Esempio n. 1
0
def VOI(x,a=aVec,grad=False):
    bVec=bfunc(x)
    a,b,keep=AffineBreakPointsPrep(a,bVec)
    keep1,c=AffineBreakPoints(a,b)
    keep1=keep1.astype(np.int64)
    M=len(keep1)
    keep2=keep[keep1]
    
    return hvoi(b,c,keep1)+a_0(x)
Esempio n. 2
0
def VOI(x,a2=aVec,grad=False):
    lsum=np.sum(x)
    

    newIndexes=[(i,j) for (i,j) in possiblePoints if np.sum(j)==totalOpenings-lsum]
    bVec=bfunc(x,[j for (i,j) in newIndexes])

    bVec=bVec+np.sqrt(sigma_0(x,x))
  
    a2=np.array([a2[i] for (i,j) in newIndexes])
    a2=a2+a_0(x)

    a,b,keep=AffineBreakPointsPrep(a2,bVec)
    
    keep1,c=AffineBreakPoints(a,b)
    keep1=keep1.astype(np.int64)
    M=len(keep1)
    keep2=keep[keep1]
    
    return hvoi(b,c,keep1)+a_0(x)
Esempio n. 3
0
    def VOIfunc(self, n, pointNew, L, data, kern, temp1, temp2, grad, a, onlyGrad=False):
        n1 = self.n1
        tempN = n + self._numberTraining
        b, temp5, inner, tempB = self.aANDb(n, self._points, pointNew, L, data, kern, temp1, temp2)
        a, b, keep = AffineBreakPointsPrep(a, b)
        keep1, c = AffineBreakPoints(a, b)
        keep1 = keep1.astype(np.int64)
        M = len(keep1)
        keep2 = keep[keep1]
        if grad:
            B2temp = np.zeros((M, tempN))
            inv1temp = np.zeros((M, tempN))
            for j in xrange(M):
                inv1temp[j, :] = temp2[keep2[j], :]
        if onlyGrad:
            return self.evalVOI(
                n, pointNew, a, b, c, keep, keep1, M, L, data.Xhist, kern, tempB, temp5, inner, inv1temp, grad, onlyGrad
            )
        if grad == False:
            return self.evalVOI(n, pointNew, a, b, c, keep, keep1, M, L, data.Xhist, kern, tempB, grad=False)

        return self.evalVOI(
            n, pointNew, a, b, c, keep, keep1, M, L, data.Xhist, kern, tempB, temp5, inner, inv1temp, grad
        )
Esempio n. 4
0
    def VOIfunc(self, n, pointNew, grad, L, temp2, a, scratch, kern, XW, B, onlyGradient=False):
        """
        Output:
            Evaluates the VOI and it can compute its derivative. It evaluates
            the VOI, when grad and onlyGradient are False; it evaluates the
            VOI and computes its derivative when grad is True and onlyGradient
            is False, and computes only its gradient when gradient and
            onlyGradient are both True.
        
        Args:
            -n: Iteration of the algorithm.
            -pointNew: The VOI will be evaluated at this point.
            -grad: True if we want to compute the gradient; False otherwise.
            -L: Cholesky decomposition of the matrix A, where A is the covariance
                matrix of the past obsevations (x,w).
            -temp2: temp2=inv(L)*B.T, where B is a matrix such that B(i,j) is
                   \int\Sigma_{0}(x_{i},w,x_{j},w_{j})dp(w)
                   where points x_{p} is a point of the discretization of
                   the space of x; and (x_{j},w_{j}) is a past observation.
            -a: Vector of the means of the GP on g(x)=E(f(x,w,z)).
                The means are evaluated on the discretization of
                the space of x.
            -scratch: Matrix where scratch[i,:] is the solution of the linear system
                      Ly=B[j,:].transpose() (See above for the definition of B and L)
            -kern: Kernel.
            -XW: Past observations.
            -B: Computes B(x,XW)=\int\Sigma_{0}(x,w,XW[0:n1],XW[n1:n1+n2])dp(w).
                Its arguments are:
                    -x: Vector of points where B is evaluated
                    -XW: Point (x,w)
                    -n1: Dimension of x
                    -n2: Dimension of w
            -onlyGradient: True if we only want to compute the gradient; False otherwise.
        """
        n1 = self.n1
        b, gamma, BN, temp1, aux4 = self.aANDb(
            n,
            self._points,
            pointNew[0, 0:n1],
            pointNew[0, n1 : n1 + self.n2],
            L,
            temp2=temp2,
            past=XW,
            kernel=kern,
            B=B,
        )
        a, b, keep = AffineBreakPointsPrep(a, b)
        keep1, c = AffineBreakPoints(a, b)
        keep1 = keep1.astype(np.int64)
        M = len(keep1)
        nTraining = self._numberTraining
        tempN = nTraining + n
        keep2 = keep[keep1]
        if grad:
            scratch1 = np.zeros((M, tempN))
            for j in xrange(M):
                scratch1[j, :] = scratch[keep2[j], :]
        if onlyGradient:
            return self.evalVOI(
                n,
                pointNew,
                a,
                b,
                c,
                keep,
                keep1,
                M,
                gamma,
                BN,
                L,
                scratch=scratch1,
                inv=temp1,
                aux4=aux4,
                grad=True,
                onlyGradient=onlyGradient,
                kern=kern,
                XW=XW,
            )
        if grad == False:
            return self.evalVOI(
                n, pointNew, a, b, c, keep, keep1, M, gamma, BN, L, aux4=aux4, inv=temp1, kern=kern, XW=XW
            )

        return self.evalVOI(
            n,
            pointNew,
            a,
            b,
            c,
            keep,
            keep1,
            M,
            gamma,
            BN,
            L,
            aux4=aux4,
            inv=temp1,
            scratch=scratch1,
            grad=True,
            kern=kern,
            XW=XW,
        )