def eigenvals3(d, c, N):
    def f(x):  # f(x) = |[A] - x[I]|
        p = sturmSeq(d, c, x)
        return p[len(p) - 1]

    lam = zeros(N)
    r = lamRange(d, c, N)  # Bracket eigenvalues
    for i in range(N):  # Solve by Brent's method
        lam[i] = ridder(f, r[i], r[i + 1])
    return lam
Esempio n. 2
0
def eigenvals3(d, c, N):
    def f(x):  # f(x) = |[A] - x[I]|
        p = sturmSeq(d, c, x)
        return p[len(p) - 1]

    evals = np.empty(N)
    r = lamRange(d, c, N)  # Bracket eigenvalues
    for i in range(N):  # Solve by Brent's method
        assert (f(r[i]) * f(r[i + 1]) < 0.0)
        evals[i] = scipy.optimize.brentq(f, r[i], r[i + 1])
    return evals
Esempio n. 3
0
def eigenvals3(d,c,N):

    def f(x):             # f(x) = |[A] - x[I]|
        p = sturmSeq(d,c,x)
        return p[len(p)-1]

    lam = zeros(N)
    r = lamRange(d,c,N)   # Bracket eigenvalues
    for i in range(N):    # Solve by Brent's method
        lam[i] = ridder(f,r[i],r[i+1])
    return lam   
Esempio n. 4
0
def tridiagonal_solver(d, e, eigenvectors=True):
    """Calculates the eigenvalues and eigenvectors of a tridiagonal and
    symmetric matrix.

    Parameters
    ----------
    d : a numpy array with ndim = 1.
        The elements of the diagonal of the tridiagonal matrix. 
    e : a numpy array with ndim = 1.
        The off-diagonal elements of the tridiagonal matrix. 
    eigenvectors : a bool (optional).
        Whether you want to calculate the eigenvectors.

    Returns
    -------
    evals : a numpy array with ndim = 1.
        The eigenvalues.
    evecs : a numpy array with ndim = 2.
        The eigenvectors.

    Raises
    ------
    TridiagonalException 
        if `d` and `e` have different sizes.
    """
    if (d.size != e.size + 1):
        raise TridiagonalException("d, and e have different sizes")
    num_evals = d.size
    evals = np.empty(num_evals)
    evecs = np.empty((num_evals, num_evals))

    r = lamRange(d, e, num_evals)
    assert (len(r) == num_evals + 1)

    evals = eigenvals3(d, e, num_evals)

    if eigenvectors:
        for i in range(num_evals):
            evals[i], evecs[:, i] = inversePower3(d, e, 1.00000001 * evals[i])
#
#    An alternative that uses the brakets from lamRange:
#
#    if eigenvectors:
#        for i in range(num_evals):
#            s = (r[i] + r[i+1])/2.0
#    	    evals[i], evecs[:, i] = inversePower3(d, e, s)
#    else:
#	evals = eigenvals3(d, e, num_evals)

    return evals, evecs
def tridiagonal_solver(d, e, eigenvectors = True):
    """Calculates the eigenvalues and eigenvectors of a tridiagonal and
    symmetric matrix.

    Parameters
    ----------
    d : a numpy array with ndim = 1.
        The elements of the diagonal of the tridiagonal matrix. 
    e : a numpy array with ndim = 1.
        The off-diagonal elements of the tridiagonal matrix. 
    eigenvectors : a bool (optional).
        Whether you want to calculate the eigenvectors.

    Returns
    -------
    evals : a numpy array with ndim = 1.
        The eigenvalues.
    evecs : a numpy array with ndim = 2.
        The eigenvectors.

    Raises
    ------
    TridiagonalException 
        if `d` and `e` have different sizes.
    """
    if (d.size != e.size + 1):
        raise TridiagonalException("d, and e have different sizes")
    num_evals = d.size
    evals = np.empty(num_evals)
    evecs = np.empty((num_evals, num_evals))

    r = lamRange(d, e, num_evals)
    assert(len(r) == num_evals +1)

    evals = eigenvals3(d, e, num_evals)

    if eigenvectors:
        for i in range(num_evals):
    	    evals[i], evecs[:, i] = inversePower3(d, e, 1.00000001*evals[i])
#
#    An alternative that uses the brakets from lamRange:
#
#    if eigenvectors:
#        for i in range(num_evals):
#            s = (r[i] + r[i+1])/2.0
#    	    evals[i], evecs[:, i] = inversePower3(d, e, s)
#    else:
#	evals = eigenvals3(d, e, num_evals)

    return evals, evecs
Esempio n. 6
0
## example9_13
from numarray import ones
from lamRange import *
from inversePower3 import *

N = 10
n = 100
d = ones((n)) * 2.0
c = ones((n - 1)) * (-1.0)
r = lamRange(d, c, N)  # Bracket N smallest eigenvalues
s = (r[N - 1] + r[N]) / 2.0  # Shift to midpoint of Nth bracket
lam, x = inversePower3(d, c, s)  # Inverse power method
print "Eigenvalue No.", N, " =", lam
raw_input("\nPress return to exit")
Esempio n. 7
0
#!/usr/bin/python
## example9_13

import numpy as np
from lamRange import *
from inversePower3 import *

N = 10
n = 100
d = np.ones(n) * 2.0
c = np.ones(n - 1) * (-1.0)
r = lamRange(d, c, N)
s = (r[N - 1] + r[N]) / 2.0
lam, x = inversePower3(d, c, s)  # Inverse power method

print("Eigenvalue No.", N, " =", lam)
input("\nPress return to exit")
Esempio n. 8
0
## example9_13
from numarray import ones
from lamRange import *
from inversePower3 import *

N = 10              
n = 100                
d = ones((n))*2.0
c = ones((n-1))*(-1.0)
r = lamRange(d,c,N)           # Bracket N smallest eigenvalues
s = (r[N-1] + r[N])/2.0       # Shift to midpoint of Nth bracket
lam,x = inversePower3(d,c,s)  # Inverse power method
print "Eigenvalue No.",N," =",lam
raw_input("\nPress return to exit")