Esempio n. 1
0
def contour(chaindir, cosmo, data, compute_param_function):

    C = ChainIterator(chaindir, cosmo, 'phy', data)
    z = numpy.arange(0, 3, 0.01)

    # find best model
    min_chi2 = numpy.min(C.chain.chain[:, 1])
    model_best_index = numpy.argmin(C.chain.chain[:, 1])
    print "minimum chi2 = ", min_chi2
    T = C.theory(model_best_index)

    # compute param for this model
    param_best = numpy.zeros(z.shape)
    for i in range(z.shape[0]):
        param_best[i] = compute_param_function(T, z[i])

    # allocate param for +- 1 sigma
    param_1sigma_plus = param_best.copy()
    param_1sigma_minus = param_best.copy()

    # selection of models within 1sig
    model_1sig_indices = numpy.where(C.chain.chain[:, 1] <= min_chi2 + 1)[0]
    print "number of models at 1 sig = ", model_1sig_indices.shape[0]
    # if too many, look only at those close to 1 sigma (this is for LCDM, there are too many)
    chi2_floor = min_chi2
    while (model_1sig_indices.shape[0] > 3000):
        chi2_floor += 0.01
        model_1sig_indices = numpy.where((C.chain.chain[:, 1] <= min_chi2 + 1)
                                         & (C.chain.chain[:,
                                                          1] >= chi2_floor))[0]
    print "number of selected models for the 1sig contour plot = ", model_1sig_indices.shape[
        0]

    # loop on models to find max excursion
    count = 0
    for index in model_1sig_indices:
        count += 1
        T = C.theory(index)
        for i in range(z.shape[0]):
            parami = compute_param_function(T, z[i])
            param_1sigma_minus[i] = min(param_1sigma_minus[i], parami)
            param_1sigma_plus[i] = max(param_1sigma_plus[i], parami)
        if count % 100 == 0:
            print "done %d/%d" % (count, model_1sig_indices.shape[0])

    # return -1sig,best,1sig
    return z, param_1sigma_minus, param_best, param_1sigma_plus
Esempio n. 2
0
def contour(chaindir,cosmo,data,compute_param_function) :

    C=ChainIterator(chaindir,cosmo,'phy',data)
    z=numpy.arange(0,3,0.01)

    # find best model 
    min_chi2 = numpy.min(C.chain.chain[:,1])
    model_best_index = numpy.argmin(C.chain.chain[:,1])
    print "minimum chi2 = ", min_chi2
    T=C.theory(model_best_index)

    # compute param for this model
    param_best=numpy.zeros(z.shape)
    for i in range(z.shape[0]) :
        param_best[i]=compute_param_function(T,z[i])

    # allocate param for +- 1 sigma
    param_1sigma_plus=param_best.copy()
    param_1sigma_minus=param_best.copy()


    # selection of models within 1sig
    model_1sig_indices=numpy.where(C.chain.chain[:,1]<=min_chi2+1)[0]
    print "number of models at 1 sig = ",model_1sig_indices.shape[0]
    # if too many, look only at those close to 1 sigma (this is for LCDM, there are too many)
    chi2_floor=min_chi2
    while (model_1sig_indices.shape[0]>3000) :
        chi2_floor+=0.01
        model_1sig_indices=numpy.where((C.chain.chain[:,1]<=min_chi2+1)&(C.chain.chain[:,1]>=chi2_floor))[0]
    print "number of selected models for the 1sig contour plot = ",model_1sig_indices.shape[0]
    


    # loop on models to find max excursion 
    count=0
    for index in model_1sig_indices :
        count+=1
        T=C.theory(index)
        for i in range(z.shape[0]) :
            parami=compute_param_function(T,z[i])
            param_1sigma_minus[i]=min(param_1sigma_minus[i],parami)
            param_1sigma_plus[i]=max(param_1sigma_plus[i],parami)
        if count%100==0 :
            print "done %d/%d"%(count,model_1sig_indices.shape[0])
            
    # return -1sig,best,1sig
    return z,param_1sigma_minus,param_best,param_1sigma_plus
Esempio n. 3
0
    pylab.xlabel(C.latexname(param_2D[0]))
    pylab.ylabel(C.latexname(param_2D[1]))
    pylab.savefig(name_fig + '_2D.pdf')
    pylab.show()

if 'True' in Plot_1D:
    a = 0
    for datasets in datasetl:
        b = 0
        for params in params_1D:
            b += 1
            pylab.subplot(1, len(params_1D), b)
            C = cosmochain(dire + model_1D + '_' + datasets, 'auto')

            C = ChainIterator('chains_140411_155701', 'LCDM', 'phy',
                              'BBAO+CMBP')
            grlist = []
            wlist = []
            for i in range(0, C.N, 1000):
                T = C.theory(i)
                grlist.append(T.growth(10.0))
                wlist.append(C.weight(i))

            grlist = array(grlist)
            wlist = array(wlist)
            mn = (grlist * wlist).sum() / wlist.sum()
            er = sqrt((grlist**2 * wlist).sum() / wlist.sum() - mn**2)
            print("growth z=10/z=0 = ", mn, "+/-", er)

            a += 1
            xx, yy = C.GetHisto(params, NormPeak=True, nbins=NBins_1D)
Esempio n. 4
0

if 'True' in Plot_1D:
   a=0
   for datasets in datasetl:
      b=0
      for params in params_1D:
        b+=1
	pylab.subplot(1,len(params_1D),b)

	#fname=self.get_filename(dire,model,extra,dataset)
	C=cosmochain(dire+ model_1D+'_'+datasets,'auto')	

	if(True):                  #Compute functions= ratio of Fig 2 at z=0.57/0
	  dire2 = 'chains/DR12/'
          D=ChainIterator(dire2, 'LCDM','phy', 'CombBAOzb3')
          grlist=[]
	  wlist=[]
	  
	  for i in range(0,D.N,1000):
	    T=D.theory(i)
	    #grlist.append(T.Da_z(0.57)/T.Hinv_z(0)/(1.0*N.log(1.57)))	
	    #grlist.append(T.DaOverrd(0.51)) 
	    grlist.append(T.HIOverrd(0.61)) 
	    wlist.append(D.weight(i))

	  grlist=array(grlist)
	  wlist=array(wlist)
	  mn=(grlist*wlist).sum()/wlist.sum()
	  er=sqrt((grlist**2*wlist).sum()/wlist.sum()-mn**2)
	  #print "H(0.0)/(1.0) \over c*ln(1.57)/D_m(0.57)  = ",mn,"+/-",er
Esempio n. 5
0
  pylab.ylabel(C.latexname(param_2D[1]))
  pylab.savefig(name_fig+'_2D.pdf')
  pylab.show()



if 'True' in Plot_1D:
   a=0
   for datasets in datasetl:
      b=0
      for params in params_1D:
        b+=1
	pylab.subplot(1,len(params_1D),b)
	C=cosmochain(dire+ model_1D+'_'+datasets,'auto')	

        C=ChainIterator('chains_140411_155701','LCDM','phy','BBAO+CMBP')
        grlist=[]
	wlist=[]
	for i in range(0,C.N,1000):
	    T=C.theory(i)
	    grlist.append(T.growth(10.0))
	    wlist.append(C.weight(i))

	grlist=array(grlist)
	wlist=array(wlist)
	mn=(grlist*wlist).sum()/wlist.sum()
	er=sqrt((grlist**2*wlist).sum()/wlist.sum()-mn**2)
	print "growth z=10/z=0 = ",mn,"+/-",er


Esempio n. 6
0
#!/usr/bin/env python

from RunBase import *
from ChainIterator import *

C=ChainIterator('chains_140411_155701','LCDM','phy','BBAO+CMBP')

grlist=[]
wlist=[]
for i in range(0,C.N,1000):
    T=C.theory(i)
    grlist.append(T.growth(10.0))
    wlist.append(C.weight(i))

grlist=array(grlist)
wlist=array(wlist)
mn=(grlist*wlist).sum()/wlist.sum()
er=sqrt((grlist**2*wlist).sum()/wlist.sum()-mn**2)
print "growth z=10/z=0 = ",mn,"+/-",er

Esempio n. 7
0
import numpy as np
#from RunBase import *
#from cosmich import *
from ChainIterator import *

if (True):  #Compute functions= ratio of Fig 2 at z=0.57/0
    dire2 = '/astro/u/jvazquez/work/SimpleMC/trunk/chains/'
    D = ChainIterator(dire2, 'FCDM', 'phy', 'Planck_15+BBAO+SN', balance=False)
    grlist = []
    wlist = []
    with open('my_data.txt', 'w') as g:
        for i in range(0, D.N, 2000):
            T = D.theory(i)

            z = [j for j in np.arange(-0.9, 4, 0.2)]
            wde = [T.w_de(j) for j in np.arange(-0.9, 4, 0.2)]
            ll = len(z)

            t = (D.weight(i), ) + tuple(z) + tuple(wde)
            g.write(str('%2.5e\t' * (2 * ll + 1) % (t)))
            g.write('\n')
Esempio n. 8
0
modell = ['Decay', 'Decay01', 'Decay05']

dire = 'chains_SimpleMC/decay/'
data = 'BBAO+Planck'
extra = 'phy'
z = 'z2'
zval = 2.0

for model in modell:

    outfile = 'chains/' + model + '_' + z + '_' + extra + '_' + data
    fout = open(outfile + "_1.txt", 'w')
    formstr = '%g ' * (6) + '\n'

    C = ChainIterator(dire, model, extra, data, balance=False)

    grlist = []
    wlist = []
    for i in range(0, C.N, 400):
        T = C.theory(i)
        outstr = formstr % tuple([
            C.weight(i), 0.5 * C.chi2(i),
            C.pvalue(i, 'h'),
            C.pvalue(i, 'Om'),
            C.pvalue(i, 'lambda'),
            T.Om_z(1.0 / (1 + zval))
        ])
        fout.write(outstr)
        fout.flush()
        #print C.chi2(i), C.weight(i), C.pvalue(i,'h'), T.Om_z(0.5)
Esempio n. 9
0
import numpy as np
#from RunBase import *
#from cosmich import *
from ChainIterator import *


if(True):                  #Compute functions= ratio of Fig 2 at z=0.57/0
          dire2 = '/astro/u/jvazquez/work/SimpleMC/trunk/chains/'
          D=ChainIterator(dire2, 'FCDM','phy', 'Planck_15+BBAO+SN', balance =False)
          grlist=[]
          wlist=[]
	  with open('my_data.txt', 'w') as g:
           for i in range(0,D.N,2000):
            T=D.theory(i)
	    
            z = [j for j in np.arange(-0.9,4,0.2)]
	    wde = [T.w_de(j) for j in np.arange(-0.9,4,0.2)]
	    ll = len(z)

            t = (D.weight(i),) + tuple(z) + tuple(wde)
	    g.write(str('%2.5e\t'*(2*ll+1)%(t))) 
	    g.write('\n')