def crossValidation(): print('reading cross validation data...') config.swLog.write('reading cross validation data...\n') XList = [] XXList = [] loadDataForCV(XList, XXList) for r in config.regList: config.swLog.write('\ncross validation. r={}\n'.format(r)) print('\ncross validation. r={}'.format(r)) if config.rawResWrite: config.swResRaw.write('% cross validation. r={}'.format(r)) for i in range(config.nCV): config.swLog.write('\n#validation={}\n'.format(i + 1)) print('\n#validation={}'.format(i + 1)) if config.rawResWrite: config.swResRaw.write('\n#validation={}\n'.format(i + 1)) config.reg = r Xi = XList[i] if config.runMode.find('rich') >= 0: tb = toolboxRich(Xi) basicTrain(XXList[i], tb) else: tb = toolbox(Xi) basicTrain(XXList[i], tb) resSummarize.write() if config.rawResWrite: config.swResRaw.write('\n') if config.rawResWrite: config.swResRaw.write('\n')
def train(): print('\nreading training & test data...') config.swLog.write('\nreading training & test data...\n') if config.runMode.find('tune') >= 0: origX = dataSet(config.fFeatureTrain, config.fGoldTrain) X = dataSet() XX = dataSet() dataSplit(origX, config.tuneSplit, X, XX) else: X = dataSet(config.fFeatureTrain, config.fGoldTrain) XX = dataSet(config.fFeatureTest, config.fGoldTest) dataSizeScale(X) print('done! train/test data sizes: {}/{}'.format(len(X), len(XX))) config.swLog.write('done! train/test data sizes: {}/{}\n'.format( len(X), len(XX))) for r in config.regList: config.reg = r config.swLog.write('\nr: ' + str(r) + '\n') print('\nr: ' + str(r)) if config.rawResWrite: config.swResRaw.write('\n%r: ' + str(r) + '\n') tb = toolbox(X, True) score = basicTrain(XX, tb) resSummarize.write() if config.save == 1: tb.Model.save(config.fModel) return score
def test(): config.swLog.write('reading test data...\n') XX = dataSet(config.fFeatureTest, config.fGoldTest) print('test data size: {}'.format(len(XX))) config.swLog.write('Done! test data size: {}'.format(len(XX))) tb = toolbox(XX, False) scorelist = tb.test(XX, 0)