ax.add_collection(overlay)
    xlim([x_min, x_max])
    ylim([y_min, y_max])
    ax.set_xticks([])
    ax.set_yticks([])
    title('2094 anomalies', fontsize=20)
    # Colourbar on the right
    cbaxes = fig.add_axes([0.92, 0.25, 0.02, 0.5])
    cbar = colorbar(img, cax=cbaxes)
    suptitle('Ice shelf melt rate (m/y)', fontsize=24)
    subplots_adjust(wspace=0.02, hspace=0.025)
    fig.show()
    fig.savefig('ross_melt.png')

    print 'Processing bottom water temperature'
    # Read annually averaged data
    id = Dataset(oce_file_beg, 'r')
    temp_nodes_beg = id.variables['temp'][0,:]
    id.close()
    id = Dataset(oce_file_end, 'r')
    temp_nodes_end = id.variables['temp'][0,:]
    id.close()
    id = Dataset(oce_file_2094, 'r')
    temp_nodes_2094 = id.variables['temp'][0,:]
    id.close()
    # Now average bottom node temperatures over each element
    bwtemp_beg = []
    bwtemp_end = []
    bwtemp_2094 = []
    for elm in elements:
        bwtemp_beg.append(mean([temp_nodes_beg[elm.nodes[0].find_bottom().id], temp_nodes_beg[elm.nodes[1].find_bottom().id], temp_nodes_beg[elm.nodes[2].find_bottom().id]]))
        bwtemp_end.append(mean([temp_nodes_end[elm.nodes[0].find_bottom().id], temp_nodes_end[elm.nodes[1].find_bottom().id], temp_nodes_end[elm.nodes[2].find_bottom().id]]))
        bwtemp_2094.append(mean([temp_nodes_2094[elm.nodes[0].find_bottom().id], temp_nodes_2094[elm.nodes[1].find_bottom().id], temp_nodes_2094[elm.nodes[2].find_bottom().id]]))
    # Plot
    fig = figure(figsize=(22,7))
    # 1996-2005
    ax = fig.add_subplot(1, 3, 1, aspect='equal')
    # Start with land background
    contourf(x_reg, y_reg, land_square, 1, colors=(('0.6', '0.6', '0.6')))
    # Add all ocean elements
    img = PatchCollection(patches_all, cmap='jet')
    img.set_array(array(bwtemp_beg))
    img.set_edgecolor('face')
    img.set_clim(vmin=-2, vmax=-0.5)
    ax.add_collection(img)
    # Contour ice shelf fronts
    contours = LineCollection(contour_lines, edgecolor='black', linewidth=1)
    ax.add_collection(contours)
    xlim([x_min, x_max])
    ylim([y_min, y_max])
    ax.set_xticks([])
    ax.set_yticks([])
    title('1996-2005', fontsize=20)
    # 2091-2100
    ax = fig.add_subplot(1, 3, 2, aspect='equal')
    contourf(x_reg, y_reg, land_square, 1, colors=(('0.6', '0.6', '0.6')))
    img = PatchCollection(patches_all, cmap='jet')
    img.set_array(array(bwtemp_end))
    img.set_edgecolor('face')
    img.set_clim(vmin=-2, vmax=-0.5)
    ax.add_collection(img)
    contours = LineCollection(contour_lines, edgecolor='black', linewidth=1)
    ax.add_collection(contours)
    xlim([x_min, x_max])
    ylim([y_min, y_max])
    ax.set_xticks([])
    ax.set_yticks([])
    title('2091-2100', fontsize=20)
    # 2094
    ax = fig.add_subplot(1, 3, 3, aspect='equal')
    contourf(x_reg, y_reg, land_square, 1, colors=(('0.6', '0.6', '0.6')))
    img = PatchCollection(patches_all, cmap='jet')
    img.set_array(array(bwtemp_2094))
    img.set_edgecolor('face')
    img.set_clim(vmin=-2, vmax=-0.5)
    ax.add_collection(img)
    contours = LineCollection(contour_lines, edgecolor='black', linewidth=1)
    ax.add_collection(contours)
    xlim([x_min, x_max])
    ylim([y_min, y_max])
    ax.set_xticks([])
    ax.set_yticks([])
    title('2094', fontsize=20)
    # Horizontal colourbar below
    cbaxes = fig.add_axes([0.35, 0.04, 0.3, 0.02])
    cbar = colorbar(img, orientation='horizontal', cax=cbaxes, extend='both')
    suptitle(r'Bottom water temperature ($^{\circ}$C)', fontsize=24)
    subplots_adjust(wspace=0.02, hspace=0.025)
    fig.show()
    fig.savefig('ross_bwtemp.png')

    print 'Processing seasonal SSTs'
    # Read seasonally averaged data
    id = Dataset(oce2_file_beg, 'r')
    sst_nodes_beg = id.variables['temp'][:,:]
    id.close()
    id = Dataset(oce2_file_end, 'r')
    sst_nodes_end = id.variables['temp'][:,:]
    id.close()
    id = Dataset(oce2_file_2094, 'r')
    sst_nodes_2094 = id.variables['temp'][:,:]
    id.close()
    # Now average surface nodes over each non-cavity element
    sst_beg = empty([4, num_elm_ocn])
    sst_end = empty([4, num_elm_ocn])
    sst_2094 = empty([4, num_elm_ocn])
    i = 0
    for elm in elements:
        if not elm.cavity:
            sst_beg[:,i] = (sst_nodes_beg[:,elm.nodes[0].id] + sst_nodes_beg[:,elm.nodes[1].id] + sst_nodes_beg[:,elm.nodes[2].id])/3.0
            sst_end[:,i] = (sst_nodes_end[:,elm.nodes[0].id] + sst_nodes_end[:,elm.nodes[1].id] + sst_nodes_end[:,elm.nodes[2].id])/3.0
            sst_2094[:,i] = (sst_nodes_2094[:,elm.nodes[0].id] + sst_nodes_2094[:,elm.nodes[1].id] + sst_nodes_2094[:,elm.nodes[2].id])/3.0
            i += 1
    # Plot
    fig = figure(figsize=(19,11))
    for season in range(4):
        # 1996-2005
        ax = fig.add_subplot(3, 4, season+1, aspect='equal')
        # Start with land background
        contourf(x_reg, y_reg, land_square, 1, colors=(('0.6', '0.6', '0.6')))
        # Add open ocean elements
        img = PatchCollection(patches_ocn, cmap='jet')
        img.set_array(sst_beg[season,:])
        img.set_edgecolor('face')
        img.set_clim(vmin=-1.8, vmax=1.5)
        ax.add_collection(img)
        # Mask out cavities in white
        overlay = PatchCollection(patches_ice, facecolor=(1,1,1))
        overlay.set_edgecolor('face')
        ax.add_collection(overlay)
        xlim([x_min, x_max])
        ylim([y_min, y_max])
        ax.set_xticks([])
        ax.set_yticks([])
        title(season_names[season], fontsize=24)
        if season == 0:
            text(x_min-1, 0.5*(y_min+y_max), '1996-2005', fontsize=20, ha='center', rotation=90)
        # 2091-2100
        ax = fig.add_subplot(3, 4, season+5, aspect='equal')
        contourf(x_reg, y_reg, land_square, 1, colors=(('0.6', '0.6', '0.6')))
        img = PatchCollection(patches_ocn, cmap='jet')
        img.set_array(sst_end[season,:])
        img.set_edgecolor('face')
        img.set_clim(vmin=-1.8, vmax=1.5)
        ax.add_collection(img)
        overlay = PatchCollection(patches_ice, facecolor=(1,1,1))
        overlay.set_edgecolor('face')
        ax.add_collection(overlay)
        xlim([x_min, x_max])
        ylim([y_min, y_max])
        ax.set_xticks([])
        ax.set_yticks([])
        if season == 0:
            text(x_min-1, 0.5*(y_min+y_max), '2091-2100', fontsize=20, ha='center', rotation=90)
        # 2094
        ax = fig.add_subplot(3, 4, season+9, aspect='equal')
        contourf(x_reg, y_reg, land_square, 1, colors=(('0.6', '0.6', '0.6')))
        img = PatchCollection(patches_ocn, cmap='jet')
        img.set_array(sst_2094[season,:])
        img.set_edgecolor('face')
        img.set_clim(vmin=-1.8, vmax=1.5)
        ax.add_collection(img)
        overlay = PatchCollection(patches_ice, facecolor=(1,1,1))
        overlay.set_edgecolor('face')
        ax.add_collection(overlay)
        xlim([x_min, x_max])
        ylim([y_min, y_max])
        ax.set_xticks([])
        ax.set_yticks([])
        if season == 0:
            text(x_min-1, 0.5*(y_min+y_max), '2094', fontsize=20, ha='center', rotation=90)
        if season == 3:
            # Colourbar below
            cbaxes = fig.add_axes([0.35, 0.04, 0.3, 0.02])
            cbar = colorbar(img, orientation='horizontal', cax=cbaxes, extend='both')
    suptitle(r'Sea surface temperature ($^{\circ}$C)', fontsize=24)
    subplots_adjust(wspace=0.025, hspace=0.025)
    fig.show()
    fig.savefig('ross_sst.png')

    print 'Processing seasonal sea ice concentration'
    # Read seasonally averaged data
    id = Dataset(ice_file_beg, 'r')
    aice_nodes_beg = id.variables['area'][:,:]
    id.close()
    id = Dataset(ice_file_end, 'r')
    aice_nodes_end = id.variables['area'][:,:]
    id.close()
    id = Dataset(ice_file_2094, 'r')
    aice_nodes_2094 = id.variables['area'][:,:]
    id.close()
    # Now average nodes over each non-cavity element
    aice_beg = empty([4, num_elm_ocn])
    aice_end = empty([4, num_elm_ocn])
    aice_2094 = empty([4, num_elm_ocn])
    i = 0
    for elm in elements:
        if not elm.cavity:
            aice_beg[:,i] = (aice_nodes_beg[:,elm.nodes[0].id] + aice_nodes_beg[:,elm.nodes[1].id] + aice_nodes_beg[:,elm.nodes[2].id])/3.0
            aice_end[:,i] = (aice_nodes_end[:,elm.nodes[0].id] + aice_nodes_end[:,elm.nodes[1].id] + aice_nodes_end[:,elm.nodes[2].id])/3.0
            aice_2094[:,i] = (aice_nodes_2094[:,elm.nodes[0].id] + aice_nodes_2094[:,elm.nodes[1].id] + aice_nodes_2094[:,elm.nodes[2].id])/3.0
            i += 1
    # Plot
    fig = figure(figsize=(19,11))
    for season in range(4):
        # 1996-2005
        ax = fig.add_subplot(3, 4, season+1, aspect='equal')
        # Start with land background
        contourf(x_reg, y_reg, land_square, 1, colors=(('0.6', '0.6', '0.6')))
        # Add open ocean elements
        img = PatchCollection(patches_ocn, cmap='jet')
        img.set_array(aice_beg[season,:])
        img.set_edgecolor('face')
        img.set_clim(vmin=0, vmax=1)
        ax.add_collection(img)
        # Mask out cavities in white
        overlay = PatchCollection(patches_ice, facecolor=(1,1,1))
        overlay.set_edgecolor('face')
        ax.add_collection(overlay)
        xlim([x_min, x_max])
        ylim([y_min, y_max])
        ax.set_xticks([])
        ax.set_yticks([])
        title(season_names[season], fontsize=24)
        if season == 0:
            text(x_min-1, 0.5*(y_min+y_max), '1996-2005', fontsize=20, ha='left', rotation=90)
        # 2091-2100
        ax = fig.add_subplot(3, 4, season+5, aspect='equal')
        contourf(x_reg, y_reg, land_square, 1, colors=(('0.6', '0.6', '0.6')))
        img = PatchCollection(patches_ocn, cmap='jet')
        img.set_array(aice_end[season,:])
        img.set_edgecolor('face')
        img.set_clim(vmin=0, vmax=1)
        ax.add_collection(img)
        overlay = PatchCollection(patches_ice, facecolor=(1,1,1))
        overlay.set_edgecolor('face')
        ax.add_collection(overlay)
        xlim([x_min, x_max])
        ylim([y_min, y_max])
        ax.set_xticks([])
        ax.set_yticks([])
        if season == 0:
            text(x_min-1, 0.5*(y_min+y_max), '2091-2100', fontsize=20, ha='left', rotation=90)
        # 2094
        ax = fig.add_subplot(3, 4, season+9, aspect='equal')
        contourf(x_reg, y_reg, land_square, 1, colors=(('0.6', '0.6', '0.6')))
        img = PatchCollection(patches_ocn, cmap='jet')
        img.set_array(aice_2094[season,:])
        img.set_edgecolor('face')
        img.set_clim(vmin=0, vmax=1)
        ax.add_collection(img)
        overlay = PatchCollection(patches_ice, facecolor=(1,1,1))
        overlay.set_edgecolor('face')
        ax.add_collection(overlay)
        xlim([x_min, x_max])
        ylim([y_min, y_max])
        ax.set_xticks([])
        ax.set_yticks([])
        if season == 0:
            text(x_min-1, 0.5*(y_min+y_max), '2094', fontsize=20, ha='left', rotation=90)
        if season == 3:
            # Colourbar below
            cbaxes = fig.add_axes([0.35, 0.04, 0.3, 0.02])
            cbar = colorbar(img, orientation='horizontal', cax=cbaxes)
    suptitle('Sea ice concentration', fontsize=24)
    subplots_adjust(wspace=0.025, hspace=0.025)
    fig.show()
    fig.savefig('ross_aice.png')
Esempio n. 24
0
def timeseries_3D (mesh_path, ocn_file, log_file):

    circumpolar = True   # Only consider elements south of 30S
    cross_180 = False    # Don't make second copies of elements that cross 180E
    days_per_output = 5  # Number of days for each output step
    rhoCp = 4.2e6            # Volumetric heat capacity of seawater (J/K/m^3)
    C2K = 273.15         # Celsius to Kelvin conversion

    ohc = []
    avgsalt = []
    tke = []
    # Check if the log file exists
    if exists(log_file):
        print 'Reading previously calculated values'
        f = open(log_file, 'r')
        # Skip the first line (header)
        f.readline()
        for line in f:
            try:
                ohc.append(float(line))
            except(ValueError):
                # Reached the header for the next variable
                break
        for line in f:
            try:
                avgsalt.append(float(line))
            except(ValueError):
                break
        for line in f:
            tke.append(float(line))
        f.close()

    print 'Building grid'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)
    # Also read the depth of each node
    f = open(mesh_path + 'nod3d.out', 'r')
    f.readline()
    depth = []
    for line in f:
        tmp = line.split()
        depth.append(float(tmp[3]))
    f.close()
    # Convert to pressure in bar
    press = abs(array(depth))/10.0

    print 'Reading data'
    id = Dataset(ocn_file, 'r')
    num_time = id.variables['time'].shape[0]
    temp = id.variables['temp'][:,:]
    salt = id.variables['salt'][:,:]
    u = id.variables['u'][:,:]
    v = id.variables['v'][:,:]
    id.close()

    print 'Calculating density'
    rho = unesco(temp, salt, tile(press, (num_time,1)))

    print 'Setting up arrays'
    # First calculate volume of each element
    dV_e3d = []
    # Loop over 2D elements
    for elm in elements:
        # Select the three nodes making up this element
        nodes = [elm.nodes[0], elm.nodes[1], elm.nodes[2]]
        # Calculate area of the surface triangle
        area = elm.area()
        # Loop downward through the water column
        while True:
            if nodes[0].below is None or nodes[1].below is None or nodes[2].below is None:
                # We've reached the bottom
                break
            # Calculate volume as area * average depth
            dV_e3d.append(area*(abs(nodes[0].depth - nodes[0].below.depth) + abs(nodes[1].depth - nodes[1].below.depth) + abs(nodes[2].depth - nodes[2].below.depth))/3.0)
            # Update nodes
            for i in range(3):
                nodes[i] = nodes[i].below
    dV_e3d = array(dV_e3d)

    # Set up arrays for timeseries of variables at each 3D element
    temp_e3d = zeros([num_time,size(dV_e3d)])
    salt_e3d = zeros([num_time,size(dV_e3d)])
    rho_e3d = zeros([num_time,size(dV_e3d)])
    u_e3d = zeros([num_time,size(dV_e3d)])
    v_e3d = zeros([num_time,size(dV_e3d)])
    # Loop over 2D elements again
    j = 0
    for elm in elements:
        # Select the three nodes making up this element
        nodes = [elm.nodes[0], elm.nodes[1], elm.nodes[2]]
        # Loop downward through the water column
        while True:
            if nodes[0].below is None or nodes[1].below is None or nodes[2].below is None:
                # We've reached the bottom
                break
            # Value of each variable in this triangular prism is the
            # average of the six vertices
            temp_e3d[:,j] = (temp[:,nodes[0].id] + temp[:,nodes[1].id] + temp[:,nodes[2].id] + temp[:,nodes[0].below.id] + temp[:,nodes[1].below.id] + temp[:,nodes[2].below.id])/6.0
            salt_e3d[:,j] = (salt[:,nodes[0].id] + salt[:,nodes[1].id] + salt[:,nodes[2].id] + salt[:,nodes[0].below.id] + salt[:,nodes[1].below.id] + salt[:,nodes[2].below.id])/6.0
            rho_e3d[:,j] = (rho[:,nodes[0].id] + rho[:,nodes[1].id] + rho[:,nodes[2].id] + rho[:,nodes[0].below.id] + rho[:,nodes[1].below.id] + rho[:,nodes[2].below.id])/6.0
            u_e3d[:,j] = (u[:,nodes[0].id] + u[:,nodes[1].id] + u[:,nodes[2].id] + u[:,nodes[0].below.id] + u[:,nodes[1].below.id] + u[:,nodes[2].below.id])/6.0
            v_e3d[:,j] = (v[:,nodes[0].id] + v[:,nodes[1].id] + v[:,nodes[2].id] + v[:,nodes[0].below.id] + v[:,nodes[1].below.id] + v[:,nodes[2].below.id])/6.0
            # Update nodes
            for i in range(3):
                nodes[i] = nodes[i].below
            j += 1
    
    print 'Building timeseries'
    for t in range(num_time):
        # Integrate temp*rhoCp*dV to get OHC
        ohc.append(sum((temp_e3d[t,:]+C2K)*rhoCp*dV_e3d))
        # Average salinity (weighted with rho*dV)
        avgsalt.append(sum(salt_e3d[t,:]*rho_e3d[t,:]*dV_e3d)/sum(rho_e3d[t,:]*dV_e3d))
        # Integrate 0.5*rho*speed^2*dV to get TKE
        tke.append(sum(0.5*rho_e3d[t,:]*(u_e3d[t,:]**2 + v_e3d[t,:]**2)*dV_e3d))

    # Calculate time values
    time = arange(len(ohc))*days_per_output/365.

    print 'Plotting ocean heat content'
    clf()
    plot(time, ohc)
    xlabel('Years')
    ylabel('Southern Ocean Heat Content (J)')
    grid(True)
    savefig('ohc.png')

    print 'Plotting average salinity'
    clf()
    plot(time, avgsalt)
    xlabel('Years')
    ylabel('Southern Ocean Average Salinity (psu)')
    grid(True)
    savefig('avgsalt.png')

    print 'Plotting total kinetic energy'
    clf()
    plot(time, tke)
    xlabel('Years')
    ylabel('Southern Ocean Total Kinetic Energy (J)')
    grid(True)
    savefig('tke.png')

    print 'Saving results to log file'
    f = open(log_file, 'w')
    f.write('Southern Ocean Heat Content (J):\n')
    for elm in ohc:
        f.write(str(elm) + '\n')
    f.write('Southern Ocean Average Salinity (psu):\n')
    for elm in avgsalt:
        f.write(str(elm) + '\n')
    f.write('Southern Ocean Total Kinetic Energy (J):\n')
    for elm in tke:
        f.write(str(elm) + '\n')
    f.close()
Esempio n. 25
0
def timeseries_massloss_depth(mesh_path, diag_file, log_file, fig_dir=''):

    # Bounds on depth classes
    draft_min = array([0, 250, 500])
    draft_max = array([250, 500, 3000])
    num_classes = size(draft_min)
    # Labels for legend
    labels = ['<' + str(draft_max[0]) + ' m']
    for n in range(1, num_classes - 1):
        labels.append(str(draft_min[n]) + '-' + str(draft_max[n]) + ' m')
    labels.append('>' + str(draft_min[-1]) + ' m')

    circumpolar = True  # Only consider elements south of 30S
    cross_180 = False  # Don't make second copies of elements that cross 180E
    days_per_output = 5  # Number of days for each output step
    rho_ice = 916  # Density of ice in kg/m^3
    start_year = 1992

    tmp_massloss = []
    # Check if the log file exists
    if exists(log_file):
        print 'Reading previously calculated values'
        f = open(log_file, 'r')
        # Skip the first line (header)
        f.readline()
        for line in f:
            try:
                tmp_massloss.append(float(line))
            except (ValueError):
                # Reached the header for the next variable
                break
        start_t = len(tmp_massloss)
        # Set up array for mass loss values for each depth class
        old_massloss = empty([num_classes, start_t])
        # Fill in the first depth class
        old_massloss[0, :] = tmp_massloss[:]
        n = 1
        # Loop over the other depth classes
        while n < num_classes:
            t = 0
            for line in f:
                try:
                    old_massloss[n, t] = float(line)
                    t += 1
                except (ValueError):
                    # Reached the header for the next depth class
                    break
            n += 1
    else:
        start_t = 0

    print 'Building grid'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)

    print 'Reading data'
    id = Dataset(diag_file, 'r')
    num_time = id.variables['time'].shape[0]
    # Set up array of mass loss values
    massloss = empty([num_classes, start_t + num_time])
    if exists(log_file):
        # Fill first start_t timesteps with existing values
        massloss[:, 0:start_t] = old_massloss[:, :]
    # Read melt rate and convert from m/s to m/y
    ismr = id.variables['wnet'][:, :] * 365.25 * 24 * 60 * 60
    id.close()

    print 'Setting up arrays'
    # Melt rate timeseries at each element
    ismr_elm = zeros([num_time, len(elements)])
    # Area of each element
    area_elm = zeros(len(elements))
    # Flag to indicate which depth class the element is part of
    class_flag = zeros([num_classes, len(elements)])
    # Loop over each element to fill these in
    for i in range(len(elements)):
        elm = elements[i]
        # Make sure we're actually in an ice shelf cavity
        if elm.cavity:
            # Average ice shelf melt rate timeseries over 3 component nodes
            ismr_elm[:,
                     i] = (ismr[:, elm.nodes[0].id] + ismr[:, elm.nodes[1].id]
                           + ismr[:, elm.nodes[2].id]) / 3
            # Call area function
            area_elm[i] = elm.area()
            # Get ice shelf draft (average depth of surface nodes)
            draft = mean(
                array([(elm.nodes[0]).depth, (elm.nodes[1]).depth,
                       (elm.nodes[2]).depth]))
            # Loop over depth classes
            found = False
            for n in range(num_classes):
                # Figure out whether or not this element is part of the given depth class
                if draft > draft_min[n] and draft <= draft_max[n]:
                    found = True
                    class_flag[n, i] = 1
            if not found:
                print "Couldn't find a depth class for ice shelf draft " + str(
                    draft)
                return

    # Calculate conversion factors from mass loss to area-averaged melt rate
    # for each depth class
    factors = empty(num_classes)
    for n in range(num_classes):
        # Calculate total ice shelf area in this class
        tmp_area = sum(area_elm * class_flag[n, :])
        print 'Area of ice shelf draft between ' + str(
            draft_min[n]) + ' and ' + str(
                draft_max[n]) + 'm: ' + str(tmp_area) + ' m^2'
        factors[n] = 1e12 / (rho_ice * tmp_area)

    # Build timeseries
    for t in range(num_time):
        # Loop over depth classes
        for n in range(num_classes):
            # Integrate ice shelf melt rate over area to get volume loss
            volumeloss = sum(ismr_elm[t, :] * area_elm * class_flag[n, :])
            # Convert to massloss in Gt/y
            massloss[n, start_t + t] = 1e-12 * rho_ice * volumeloss

    # Calculate time values
    time = arange(size(massloss, 1)) * days_per_output / 365. + start_year

    print "Plotting"

    # Start with mass loss
    fig, ax = subplots(figsize=(10, 6))
    # One line for each depth class
    for n in range(num_classes):
        ax.plot(time, massloss[n, :], label=labels[n], linewidth=2)
    # Configure plot
    title('Basal Mass Loss', fontsize=18)
    xlabel('Year', fontsize=14)
    ylabel('Gt/y', fontsize=14)
    xlim([time[0], time[-1]])
    grid(True)
    # Move the plot over to make room for legend
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    # Make legend
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
    fig.savefig(fig_dir + 'massloss_depth.png')

    # Repeat for average melt rate
    fig, ax = subplots(figsize=(10, 6))
    for n in range(num_classes):
        ax.plot(time,
                massloss[n, :] * factors[n],
                label=labels[n],
                linewidth=2)
    # Configure plot
    title('Area-Averaged Ice Shelf Melt Rate', fontsize=18)
    xlabel('Year', fontsize=14)
    ylabel('m/y', fontsize=14)
    grid(True)
    # Move the plot over to make room for legend
    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    # Make legend
    ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
    fig.savefig(fig_dir + 'ismr_depth.png')

    print 'Saving results to log file'
    f = open(log_file, 'w')
    f.write('Basal Mass Loss for ice shelf drafts <' + str(draft_max[0]) +
            ' m:\n')
    for t in range(size(time)):
        f.write(str(massloss[0, t]) + '\n')
    for n in range(1, num_classes - 1):
        f.write('Basal Mass Loss for ice shelf drafts ' + str(draft_min[n]) +
                '-' + str(draft_max[n]) + ' m:\n')
        for t in range(size(time)):
            f.write(str(massloss[n, t]) + '\n')
    f.write('Basal Mass Loss for ice shelf drafts >' + str(draft_min[-1]) +
            'm:\n')
    for t in range(size(time)):
        f.write(str(massloss[-1, t]) + '\n')
    f.close()
Esempio n. 26
0
def timeseries_dpt (mesh_path, ocn_file, log_file):

    circumpolar = False  # Don't transform x and y coordinates, we need them!
    cross_180 = False    # Don't make second copies of elements that cross 180E
    days_per_output = 5  # Number of days for each output step

    # Longitude of Drake Passage zonal slice
    lon0 = -67
    # Latitude bounds on Drake Passage zonal slice
    lat_min = -68
    lat_max = -54.5

    dpt = []
    # Check if the log file exists
    if exists(log_file):
        print 'Reading previously calculated values'
        f = open(log_file, 'r')
        # Skip the first line (header)
        f.readline()
        for line in f:
            dpt.append(float(line))
        f.close()

    print 'Building grid'
    # First get regular 2D elements
    elm2D = fesom_grid(mesh_path, circumpolar, cross_180)
    # Read longitude and latitude of each node in order (needed for rotation)
    fid = open(mesh_path + 'nod3d.out', 'r')
    fid.readline()
    lon = []
    lat = []
    for line in fid:
        tmp = line.split()
        lon_tmp = float(tmp[1])
        lat_tmp = float(tmp[2])
        if lon_tmp < -180:
            lon_tmp += 360
        elif lon_tmp > 180:
            lon_tmp -= 360
        lon.append(lon_tmp)
        lat.append(lat_tmp)
    fid.close()
    lon = array(lon)
    lat = array(lat)

    print 'Reading data'
    id = Dataset(ocn_file, 'r')
    num_time = id.variables['time'].shape[0]
    # Read both u and v so we can rotate to get the real u
    u_r = id.variables['u'][:,:]
    v_r = id.variables['v'][:,:]
    id.close()

    print 'Unrotating velocity vector'
    u = zeros(shape(u_r))
    # Rotate one time index at a time
    for t in range(num_time):
        u_tmp, v_tmp = unrotate_vector(lon, lat, u_r[t,:], v_r[t,:])
        u[t,:] = u_tmp

    print 'Extracting zonal slice through Drake Passage'
    # Get quadrilateral elements in the latitude vs depth slice
    selements = fesom_sidegrid(elm2D, u, lon0, lat_max, lat_min)

    print 'Setting up arrays'
    # Eastward velocity at each element
    u_selm = zeros([num_time, len(selements)])
    # Area of each element
    area_selm = zeros(len(selements))
    # Loop over elements to fill these in
    for i in range(len(selements)):
        selm = selements[i]
        u_selm[:,i] = selm.var
        area_selm[i] = selm.area()
    # Build timeseries
    for t in range(num_time):
        # Integrate u*area and convert to Sv
        dpt.append(sum(u_selm[t,:]*area_selm)*1e-6)

    # Calculate time values
    time = arange(len(dpt))*days_per_output/365.

    print 'Plotting'
    clf()
    plot(time, dpt)
    xlabel('Years')
    ylabel('Drake Passage Transport (Sv)')
    grid(True)
    savefig('drakepsgtrans.png')

    print 'Saving results to log file'
    f = open(log_file, 'w')
    f.write('Drake Passage Transport (Sv):\n')
    for elm in dpt:
        f.write(str(elm) + '\n')
    f.close()
Esempio n. 27
0
def cavity_watermass_distribution():

    # Path to mesh directory
    mesh_path = '/short/y99/kaa561/FESOM/mesh/high_res/'
    # File containing temperature and salinity averaged over rep3 1992-2005
    ts_file = '/short/y99/kaa561/FESOM/highres_spinup/rep3/annual_avg.oce.mean.nc'
    # Number of temperature and salinity bins
    num_bins = 1000
    # Mesh parameters
    circumpolar = True
    cross_180 = False
    # Bounds on temperature and salinity bins (pre-computed, change if needed)
    min_salt = 32.8
    max_salt = 35
    min_temp = -3
    max_temp = 0.2

    # Read temperature and salinity at each 3D node
    id = Dataset(ts_file, 'r')
    temp = id.variables['temp'][0, :]
    salt = id.variables['salt'][0, :]
    id.close()

    # Calculate boundaries of temperature bins
    temp_bins = linspace(min_temp, max_temp, num=num_bins)
    # Calculate centres of temperature bins (for plotting)
    temp_centres = 0.5 * (temp_bins[:-1] + temp_bins[1:])
    # Repeat for salinity
    salt_bins = linspace(min_salt, max_salt, num=num_bins)
    salt_centres = 0.5 * (salt_bins[:-1] + salt_bins[1:])
    # Set up a 2D array of temperature bins x salinity bins to increment with
    # volume of water masses
    ts_vals = zeros([size(temp_centres), size(salt_centres)])
    # Calculate surface freezing point as a function of salinity: this is the
    # equation the FESOM sea ice code uses
    freezing_pt = -0.0575 * salt_centres + 1.7105e-3 * sqrt(
        salt_centres**3) - 2.155e-4 * salt_centres**2

    # Make FESOM mesh elements
    elements = fesom_grid(mesh_path, circumpolar, cross_180)
    # Loop over elements
    for elm in elements:
        # Only consider ice shelf cavities
        if elm.cavity:
            # Get area of 2D triangle
            area = elm.area()
            nodes = [elm.nodes[0], elm.nodes[1], elm.nodes[2]]
            # Loop downward
            while True:
                if nodes[0].below is None or nodes[1].below is None or nodes[
                        2].below is None:
                    # We've reached the bottom
                    break
                # Calculate average temperature, salinity, and layer thickness
                # over this 3D triangular prism
                temp_vals = []
                salt_vals = []
                dz = []
                for i in range(3):
                    # Average temperature over 6 nodes
                    temp_vals.append(temp[nodes[i].id])
                    temp_vals.append(temp[nodes[i].below.id])
                    # Average salinity over 6 nodes
                    salt_vals.append(salt[nodes[i].id])
                    salt_vals.append(salt[nodes[i].below.id])
                    # Average dz over 3 vertical edges
                    dz.append(abs(nodes[i].depth - nodes[i].below.depth))
                    # Get ready for next repetition of loop
                    nodes[i] = nodes[i].below
                temp_elm = mean(array(temp_vals))
                salt_elm = mean(array(salt_vals))
                # Calculate volume of 3D triangular prism
                volume = area * mean(array(dz))
                # Figure out which bins this falls into
                temp_index = nonzero(temp_bins > temp_elm)[0][0] - 1
                salt_index = nonzero(salt_bins > salt_elm)[0][0] - 1
                # Increment bins with volume
                ts_vals[temp_index, salt_index] += volume
    # Mask bins with zero volume
    ts_vals = ma.masked_where(ts_vals == 0, ts_vals)

    # Plot
    fig = figure(figsize=(8, 6))
    ax = fig.add_subplot(1, 1, 1)
    # Plot log of volume
    img = pcolor(salt_centres, temp_centres, log(ts_vals), cmap='jet')
    # Add surface freezing point line
    plot(salt_centres,
         freezing_pt,
         color='black',
         linestyle='dashed',
         linewidth=2)
    # Add dividing line at 34 psu
    tmp = -0.0575 * 34 + 1.7105e-3 * sqrt(34**3) - 2.155e-4 * 34**2
    plot([34, 34], [tmp, 0.2], color='black', linestyle='dashed', linewidth=2)
    # Add dividing line at 34.5 psu
    tmp = -0.0575 * 34.5 + 1.7105e-3 * sqrt(34.5**3) - 2.155e-4 * 34.5**2
    plot([34.5, 34.5], [tmp, -1],
         color='black',
         linestyle='dashed',
         linewidth=2)
    # Add dividing line at -1 C
    plot([34, 35], [-1, -1], color='black', linestyle='dashed', linewidth=2)
    # Label water masses
    text(33.25, -2.5, 'ISW', fontsize=20)
    text(33.5, -0.25, 'AASW', fontsize=20)
    text(34.12, -1.2, 'WW', fontsize=20)
    text(34.66, -1.2, 'HSSW', fontsize=20)
    text(34.5, -0.5, 'MCDW', fontsize=20)
    # Configure plot
    xlim([33, max_salt])
    ylim([min_temp, max_temp])
    xlabel('Salinity (psu)', fontsize=14)
    ylabel(r'Temperature ($^{\circ}$C)', fontsize=14)
    title('T-S distribution in ice shelf cavities, 1992-2005', fontsize=18)
    colorbar(img)
    # Label colourbar units
    text(35.5, -1, 'log of volume', fontsize=16, rotation=90)
    fig.show()
    fig.savefig('watermass_key.png')
Esempio n. 28
0
def zonal_cavity_ts_rcp(mesh_path, spinup_path, rcp_path, fig_dir=''):

    file_name_beg = spinup_path + 'annual_avg.oce.mean.1996.2005.nc'
    file_name_end = rcp_path + 'annual_avg.oce.mean.2091.2100.nc'

    # Name of each ice shelf
    shelf_names = [
        'Larsen D Ice Shelf', 'Larsen C Ice Shelf',
        'Wilkins & George VI & Stange Ice Shelves', 'Ronne-Filchner Ice Shelf',
        'Abbot Ice Shelf', 'Pine Island Glacier Ice Shelf',
        'Thwaites Ice Shelf', 'Dotson Ice Shelf', 'Getz Ice Shelf',
        'Nickerson Ice Shelf', 'Sulzberger Ice Shelf', 'Mertz Ice Shelf',
        'Totten & Moscow University Ice Shelves', 'Shackleton Ice Shelf',
        'West Ice Shelf', 'Amery Ice Shelf', 'Prince Harald Ice Shelf',
        'Baudouin & Borchgrevink Ice Shelves', 'Lazarev Ice Shelf',
        'Nivl Ice Shelf', 'Fimbul & Jelbart & Ekstrom Ice Shelves',
        'Brunt & Riiser-Larsen Ice Shelves', 'Ross Ice Shelf'
    ]
    # Beginnings of filenames for figures
    fig_heads = [
        'larsen_d', 'larsen_c', 'wilkins_georgevi_stange', 'ronne_filchner',
        'abbot', 'pig', 'thwaites', 'dotson', 'getz', 'nickerson',
        'sulzberger', 'mertz', 'totten_moscowuni', 'shackleton', 'west',
        'amery', 'prince_harald', 'baudouin_borchgrevink', 'lazarev', 'nivl',
        'fimbul_jelbart_ekstrom', 'brunt_riiser_larsen', 'ross'
    ]
    # Longitudes intersecting each ice shelf
    lon0 = [
        -60, -62, -68, -55, -93, -101, -106, -113, -120, -145, -150, 145, 116,
        96, 85, 71, 36, 25, 15, 11, -1, -20, 180
    ]
    # Latitude bounds for each ice shelf
    lat_min = [
        -73.1, -69.35, -73.1, -82.6, -73.28, -75.4, -75.5, -75, -74.9, -75.9,
        -77.8, -67.7, -67.17, -66.67, -67.25, -72, -69.7, -71, -70.4, -70.75,
        -71.83, -75.6, -84.6
    ]
    lat_max = [
        -72, -66.13, -70, -75.5, -72.3, -74.4, -74.67, -74, -73.5, -75.3,
        -76.41, -67, -66.5, -64.83, -66.25, -68.5, -68.7, -69.9, -69.33,
        -69.83, -69.33, -72.9, -77
    ]
    num_shelves = len(shelf_names)

    print 'Building FESOM mesh'
    elm2D = fesom_grid(mesh_path)
    print 'Reading temperature and salinity data'
    id = Dataset(file_name_beg, 'r')
    temp_nodes_beg = id.variables['temp'][0, :]
    salt_nodes_beg = id.variables['salt'][0, :]
    id.close()
    id = Dataset(file_name_end, 'r')
    temp_nodes_end = id.variables['temp'][0, :]
    salt_nodes_end = id.variables['salt'][0, :]
    id.close()
    temp_nodes_diff = temp_nodes_end - temp_nodes_beg
    salt_nodes_diff = salt_nodes_end - salt_nodes_beg

    # Loop over ice shelves
    for index in range(num_shelves):
        print 'Processing ' + shelf_names[index]
        # Figure out what to write on the title about longitude
        if lon0[index] < 0:
            lon_string = ' (' + str(-lon0[index]) + r'$^{\circ}$W)'
        else:
            lon_string = ' (' + str(lon0[index]) + r'$^{\circ}$E)'
        # Build arrays of SideElements making up zonal slices
        selements_temp_beg = fesom_sidegrid(elm2D, temp_nodes_beg, lon0[index],
                                            lat_max[index])
        selements_salt_beg = fesom_sidegrid(elm2D, salt_nodes_beg, lon0[index],
                                            lat_max[index])
        selements_temp_end = fesom_sidegrid(elm2D, temp_nodes_end, lon0[index],
                                            lat_max[index])
        selements_salt_end = fesom_sidegrid(elm2D, salt_nodes_end, lon0[index],
                                            lat_max[index])
        selements_temp_diff = fesom_sidegrid(elm2D, temp_nodes_diff,
                                             lon0[index], lat_max[index])
        selements_salt_diff = fesom_sidegrid(elm2D, salt_nodes_diff,
                                             lon0[index], lat_max[index])
        # Build array of quadrilateral patches for the plots, and data values
        # corresponding to each SideElement
        patches = []
        temp_beg = []
        for selm in selements_temp_beg:
            # Make patch
            coord = transpose(vstack((selm.y, selm.z)))
            patches.append(Polygon(coord, True, linewidth=0.))
            # Save data value
            temp_beg.append(selm.var)
        temp_beg = array(temp_beg)
        # Other variables have same patches but different values
        salt_beg = []
        for selm in selements_salt_beg:
            salt_beg.append(selm.var)
        salt_beg = array(salt_beg)
        temp_end = []
        for selm in selements_temp_end:
            temp_end.append(selm.var)
        temp_end = array(temp_end)
        salt_end = []
        for selm in selements_salt_end:
            salt_end.append(selm.var)
        salt_end = array(salt_end)
        temp_diff = []
        for selm in selements_temp_diff:
            temp_diff.append(selm.var)
        temp_diff = array(temp_diff)
        salt_diff = []
        for selm in selements_salt_diff:
            salt_diff.append(selm.var)
        salt_diff = array(salt_diff)
        # Find bounds on each variable
        temp_min = min(amin(temp_beg), amin(temp_end))
        temp_max = max(amax(temp_beg), amax(temp_end))
        temp_max_diff = amax(abs(temp_diff))
        salt_min = min(amin(salt_beg), amin(salt_end))
        salt_max = max(amax(salt_beg), amax(salt_end))
        salt_max_diff = amax(abs(salt_diff))
        # Find deepest depth
        depth_min = 0
        for selm in selements_temp_beg:
            depth_min = min(depth_min, amin(selm.z))
        # Round down to nearest 50 metres
        depth_min = floor(depth_min / 50) * 50
        # Plot
        fig = figure(figsize=(24, 12))
        # Temperature (beginning)
        ax = fig.add_subplot(2, 3, 1)
        img = PatchCollection(patches, cmap='jet')
        img.set_array(temp_beg)
        img.set_edgecolor('face')
        img.set_clim(vmin=temp_min, vmax=temp_max)
        ax.add_collection(img)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        title(r'Temperature ($^{\circ}$C), 1996-2005', fontsize=20)
        ylabel('Depth (m)', fontsize=16)
        # Add colorbar for absolute temperature
        cbaxes_temp = fig.add_axes([0.05, 0.575, 0.01, 0.3])
        cbar_temp = colorbar(img, cax=cbaxes_temp)
        cbar_temp.ax.tick_params(labelsize=16)
        # Temperature (end)
        ax = fig.add_subplot(2, 3, 2)
        img = PatchCollection(patches, cmap='jet')
        img.set_array(temp_end)
        img.set_edgecolor('face')
        img.set_clim(vmin=temp_min, vmax=temp_max)
        ax.add_collection(img)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        title(r'Temperature ($^{\circ}$C), 2091-2100', fontsize=20)
        ylabel('Depth (m)', fontsize=16)
        # Temperature (difference)
        ax = fig.add_subplot(2, 3, 3)
        img = PatchCollection(patches, cmap='RdBu_r')
        img.set_array(temp_diff)
        img.set_edgecolor('face')
        img.set_clim(vmin=-temp_max_diff, vmax=temp_max_diff)
        ax.add_collection(img)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        title(r'Temperature ($^{\circ}$C), change', fontsize=20)
        ylabel('Depth (m)', fontsize=16)
        # Add colorbar for temperature difference
        cbaxes_dtemp = fig.add_axes([0.92, 0.575, 0.01, 0.3])
        cbar_dtemp = colorbar(img, cax=cbaxes_dtemp)
        cbar_dtemp.ax.tick_params(labelsize=16)
        # Salinity (beginning)
        ax = fig.add_subplot(2, 3, 4)
        img = PatchCollection(patches, cmap='jet')
        img.set_array(salt_beg)
        img.set_edgecolor('face')
        img.set_clim(vmin=salt_min, vmax=salt_max)
        ax.add_collection(img)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        title('Salinity (psu), 1995-2005', fontsize=20)
        ylabel('Depth (m)', fontsize=16)
        # Add colorbar for absolute salinity
        cbaxes_salt = fig.add_axes([0.05, 0.125, 0.01, 0.3])
        cbar_salt = colorbar(img, cax=cbaxes_salt)
        cbar_salt.ax.tick_params(labelsize=16)
        # Salinity (end)
        ax = fig.add_subplot(2, 3, 5)
        img = PatchCollection(patches, cmap='jet')
        img.set_array(salt_end)
        img.set_edgecolor('face')
        img.set_clim(vmin=salt_min, vmax=salt_max)
        ax.add_collection(img)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        title('Salinity (psu), 2091-2100', fontsize=20)
        ylabel('Depth (m)', fontsize=16)
        # Salinity (difference)
        ax = fig.add_subplot(2, 3, 6)
        img = PatchCollection(patches, cmap='RdBu_r')
        img.set_array(salt_diff)
        img.set_edgecolor('face')
        img.set_clim(vmin=-salt_max_diff, vmax=salt_max_diff)
        ax.add_collection(img)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        title('Salinity (psu), change', fontsize=20)
        ylabel('Depth (m)', fontsize=16)
        # Add colorbar for salinity difference
        cbaxes_dsalt = fig.add_axes([0.92, 0.125, 0.01, 0.3])
        cbar_dsalt = colorbar(img, cax=cbaxes_dsalt)
        cbar_dsalt.ax.tick_params(labelsize=16)
        # Main title
        suptitle(shelf_names[index] + lon_string, fontsize=28)
        #fig.show()
        fig.savefig(fig_dir + fig_heads[index] + '_zonal_ts.png')
Esempio n. 29
0
def moc_lat_density(mesh_path, file_path, save=False, fig_name=None):

    # Options for grid objects
    circumpolar = False
    cross_180 = False

    # Read vertical velocity, temperature, and salinity at every node
    id = Dataset(file_path, 'r')
    w = mean(id.variables['w'][:, :], axis=0)
    temp = mean(id.variables['temp'][:, :], axis=0)
    salt = mean(id.variables['salt'][:, :], axis=0)
    id.close()

    # Calculate potential density (depth 0) at every node
    density = unesco(temp, salt, zeros(shape(temp))) - 1000

    # Build FESOM grid
    elements = fesom_grid(mesh_path, circumpolar, cross_180)

    # Set up arrays of vertical transport, latitude, upstream density, and
    # downstream density at every interface between vertical layers of elements
    transport_all = []
    lat_all = []
    density_us_all = []
    density_ds_all = []
    # Loop over 2D elements
    for elm in elements:
        # Get area and latitude (average over 3 nodes)
        area = elm.area()
        lat = mean(elm.lat)
        nodes_above = [elm.nodes[0], elm.nodes[1], elm.nodes[2]]
        nodes = [
            nodes_above[0].below, nodes_above[1].below, nodes_above[2].below
        ]
        # Loop from the second layer from the surface, down to the second layer
        # from the bottom
        while True:
            nodes_below = [nodes[0].below, nodes[1].below, nodes[2].below]
            if None in nodes_below:
                # Reached the bottom
                break
            # Vertical velocity average over 3 nodes
            w_avg = mean([w[nodes[0].id], w[nodes[1].id], w[nodes[2].id]])
            # Vertical transport through this triangular interface
            transport = abs(w_avg) * area * 1e-6
            # Density average over 3D triangular prism above
            density_above = mean([
                density[nodes[0].id], density[nodes[1].id],
                density[nodes[2].id], density[nodes_above[0].id],
                density[nodes_above[1].id], density[nodes_above[2].id]
            ])
            # Density average over 3D triangular prism below
            density_below = mean([
                density[nodes[0].id], density[nodes[1].id],
                density[nodes[2].id], density[nodes_below[0].id],
                density[nodes_below[1].id], density[nodes_below[2].id]
            ])
            # Figure out which is triangular prism upstream and which is
            # downstream; save the density values correspondingly
            if w_avg > 0:
                density_us = density_below
                density_ds = density_above
            else:
                density_us = density_above
                density_ds = density_below
            # Save vertical transport, latitude, upstream and downstream
            # densities for this interface
            transport_all.append(transport)
            lat_all.append(lat)
            density_us_all.append(density_us)
            density_ds_all.append(density_ds)
            # Get ready for next layer down
            nodes_above = nodes
            nodes = nodes_below

    # Get regular values of latitude and density
    lat_reg = linspace(-90, 90, num=50)
    density_reg = linspace(floor(amin(density)), ceil(amax(density)), num=25)
    # Set up array for overturning streamfunction
    moc = zeros([size(density_reg), size(lat_reg)])
    # Loop over latitude
    for j in range(size(lat_reg)):
        print 'Processing latitude ' + str(j + 1) + ' of ' + str(size(lat_reg))
        # Make a flag which is 1 for interfaces south of the current latitude,
        # 0 otherwise
        flag_lat = zeros(shape(lat_all))
        index = lat_all <= lat_reg[j]
        flag_lat[index] = 1
        # Loop over density
        for k in range(size(density_reg)):
            # Make a flag which is 1 or -1 (depending on direction) for
            # interfaces where the upstream-downstream density gradient crosses
            # the current density, 0 otherwise
            flag_density = zeros(shape(density_us_all))
            index = (density_us_all <= density_reg[k]) * (density_ds_all >=
                                                          density_reg[k])
            flag_density[index] = 1
            index = (density_ds_all <= density_reg[k]) * (density_us_all >=
                                                          density_reg[k])
            flag_density[index] = -1
            # Calculate MOC
            moc[k, j] = sum(transport_all * flag_lat * flag_density)

    # Make colour levels
    bound = amax(abs(moc))
    lev = linspace(-bound, bound, num=50)

    # Plot
    fig = figure()
    img = contourf(lat_reg, density_reg, moc, lev, cmap='RdBu_r')
    ylim([density_reg[-1], density_reg[0]])
    xlabel('Latitude')
    ylabel(r'Density (kg/m$^3$)')
    title('Meridional Overturning Streamfunction (Sv)')
    colorbar(img)

    if save:
        fig.savefig(fig_name)
    else:
        fig.show()
Esempio n. 30
0
def fesom_intersectgrid(mesh_path, file_path, var_name, tstep, lon_min,
                        lon_max, lat_min, lat_max, depth_min, depth_max,
                        num_lat, num_depth):

    if lon_min == -180 and lon_max == 180:
        lon_bounds = False
    else:
        lon_bounds = True

    # Build the regular FESOM grid
    elements = fesom_grid(mesh_path, cross_180=False)

    # Read data
    id = Dataset(file_path, 'r')
    data = id.variables[var_name][tstep - 1, :]
    # Check for vector variables that need to be unrotated
    if var_name in ['u', 'v']:
        # Read the rotated lat and lon
        fid = open(mesh_path + 'nod3d.out', 'r')
        fid.readline()
        lon = []
        lat = []
        for line in fid:
            tmp = line.split()
            lon_tmp = float(tmp[1])
            lat_tmp = float(tmp[2])
            if lon_tmp < -180:
                lon_tmp += 360
            elif lon_tmp > 180:
                lon_tmp -= 360
            lon.append(lon_tmp)
            lat.append(lat_tmp)
        fid.close()
        lon = array(lon)
        lat = array(lat)
        if var_name == 'u':
            u_data = data[:]
            v_data = id.variables['v'][tstep - 1, :]
            u_data_lonlat, v_data_lonlat = unrotate_vector(
                lon, lat, u_data, v_data)
            data = u_data_lonlat[:]
        elif var_name == 'v':
            v_data = data[:]
            u_data = id.variables['u'][tstep - 1, :]
            u_data_lonlat, v_data_lonlat = unrotate_vector(
                lon, lat, u_data, v_data)
            data = v_data_lonlat[:]
    id.close()

    # Build the regular grid
    lat_vals = linspace(lat_min, lat_max, num_lat)
    # Make depth positive to match the "depth" attribute in grid Nodes
    depth_vals = -1 * linspace(depth_min, depth_max, num_depth)

    # Set up array of NaNs to overwrite with zonally averaged data
    data_reg = zeros((num_depth, num_lat))
    data_reg[:, :] = NaN

    # Process one latitude value at a time
    for j in range(num_lat):
        ielm_list = []
        # Loop over 2D grid Elements
        for elm in elements:
            # Select elements which intersect the current latitude, and which
            # fall entirely between the longitude bounds
            if lon_bounds:
                keep = any(elm.y <= lat_vals[j]) and any(
                    elm.y >= lat_vals[j]) and all(elm.x >= lon_min) and all(
                        elm.x <= lon_max)
            else:
                # No bounds on longitude
                keep = any(elm.y <= lat_vals[j]) and any(elm.y >= lat_vals[j])
            if keep:
                # Create an IntersectElement
                ielm = create_ielm(elm, lat_vals[j], depth_vals, data)
                # Check for cases where the Element intersected the given
                # latitude at exactly one corner; these aren't useful
                if ielm is not None:
                    ielm_list.append(ielm)
        # Zonally average at each depth
        for k in range(num_depth):
            # Set up integrals of var*dx and dx
            int_vardx = 0
            int_dx = 0
            for ielm in ielm_list:
                # Check if data exists at the current depth level
                if ielm.var[k] is not NaN:
                    int_vardx += ielm.var[k] * ielm.dx
                    int_dx += ielm.dx
            if int_dx > 0:
                data_reg[k, j] = int_vardx / int_dx

    # Convert depth back to negative for plotting
    depth_vals = -1 * depth_vals

    return lat_vals, depth_vals, data_reg
Esempio n. 31
0
        var_name = 'temp'
    elif var_key == 's':
        var_name = 'salt'
    lon0 = float(raw_input("Enter longitude (-180 to 180): "))
    depth_min = -1 * float(
        raw_input("Deepest depth to plot (positive, metres): "))
    action = raw_input("Save figure (s) or display on screen (d)? ")
    if action == 's':
        save = True
        fig_name = raw_input("File name for figure: ")
    elif action == 'd':
        save = False
        fig_name = None

    # Build the FESOM mesh ahead of time
    elements = fesom_grid(mesh_path)
    sose_fesom_seasonal(elements, file_path1, file_path2, var_name, lon0,
                        depth_min, save, fig_name)

    # Repeat until the user wants to exit
    while True:
        repeat = raw_input("Make another plot (y/n)? ")
        if repeat == 'y':
            while True:
                # Ask for changes to the input parameters; repeat until the user is finished
                changes = raw_input(
                    "Enter a parameter to change: (1) file paths, (2) temperature/salinity, (3) longitude, (4) deepest depth, (5) save/display; or enter to continue: "
                )
                if len(changes) == 0:
                    # No more changes to parameters
                    break
Esempio n. 32
0
def mip_zonal_cavity_ts (roms_grid, roms_file, fesom_mesh_path_lr, fesom_file_lr, fesom_mesh_path_hr, fesom_file_hr):

    # Name of each ice shelf
    shelf_names = ['Larsen D Ice Shelf', 'Larsen C Ice Shelf', 'Wilkins & George VI & Stange Ice Shelves', 'Ronne-Filchner Ice Shelf', 'Abbot Ice Shelf', 'Pine Island Glacier Ice Shelf', 'Thwaites Ice Shelf', 'Dotson Ice Shelf', 'Getz Ice Shelf', 'Nickerson Ice Shelf', 'Sulzberger Ice Shelf', 'Mertz Ice Shelf', 'Totten & Moscow University Ice Shelves', 'Shackleton Ice Shelf', 'West Ice Shelf', 'Amery Ice Shelf', 'Prince Harald Ice Shelf', 'Baudouin & Borchgrevink Ice Shelves', 'Lazarev Ice Shelf', 'Nivl Ice Shelf', 'Fimbul & Jelbart & Ekstrom Ice Shelves', 'Brunt & Riiser-Larsen Ice Shelves', 'Ross Ice Shelf']
    # Beginnings of filenames for figures
    fig_heads = ['larsen_d', 'larsen_c', 'wilkins_georgevi_stange', 'ronne_filchner', 'abbot', 'pig', 'thwaites', 'dotson', 'getz', 'nickerson', 'sulzberger', 'mertz', 'totten_moscowuni', 'shackleton', 'west', 'amery', 'prince_harald', 'baudouin_borchgrevink', 'lazarev', 'nivl', 'fimbul_jelbart_ekstrom', 'brunt_riiser_larsen', 'ross']
    # Longitudes intersecting each ice shelf
    lon0 = [-60, -62, -68, -55, -93, -101, -106, -113, -120, -145, -150, 145, 116, 96, 85, 71, 36, 25, 15, 11, -1, -20, 180]
    # Latitude bounds for each ice shelf
    lat_min = [-73.1, -69.35, -73.1, -82.6, -73.28, -75.4, -75.5, -75, -74.9, -75.9, -77.8, -67.7, -67.17, -66.67, -67.25, -72, -69.7, -71, -70.4, -70.75, -71.83, -75.6, -84.6]
    lat_max = [-72, -66.13, -70, -75.5, -72.3, -74.4, -74.67, -74, -73.5, -75.3, -76.41, -67, -66.5, -64.83, -66.25, -68.5, -68.7, -69.9, -69.33, -69.83, -69.33, -72.9, -77]
    num_shelves = len(shelf_names)
    # ROMS grid parameters
    theta_s = 7.0
    theta_b = 2.0
    hc = 250
    N = 31

    print 'Setting up ROMS'
    # Start with grid
    id = Dataset(roms_grid, 'r')
    h = id.variables['h'][:,:]
    zice = id.variables['zice'][:,:]
    lon_2d = id.variables['lon_rho'][:,:]
    lat_2d = id.variables['lat_rho'][:,:]
    id.close()
    # Get a 3D array of z-coordinates; sc_r and Cs_r are unused in this script
    z_3d, sc_r, Cs_r = calc_z(h, zice, theta_s, theta_b, hc, N)
    # Read temperature and salinity
    id = Dataset(roms_file, 'r')
    roms_temp_3d = id.variables['temp'][0,:,:,:]
    roms_salt_3d = id.variables['salt'][0,:,:,:]
    id.close()

    print 'Setting up low-res FESOM'
    # Build the regular FESOM grid
    elm2D_lr = fesom_grid(fesom_mesh_path_lr)
    # Read temperature and salinity at every node
    id = Dataset(fesom_file_lr, 'r')
    fesom_temp_nodes_lr = id.variables['temp'][0,:]
    fesom_salt_nodes_lr = id.variables['salt'][0,:]
    id.close()

    print 'Setting up high-res FESOM'
    elm2D_hr = fesom_grid(fesom_mesh_path_hr)
    id = Dataset(fesom_file_hr, 'r')
    fesom_temp_nodes_hr = id.variables['temp'][0,:]
    fesom_salt_nodes_hr = id.variables['salt'][0,:]
    id.close()

    # Loop over ice shelves
    for index in range(num_shelves):
        print 'Processing ' + shelf_names[index]
        # Figure out what to write on the title about longitude
        if lon0[index] < 0:
            lon_string = ' ('+str(-lon0[index])+r'$^{\circ}$W)'
        else:
            lon_string = ' ('+str(lon0[index])+r'$^{\circ}$E)'

        # MetROMS
        # Make sure longitude is between 0 and 360
        roms_lon0 = lon0[index]
        if roms_lon0 < 0:
            roms_lon0 += 360
        # Interpolate to given longitude
        roms_temp, roms_z, roms_lat = interp_lon_roms(roms_temp_3d, z_3d, lat_2d, lon_2d, roms_lon0)
        roms_salt, roms_z, roms_lat = interp_lon_roms(roms_salt_3d, z_3d, lat_2d, lon_2d, roms_lon0)
        # Figure out deepest depth
        flag = (roms_lat >= lat_min[index])*(roms_lat <= lat_max[index])
        depth_min_tmp = amin(roms_z[flag])
        # Round down to nearest 50 metres
        depth_min = floor(depth_min_tmp/50)*50

        # FESOM low-res
        # Build arrays of SideElements making up zonal slices
        selements_temp_lr = fesom_sidegrid(elm2D_lr, fesom_temp_nodes_lr, lon0[index], lat_max[index])
        selements_salt_lr = fesom_sidegrid(elm2D_lr, fesom_salt_nodes_lr, lon0[index], lat_max[index])
        # Build array of quadrilateral patches for the plots, and data values
        # corresponding to each SideElement
        patches_lr = []
        fesom_temp_lr = []
        for selm in selements_temp_lr:
            # Make patch
            coord = transpose(vstack((selm.y, selm.z)))
            patches_lr.append(Polygon(coord, True, linewidth=0.))
            # Save data value
            fesom_temp_lr.append(selm.var)
        fesom_temp_lr = array(fesom_temp_lr)
        # Salinity has same patches but different values
        fesom_salt_lr = []
        for selm in selements_salt_lr:
            fesom_salt_lr.append(selm.var)
        fesom_salt_lr = array(fesom_salt_lr)

        # FESOM high-res
        selements_temp_hr = fesom_sidegrid(elm2D_hr, fesom_temp_nodes_hr, lon0[index], lat_max[index])
        selements_salt_hr = fesom_sidegrid(elm2D_hr, fesom_salt_nodes_hr, lon0[index], lat_max[index])
        patches_hr = []
        fesom_temp_hr = []
        for selm in selements_temp_hr:
            coord = transpose(vstack((selm.y, selm.z)))
            patches_hr.append(Polygon(coord, True, linewidth=0.))
            fesom_temp_hr.append(selm.var)
        fesom_temp_hr = array(fesom_temp_hr)
        fesom_salt_hr = []
        for selm in selements_salt_hr:
            fesom_salt_hr.append(selm.var)
        fesom_salt_hr = array(fesom_salt_hr)

        # Find bounds on each variable
        temp_min = amin(array([amin(roms_temp[flag]), amin(fesom_temp_lr), amin(fesom_temp_hr)]))
        temp_max = amax(array([amax(roms_temp[flag]), amax(fesom_temp_lr), amax(fesom_temp_hr)]))
        salt_min = amin(array([amin(roms_salt[flag]), amin(fesom_salt_lr), amin(fesom_salt_hr)]))
        salt_max = amax(array([amax(roms_salt[flag]), amax(fesom_salt_lr), amax(fesom_salt_hr)]))
        # Plot
        fig = figure(figsize=(24,12))
        # MetROMS temperature
        ax = fig.add_subplot(2, 3, 1)
        pcolor(roms_lat, roms_z, roms_temp, vmin=temp_min, vmax=temp_max, cmap='jet')
        title(r'MetROMS temperature ($^{\circ}$C)', fontsize=20)
        ylabel('Depth (m)', fontsize=16)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        # FESOM low-res temperature
        ax = fig.add_subplot(2, 3, 2)
        img = PatchCollection(patches_lr, cmap='jet')
        img.set_array(fesom_temp_lr)
        img.set_edgecolor('face')
        img.set_clim(vmin=temp_min, vmax=temp_max)
        ax.add_collection(img)
        title(r'FESOM (low-res) temperature ($^{\circ}$C)', fontsize=20)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        # FESOM high-res temperature
        ax = fig.add_subplot(2, 3, 3)
        img = PatchCollection(patches_hr, cmap='jet')
        img.set_array(fesom_temp_hr)
        img.set_edgecolor('face')
        img.set_clim(vmin=temp_min, vmax=temp_max)
        ax.add_collection(img)
        title(r'FESOM (high-res) temperature ($^{\circ}$C)', fontsize=20)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        # Add colorbar for temperature
        cbaxes = fig.add_axes([0.92, 0.575, 0.01, 0.3])
        cbar = colorbar(img, cax=cbaxes)
        cbar.ax.tick_params(labelsize=16)
        # MetROMS salinity
        ax = fig.add_subplot(2, 3, 4)
        pcolor(roms_lat, roms_z, roms_salt, vmin=salt_min, vmax=salt_max, cmap='jet')
        title('MetROMS salinity (psu)', fontsize=20)    
        xlabel('Latitude', fontsize=16)
        ylabel('Depth (m)', fontsize=16)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        # FESOM low-res salinity
        ax = fig.add_subplot(2, 3, 5)
        img = PatchCollection(patches_lr, cmap='jet')
        img.set_array(fesom_salt_lr)
        img.set_edgecolor('face') 
        img.set_clim(vmin=salt_min, vmax=salt_max)
        ax.add_collection(img)
        title(r'FESOM (low-res) salinity (psu)', fontsize=20)
        xlabel('Latitude', fontsize=16)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        # FESOM high-res salinity
        ax = fig.add_subplot(2, 3, 6)
        img = PatchCollection(patches_hr, cmap='jet')
        img.set_array(fesom_salt_hr)
        img.set_edgecolor('face') 
        img.set_clim(vmin=salt_min, vmax=salt_max)
        ax.add_collection(img)
        title(r'FESOM (high-res) salinity (psu)', fontsize=20)
        xlabel('Latitude', fontsize=16)
        xlim([lat_min[index], lat_max[index]])
        ylim([depth_min, 0])
        # Add colorbar for salinity
        cbaxes = fig.add_axes([0.92, 0.125, 0.01, 0.3])
        cbar = colorbar(img, cax=cbaxes)
        cbar.ax.tick_params(labelsize=16)
        # Main title
        suptitle(shelf_names[index] + lon_string, fontsize=28)
        #fig.show()
        fig.savefig(fig_heads[index] + '_zonal_ts.png')
Esempio n. 33
0
def timeseries_seaice(mesh_path, ice_file, log_file, fig_dir=''):

    circumpolar = True  # Only consider elements south of 30S
    cross_180 = False  # Don't make second copies of elements that cross 180E
    days_per_output = 5  # Number of days for each output step

    total_area = []
    total_volume = []
    # Check if the log file exists
    if exists(log_file):
        print 'Reading previously calculated values'
        f = open(log_file, 'r')
        # Skip the first line (header)
        f.readline()
        for line in f:
            try:
                total_area.append(float(line))
            except (ValueError):
                # Reached the header for the next variable
                break
        for line in f:
            total_volume.append(float(line))
        f.close()

    print 'Building grid'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)

    print 'Reading data'
    id = Dataset(ice_file, 'r')
    num_time = id.variables['time'].shape[0]
    aice = id.variables['area'][:, :]
    hice = id.variables['hice'][:, :]
    id.close()

    print 'Setting up arrays'
    # Sea ice concentration at each element
    aice_elm = zeros([num_time, len(elements)])
    # Sea ice height at each element
    hice_elm = zeros([num_time, len(elements)])
    # Area of each element
    area_elm = zeros(len(elements))
    # Loop over elements to fill these in
    for i in range(len(elements)):
        elm = elements[i]
        # Average aice and hi over 3 component nodes
        aice_elm[:, i] = (aice[:, elm.nodes[0].id] + aice[:, elm.nodes[1].id] +
                          aice[:, elm.nodes[2].id]) / 3
        hice_elm[:, i] = (hice[:, elm.nodes[0].id] + hice[:, elm.nodes[1].id] +
                          hice[:, elm.nodes[2].id]) / 3
        # Call area function
        area_elm[i] = elm.area()

    # Build timeseries
    for t in range(num_time):
        # Integrate area and convert to million km^2
        total_area.append(sum(aice_elm[t, :] * area_elm) * 1e-12)
        # Integrate volume and convert to thousand km^3
        total_volume.append(
            sum(aice_elm[t, :] * hice_elm[t, :] * area_elm) * 1e-12)

    # Calculate time values
    time = arange(len(total_area)) * days_per_output / 365.

    print 'Plotting total sea ice area'
    clf()
    plot(time, total_area)
    xlabel('Years')
    ylabel(r'Total Sea Ice Area (million km$^2$)')
    grid(True)
    savefig(fig_dir + 'seaice_area.png')

    print 'Plotting total sea ice volume'
    clf()
    plot(time, total_volume)
    xlabel('Years')
    ylabel(r'Total Sea Ice Volume (thousand km$^3$)')
    grid(True)
    savefig(fig_dir + 'seaice_volume.png')

    print 'Saving results to log file'
    f = open(log_file, 'w')
    f.write('Total Sea Ice Area (million km^2):\n')
    for elm in total_area:
        f.write(str(elm) + '\n')
    f.write('Total Sea Ice Volume (thousand km^3):\n')
    for elm in total_volume:
        f.write(str(elm) + '\n')
    f.close()
Esempio n. 34
0
def barotropic_streamfunction_diff():

    mesh_path = '/short/y99/kaa561/FESOM/mesh/meshB/'
    directory_beg = '/short/y99/kaa561/FESOM/highres_spinup/'
    directories = [
        '/short/y99/kaa561/FESOM/rcp45_M/', '/short/y99/kaa561/FESOM/rcp45_A/',
        '/short/y99/kaa561/FESOM/rcp85_M/', '/short/y99/kaa561/FESOM/rcp85_A/'
    ]
    file_beg = 'annual_avg.oce.mean.1996.2005.nc'
    file_end = 'annual_avg.oce.mean.2091.2100.nc'
    num_expts = len(directories)
    expt_names = ['RCP 4.5 M', 'RCP 4.5 A', 'RCP 8.5 M', 'RCP 8.5 A']
    expt_filetails = ['rcp45_M', 'rcp45_A', 'rcp85_M', 'rcp85_A']
    # Bounds on regular grid
    lon_min = -180
    lon_max = 180
    lat_min = -85
    lat_max = -60
    # Number of points on regular grid
    num_lon = 1000
    num_lat = 250
    # Radius of the Earth in metres
    r = 6.371e6
    # Degrees to radians coversion factor
    deg2rad = pi / 180.0

    print 'Building mesh'
    elements = fesom_grid(mesh_path, circumpolar=False, cross_180=True)
    # Read number of 2D nodes
    f = open(mesh_path + 'nod2d.out', 'r')
    n2d = int(f.readline())
    f.close()
    # Read (rotated) lon, lat, and depth, at each 3D node
    f = open(mesh_path + 'nod3d.out', 'r')
    f.readline()
    rlon = []
    rlat = []
    node_depth = []
    for line in f:
        tmp = line.split()
        lon_tmp = float(tmp[1])
        lat_tmp = float(tmp[2])
        node_depth_tmp = -1 * float(tmp[3])
        if lon_tmp < -180:
            lon_tmp += 360
        elif lon_tmp > 180:
            lon_tmp -= 360
        rlon.append(lon_tmp)
        rlat.append(lat_tmp)
        node_depth.append(node_depth_tmp)
    f.close()
    rlon = array(rlon)
    rlat = array(rlat)
    node_depth = array(node_depth)
    # Read lists of which nodes are directly below which
    f = open(mesh_path + 'aux3d.out', 'r')
    max_num_layers = int(f.readline())
    node_columns = zeros([n2d, max_num_layers])
    for n in range(n2d):
        for k in range(max_num_layers):
            node_columns[n, k] = int(f.readline())
    node_columns = node_columns.astype(int)
    f.close()
    # Set up regular grid
    # Start with boundaries
    lon_reg_edges = linspace(lon_min, lon_max, num_lon + 1)
    lat_reg_edges = linspace(lat_min, lat_max, num_lat + 1)
    # Now get centres
    lon_reg = 0.5 * (lon_reg_edges[:-1] + lon_reg_edges[1:])
    lat_reg = 0.5 * (lat_reg_edges[:-1] + lat_reg_edges[1:])
    # Also get differentials in lon-lat space
    dlon = lon_reg_edges[1:] - lon_reg_edges[:-1]
    dlat = lat_reg_edges[1:] - lat_reg_edges[:-1]
    # Make 2D versions
    lon_reg_2d, lat_reg_2d = meshgrid(lon_reg, lat_reg)
    dlon_2d, dlat_2d = meshgrid(dlon, dlat)
    # Calculate differentials in Cartesian space
    dx = r * cos(lat_reg_2d * deg2rad) * dlon_2d * deg2rad
    dy = r * dlat_2d * deg2rad

    print 'Reading data'
    print '...1996-2005'
    # Read 3D rotated u and v
    id = Dataset(directory_beg + file_beg, 'r')
    ur = id.variables['u'][0, :]
    vr = id.variables['v'][0, :]
    id.close()
    # Unrotate
    u, v = unrotate_vector(rlon, rlat, ur, vr)
    # Vertically integrate u*dz
    int_udz_beg = zeros(n2d)
    # Loop over nodes
    for n in range(n2d):
        # Loop over depth
        for k in range(max_num_layers - 1):
            if node_columns[n, k + 1] == -999:
                # Reached the bottom
                break
            # Trapezoidal rule
            top_id = node_columns[n, k]
            bot_id = node_columns[n, k + 1]
            dz = node_depth[bot_id - 1] - node_depth[top_id - 1]
            int_udz_beg[n] += 0.5 * (u[top_id - 1] + u[bot_id - 1]) * dz
    int_udz_end = zeros([num_expts, n2d])
    for expt in range(num_expts):
        print '...' + expt_names[expt]
        id = Dataset(directories[expt] + file_end, 'r')
        ur = id.variables['u'][0, :]
        vr = id.variables['v'][0, :]
        id.close()
        u, v = unrotate_vector(rlon, rlat, ur, vr)
        for n in range(n2d):
            for k in range(max_num_layers - 1):
                if node_columns[n, k + 1] == -999:
                    break
                top_id = node_columns[n, k]
                bot_id = node_columns[n, k + 1]
                dz = node_depth[bot_id - 1] - node_depth[top_id - 1]
                int_udz_end[expt,
                            n] += 0.5 * (u[top_id - 1] + u[bot_id - 1]) * dz

    print 'Interpolating to regular grid'
    int_udz_reg_beg = zeros([num_lat, num_lon])
    int_udz_reg_end = zeros([num_expts, num_lat, num_lon])
    # For each element, check if a point on the regular lat-lon grid lies
    # within. If so, do barycentric interpolation to that point.
    for elm in elements:
        # Check if we are within domain of regular grid
        if amin(elm.lat) > lat_max:
            continue
        # Find largest regular longitude value west of Element
        tmp = nonzero(lon_reg > amin(elm.lon))[0]
        if len(tmp) == 0:
            # Element crosses the western boundary
            iW = 0
        else:
            iW = tmp[0] - 1
        # Find smallest regular longitude value east of Element
        tmp = nonzero(lon_reg > amax(elm.lon))[0]
        if len(tmp) == 0:
            # Element crosses the eastern boundary
            iE = num_lon
        else:
            iE = tmp[0]
        # Find largest regular latitude value south of Element
        tmp = nonzero(lat_reg > amin(elm.lat))[0]
        if len(tmp) == 0:
            # Element crosses the southern boundary
            jS = 0
        else:
            jS = tmp[0] - 1
        # Find smallest regular latitude value north of Element
        tmp = nonzero(lat_reg > amax(elm.lat))[0]
        if len(tmp) == 0:
            # Element crosses the northern boundary
            jN = num_lat
        else:
            jN = tmp[0]
        for i in range(iW + 1, iE):
            for j in range(jS + 1, jN):
                # There is a chance that the regular gridpoint at (i,j)
                # lies within this element
                lon0 = lon_reg[i]
                lat0 = lat_reg[j]
                if in_triangle(elm, lon0, lat0):
                    # Get area of entire triangle
                    area = triangle_area(elm.lon, elm.lat)
                    # Get area of each sub-triangle formed by
                    # (lon0, lat0)
                    area0 = triangle_area([lon0, elm.lon[1], elm.lon[2]],
                                          [lat0, elm.lat[1], elm.lat[2]])
                    area1 = triangle_area([lon0, elm.lon[0], elm.lon[2]],
                                          [lat0, elm.lat[0], elm.lat[2]])
                    area2 = triangle_area([lon0, elm.lon[0], elm.lon[1]],
                                          [lat0, elm.lat[0], elm.lat[1]])
                    # Find fractional area of each
                    cff = [area0 / area, area1 / area, area2 / area]
                    # Find value of int_udz at each Node
                    # 1996-2005
                    vals = []
                    for n in range(3):
                        vals.append(int_udz_beg[elm.nodes[n].id])
                    # Barycentric interpolation to lon0, lat0
                    int_udz_reg_beg[j, i] = sum(array(cff) * array(vals))
                    # Loop over other experiments
                    for expt in range(num_expts):
                        vals = []
                        for n in range(3):
                            vals.append(int_udz_end[expt, elm.nodes[n].id])
                        int_udz_reg_end[expt, j,
                                        i] = sum(array(cff) * array(vals))

    # Indefinite integral from south to north of udz*dy, convert to Sv
    strf_beg = cumsum(int_udz_reg_beg * dy, axis=0) * 1e-6
    # Apply land mask: wherever interpolated field was identically zero
    strf_beg = ma.masked_where(int_udz_reg_beg == 0, strf_beg)
    # Calculate difference for each RCP experiment
    strf_diff = ma.empty(shape(int_udz_reg_end))
    for expt in range(num_expts):
        strf_end = cumsum(int_udz_reg_end[expt, :, :] * dy, axis=0) * 1e-6
        strf_end = ma.masked_where(int_udz_reg_beg == 0, strf_end)
        strf_diff[expt, :, :] = strf_end - strf_beg

    print 'Plotting'
    print '...1996-2005'
    bound = amax(abs(strf_beg))
    fig = figure(figsize=(10, 6))
    ax = fig.add_subplot(1, 1, 1)
    pcolor(lon_reg, lat_reg, strf_beg, vmin=-bound, vmax=bound, cmap='RdBu_r')
    xlabel('Longitude')
    ylabel('Latitude')
    xlim([lon_min, lon_max])
    ylim([lat_min, lat_max])
    colorbar()
    title('Barotropic streamfunction (Sv), 1996-2005', fontsize=20)
    fig.savefig('strf_beg.png')
    for expt in range(num_expts):
        print '...' + expt_names[expt]
        bound = amax(abs(strf_diff[expt, :, :]))
        fig = figure(figsize=(10, 6))
        ax = fig.add_subplot(1, 1, 1)
        pcolor(lon_reg,
               lat_reg,
               strf_diff[expt, :, :],
               vmin=-bound,
               vmax=bound,
               cmap='RdBu_r')
        xlabel('Longitude')
        ylabel('Latitude')
        xlim([lon_min, lon_max])
        ylim([lat_min, lat_max])
        colorbar()
        title('Barotropic streamfunction (Sv), 2091-2100 minus 1996-2005 (' +
              expt_names[expt] + ')',
              fontsize=20)
        fig.savefig('strf_diff_' + expt_filetails[expt] + '.png')
Esempio n. 35
0
def rcp_ts_distribution (key=1):

    # File paths
    mesh_path = '/short/y99/kaa561/FESOM/mesh/high_res/'
    directory_beg = '/short/y99/kaa561/FESOM/highres_spinup/'
    directories = ['/short/y99/kaa561/FESOM/rcp45_M_highres/output/', '/short/y99/kaa561/FESOM/rcp45_A_highres/output/', '/short/y99/kaa561/FESOM/rcp85_M_highres/output/', '/short/y99/kaa561/FESOM/rcp85_A_highres/output/', '/short/y99/kaa561/FESOM/highres_spinup/']
    file_beg = 'annual_avg.oce.mean.1996.2005.nc'
    file_end = 'annual_avg.oce.mean.2091.2100.nc'
    # Titles for plotting
    expt_names = ['RCP 4.5 M', 'RCP 4.5 A', 'RCP 8.5 M', 'RCP 8.5 A', 'CONTROL']
    num_expts = len(directories)
    # Start and end years for each period
    beg_years = [1996, 2005]
    end_years = [2091, 2100]
    # Northern boundary of water masses to consider
    nbdry = -65
    # Number of temperature and salinity bins
    num_bins = 1000
    # Bounds on temperature and salinity bins (pre-computed, change if needed)
    min_salt = 32.3
    max_salt = 35.1
    min_temp = -3.1
    max_temp = 3.8
    # Bounds to actually plot
    if key==1:
        min_salt_plot = 32.25
        max_salt_plot = 35
        min_temp_plot = -3
        max_temp_plot = 3.25
    elif key==2:
        min_salt_plot = 34
        max_salt_plot = 35
        min_temp_plot = -2.5
        max_temp_plot = -1
    # FESOM grid generation parameters
    circumpolar = False
    cross_180 = False

    print 'Setting up bins'
    # Calculate boundaries of temperature bins
    temp_bins = linspace(min_temp, max_temp, num=num_bins)
    # Calculate centres of temperature bins (for plotting)
    temp_centres = 0.5*(temp_bins[:-1] + temp_bins[1:])
    # Repeat for salinity
    salt_bins = linspace(min_salt, max_salt, num=num_bins)
    salt_centres = 0.5*(salt_bins[:-1] + salt_bins[1:])
    # Set up 3D array of experiment x temperature bins x salinity bins to hold
    # average depth of water masses, weighted by volume
    ts_vals = zeros([num_expts+1, size(temp_centres), size(salt_centres)])
    # Also array to integrate volume of each bin
    volume = zeros([num_expts+1, size(temp_centres), size(salt_centres)])
    # Calculate surface freezing point as a function of salinity as seen by
    # sea ice model
    freezing_pt = -0.0575*salt_centres + 1.7105e-3*sqrt(salt_centres**3) - 2.155e-4*salt_centres**2
    # Get 2D versions of the temperature and salinity bins
    salt_2d, temp_2d = meshgrid(salt_centres, temp_centres)
    # Calculate potential density of each combination of temperature and
    # salinity bins
    density = unesco(temp_2d, salt_2d, zeros(shape(temp_centres)))-1000
    # Density contours to plot
    if key == 1:
        density_lev = arange(25.8, 28.4, 0.2)
    elif key == 2:
        density_lev = arange(27.2, 28.4, 0.2)

    print 'Building grid'
    elements = fesom_grid(mesh_path, circumpolar, cross_180)

    print 'Reading data'
    # 1996-2005
    id = Dataset(directory_beg + file_beg)
    n3d = id.variables['temp'].shape[1]
    temp_nodes = empty([num_expts+1, n3d])
    salt_nodes = empty([num_expts+1, n3d])
    temp_nodes[0,:] = id.variables['temp'][0,:]
    salt_nodes[0,:] = id.variables['salt'][0,:]
    id.close()
    # Loop over RCPs
    for expt in range(num_expts):
        id = Dataset(directories[expt] + file_end)
        temp_nodes[expt+1,:] = id.variables['temp'][0,:]
        salt_nodes[expt+1,:] = id.variables['salt'][0,:]
        id.close()

    print 'Binning elements'
    for elm in elements:
        # See if we're in the region of interest
        if all(elm.lat < nbdry):
            # Get area of 2D triangle
            area = elm.area()
            nodes = [elm.nodes[0], elm.nodes[1], elm.nodes[2]]
            # Loop downward
            while True:
                if nodes[0].below is None or nodes[1].below is None or nodes[2].below is None:
                    # We've reached the bottom
                    break
                # Calculate average temperature and salinity for each
                # experiment, as well as depth and layer thickness, over this
                # 3D triangular prism.
                temp_vals = empty([num_expts+1, 6])
                salt_vals = empty([num_expts+1, 6])
                depth_vals = empty(6)
                dz = empty(3)
                for i in range(3):
                    # Loop over experiments
                    for expt in range(num_expts+1):
                        # Average temperature over 6 nodes
                        temp_vals[expt,i] = temp_nodes[expt,nodes[i].id]
                        temp_vals[expt,i+3] = temp_nodes[expt,nodes[i].below.id]
                        salt_vals[expt,i] = salt_nodes[expt,nodes[i].id]
                        salt_vals[expt,i+3] = salt_nodes[expt,nodes[i].below.id]
                    # Average depth over 6 nodes
                    depth_vals[i] = nodes[i].depth
                    depth_vals[i+3] = nodes[i].below.depth
                    # Average dz over 3 vertical edges
                    dz[i] = abs(nodes[i].depth - nodes[i].below.depth)
                    # Get ready for next repetition of loop
                    nodes[i] = nodes[i].below
                temp_elm = mean(temp_vals, axis=1)
                salt_elm = mean(salt_vals, axis=1)
                depth_elm = mean(depth_vals)
                # Calculate volume of 3D triangular prism
                curr_volume = area*mean(dz)
                # Loop over experiments again
                for expt in range(num_expts+1):
                    # Figure out which bins this falls into
                    temp_index = nonzero(temp_bins > temp_elm[expt])[0][0] - 1
                    salt_index = nonzero(salt_bins > salt_elm[expt])[0][0] - 1
                    # Integrate depth*volume in this bin
                    ts_vals[expt, temp_index, salt_index] += depth_elm*curr_volume
                    volume[expt, temp_index, salt_index] += curr_volume
    # Mask bins with zero volume
    ts_vals = ma.masked_where(volume==0, ts_vals)
    volume = ma.masked_where(volume==0, volume)
    # Convert depths from integrals to volume-averages
    ts_vals /= volume

    # Find the maximum depth for plotting
    if key == 1:
        max_depth = amax(ts_vals)
    elif key == 2:
        temp_start = nonzero(temp_bins > min_temp_plot)[0][0]-2
        temp_end = nonzero(temp_bins > max_temp_plot)[0][0]
        salt_start = nonzero(salt_bins > min_salt_plot)[0][0]-2
        salt_end = nonzero(salt_bins > max_salt_plot)[0][0]
        max_depth = amax(ts_vals[:,temp_start:temp_end, salt_start:salt_end])
    # Make a nonlinear colour scale
    bounds = linspace(0, max_depth**(1.0/2.5), num=100)**2.5
    norm = BoundaryNorm(boundaries=bounds, ncolors=256)

    print 'Plotting'
    fig = figure(figsize=(24,6))
    gs = GridSpec(1,num_expts+1)
    gs.update(left=0.04, right=0.99, bottom=0.12, top=0.86)
    for expt in range(num_expts+1):
        ax = subplot(gs[0,expt])
        img = pcolor(salt_centres, temp_centres, ts_vals[expt,:,:], norm=norm, vmin=0, vmax=max_depth, cmap='jet')
        plot(salt_centres, freezing_pt, color='black', linestyle='dashed')
        cs = contour(salt_centres, temp_centres, density, density_lev, colors=(0.6,0.6,0.6), linestyles='dotted')
        clabel(cs, inline=1, fontsize=10, color=(0.6,0.6,0.6), fmt='%1.1f')
        xlim([min_salt_plot, max_salt_plot])
        ylim([min_temp_plot, max_temp_plot])
        ax.tick_params(axis='x', labelsize=12)
        ax.tick_params(axis='y', labelsize=12)
        if expt == 0:
            xlabel('Salinity (psu)', fontsize=14)
            ylabel(r'Temperature ($^{\circ}$C)', fontsize=14)
            title(str(beg_years[0]) + '-' + str(beg_years[1]), fontsize=20)
        elif expt == 1:
            title(expt_names[expt-1] + ' (' + str(end_years[0]) + '-' + str(end_years[1]) + ')', fontsize=20)
        else:
            title(expt_names[expt-1], fontsize=20)
        if expt == num_expts:
            # Add a horizontal colourbar below
            cbaxes = fig.add_axes([0.35, 0.05, 0.3, 0.02])
            if key == 1:
                cbar = colorbar(img, cax=cbaxes, orientation='horizontal', ticks=[0,50,100,200,500,1000,2000,4000])
            elif key == 2:
                cbar = colorbar(img, cax=cbaxes, orientation='horizontal', ticks=[0,50,100,200,500,1000,2000])
            cbar.ax.tick_params(labelsize=14)
    # Add the main title
    if key == 1:
        suptitle(r'Water masses south of 65$^{\circ}$S: depth (m)', fontsize=24)
    elif key == 2:
        suptitle(r'Water masses south of 65$^{\circ}$S, zoomed into HSSW: depth (m)', fontsize=24)
    fig.show()
    if key == 1:
        fig.savefig('ts_distribution_full.png')
    elif key ==2:
        fig.savefig('ts_distribution_hssw.png')
def fesom_intersectgrid (mesh_path, file_path, var_name, tstep, lon_min, lon_max, lat_min, lat_max, depth_min, depth_max, num_lat, num_depth):

    # Build the regular FESOM grid
    elements = fesom_grid(mesh_path)

    # Read data
    id = Dataset(file_path, 'r')
    data = id.variables[var_name][tstep-1,:]
    # Check for vector variables that need to be unrotated
    if var_name in ['u', 'v']:
        # Read the rotated lat and lon
        fid = open(mesh_path + 'nod3d.out', 'r')
        fid.readline()
        lon = []
        lat = []
        for line in fid:
            tmp = line.split()
            lon_tmp = float(tmp[1])
            lat_tmp = float(tmp[2])
            if lon_tmp < -180:
                lon_tmp += 360
            elif lon_tmp > 180:
                lon_tmp -= 360
            lon.append(lon_tmp)
            lat.append(lat_tmp)
        fid.close()
        lon = array(lon)
        lat = array(lat)
        if var_name == 'u':
            u_data = data[:]
            v_data = id.variables['v'][tstep-1,:]
            u_data_lonlat, v_data_lonlat = unrotate_vector(lon, lat, u_data, v_data)
            data = u_data_lonlat[:]
        elif var_name == 'v':
            v_data = data[:]
            u_data = id.variables['u'][tstep-1,:]
            u_data_lonlat, v_data_lonlat = unrotate_vector(lon, lat, u_data, v_data)
            data = v_data_lonlat[:]
    id.close()

    # Build the regular grid
    lat_vals = linspace(lat_min, lat_max, num_lat)
    # Make depth positive to match the "depth" attribute in grid Nodes
    depth_vals = -1*linspace(depth_min, depth_max, num_depth)

    # Set up array of NaNs to overwrite with zonally averaged data
    data_reg = zeros((num_depth, num_lat))
    data_reg[:,:] = NaN

    # Process one latitude value at a time
    for j in range(num_lat):
        inodes_lat = []
        # Loop over 2D grid Elements
        for elm in elements:
            # Select elements which intersect the current latitude, and which
            # fall entirely between the longitude bounds
            if any(elm.y <= lat_vals[j]) and any(elm.y >= lat_vals[j]) and all(elm.x >= lon_min) and all(elm.x <= lon_max):
                # Special case where nodes (corners) of the element are exactly
                # at lat_vals[j]
                if any(elm.y == lat_vals[j]):
                    # If exactly one of the corners is at lat_vals[j], ignore
                    # it; this element only touches lat_vals[j] at one point
                    # If two of the corners are at lat_vals[j], an entire side
                    # of the element lies along the line lat_vals[j]
                    if count_nonzero(elm.y == lat_vals[j]) == 2:
                        # Select these two Nodes
                        index = nonzero(elm.y == lat_vals[j])
                        nodes = elm.nodes[index]
                        node1 = nodes[0]
                        node2 = nodes[1]
                        # Convert to IntersectNodes and add them to inodes_lat
                        inodes_lat.append(coincide_inode(node1, depth_vals, data))
                        inodes_lat.append(coincide_inode(node2, depth_vals, data))
                    # Impossible for all three corners to be at lat_vals[j]
                else:
                    # Regular case
                    # Find the two sides of the triangular element which
                    # intersect lat_vals[j]
                    # For each such side, interpolate an IntersectNode between
                    # the two endpoint nodes, and add them to inodes_lat
                    if any(array([elm.y[0], elm.y[1]]) < lat_vals[j]) and any(array([elm.y[0], elm.y[1]]) > lat_vals[j]):
                        inodes_lat.append(interp_inode(elm.nodes[0], elm.nodes[1], lat_vals[j], depth_vals, data))
                    if any(array([elm.y[1], elm.y[2]]) < lat_vals[j]) and any(array([elm.y[1], elm.y[2]]) > lat_vals[j]):
                        inodes_lat.append(interp_inode(elm.nodes[1], elm.nodes[2], lat_vals[j], depth_vals, data))
                    if any(array([elm.y[0], elm.y[2]]) < lat_vals[j]) and any(array([elm.y[0], elm.y[2]]) > lat_vals[j]):
                        inodes_lat.append(interp_inode(elm.nodes[0], elm.nodes[2], lat_vals[j], depth_vals, data))

        # Sort inodes_lat by longitude (ascending)
        inodes_lat.sort(key=lambda inode: inode.lon)

        # Interpolate the variable values at each depth
        for k in range(num_depth):
            valid_lon = []
            valid_var = []
            for inode in inodes_lat:
                # Select all IntersectNodes where data exists at the current
                # depth level
                if inode.var[k] is not nan:
                    # Only continue if an identical inode (same longitude)
                    # hasn't already been added to valid_lon and valid_var
                    # (this will happen on adjacent elements which share a side)
                    if inode.lon not in valid_lon:
                        # Save longitude and variable values
                        valid_lon.append(inode.lon)
                        valid_var.append(inode.var[k])
            # Convert to numpy arrays so we can do math with them
            valid_lon = array(valid_lon)
            valid_var = array(valid_var)
            if len(valid_lon) == 0:
                # No valid data; leave data_reg[k,j] as NaN
                pass
            elif len(valid_lon) == 1:
                # Only one valid data point; save to data_reg
                data_reg[k,j] = valid_var[0]
            else:
                # Average over longitude
                # Trapezoidal rule for integration
                dlon = valid_lon[1:] - valid_lon[0:-1]
                var_centres = 0.5*(valid_var[0:-1] + valid_var[1:])
                # Divide integral of var_centres*dlon by integral of dlon
                # to get average; save to data_reg
                var_avg = sum(var_centres*dlon)/sum(dlon)
                data_reg[k,j] = var_avg

    # Convert depth back to negative for plotting
    depth_vals = -1*depth_vals

    return lat_vals, depth_vals, data_reg