Esempio n. 1
0
def main(option):

    if 'i' in option:

        temp = Collector.main(option)
        journal = temp[0]
        vh = temp[1]
        allocationFile = temp[2]
        extentsFile = temp[3]
        catalogFile = temp[4]
        attributesFile = temp[5]

    else:

        f = open(option['j'], 'rb')
        journal = f.read()
        f.close()

        files = []
        for i in ['v', 'al', 'e', 'c', 'at']:
            if i in option:

                f = open(option[i], 'rb')
                files.append(f.read())
                f.close()

            else:
                files.append(0)

        vh = files[0]
        allocationFile = files[1]
        extentsFile = files[2]
        catalogFile = files[3]
        attributesFile = files[4]

    print 'Analyzing journal...'
    jParseList = journalParser(journal)[0]
    #jT = journalTrack(jParseList)

    path = 'result{0}'.format(option['id'])

    DirectoryCleaning(path)

    specialFileAnalyzer(
        path, {
            'Extents': extentsFile,
            'Catalog': catalogFile,
            'Attributes': attributesFile
        })

    rawCSV(path, jParseList)
    rawSQLite3(path, jParseList)

    if 'r' in option:
        recovery(option['l'], path, option['r'], jParseList, vh)
Esempio n. 2
0
from BloomFilter import *
from rrm import *
from Collector import *
import scipy.stats as stats
import numpy as np
import pylab as plt

p=1/6
q=5/6
f=0.25

MyCollector=Collector(f,p,q)
#print(bf)

x=np.arange(10,30,0.2)
y=np.zeros(100)
for i in range(100):
    y[i]=1000
z=np.zeros(100)
for index in range(100):
    for i in range(1000):
        data=BloomFilter(index,5)
        bf=data.getBloomFilter()
        response=RRM(bf,f,p,q)
        pbf=response.randomer()
        MyCollector.receiver(pbf)
    #print(pbf)
result=MyCollector.getResult()
#print(result)

for i in range(0,100):
Esempio n. 3
0
 def run(self):
     print "Iniciando thread %s " % (self.name)
     Collector.MainBoot(self.nome, self.id)
     print "Finalizando " + self.nome
import Collector
Collector.start_function('kitten/index_local.html')
Esempio n. 5
0
from BloomFilter import *
from rrm import *
from Collector import *
import scipy.stats as stats
import numpy as np
import pylab as plt



MyCollector=Collector(0.5,0.5)
#print(bf)
'''
mu=50
sigma=10
x=np.arange(0,101,1)
y=stats.norm.pdf(x,50,10)
'''
x=np.arange(10,30,0.2)
z=np.zeros(100)
y=np.zeros(100)
for i in np.arange(0,100):
    y[i]=1000

for index in range(100):
    for i in range(int(y[index])):
        data=BloomFilter(index,5)
        bf=data.getBloomFilter()
        start=data.getSecurityDomain1()
        end=data.getSecurityDomain2()
        response=RRM(bf,0.5,0.5,start,end)
Esempio n. 6
0
def main():
    
    Utility.DirectoryCleaning('transaction')
    Utility.DirectoryCleaning('result')

    if raw_input('Is disk connected? [y/n]: ').lower()=='y':

        disk=Collector.VolumeFinder()

        select = (raw_input('Would you like to create image? [y/n] : ').lower()=='y')
        recovery = (raw_input('Would you like to recover the image? [y/n] : ').lower()=='y')
        
        print 'Collecting files...'
        volumeHeader=VolumeHeader(Utility.DiskDump(disk,'HFSPlusVolumeHeader',512,2,1,select))

        journal=Collector.JournalExtractor(self.journalInfoBlock,disk,volumeHeader.blockSize,select)
        allocationFile=Collector.SpecialFileExtractor('AllocationFile',volumeHeader.specialFileFork[0],disk,volumeHeader.blockSize,select)
        extentsOverflowFile=Collector.SpecialFileExtractor('ExtentsOverflowFile',volumeHeader.specialFileFork[1],disk,volumeHeader.blockSize,select)
        catalogFile=Collector.SpecialFileExtractor('CatalogFile',volumeHeader.specialFileFork[2],disk,volumeHeader.blockSize,select)
    
    else:
        
        path=raw_input('Input path of volume header\n')
        f=open(path,'rb')
        volumeHeader=VolumeHeader(f.read())
        f.close()
        
        path=raw_input('Input path of journal\n')
        f=open(path,'rb')
        journal=f.read()
        f.close()

        if raw_input('Input path of catalog file(y/n)\n') == 'y':
            path=input()
            f=open(path,'rb')
            catalogFile=f.read()
            f.close()
        
        """
        if raw_input('Input path of allocation file(y/n)') == 'y':
        path=raw_input()
        f=open(path,'rb')
        AllocationFile=f.read()
        f.close()
        
        if raw_input('Input path of extents overflow file(y/n)\n') == 'y':
        path=raw_input()
        f=open(path,'rb')
        ExtentsOverflowFile=f.read()
        f.close()
        """
        recovery=False

    print 'Analyzing journal...'
    tranBlocks=Analyzer.journalParser(journal)
    
    print 'Printing transactions...'
    for i in range(1,tranBlocks[0]+1):
        fName='./transaction/transaction{0}_block{1}(journaloffset:{2}_location:{3})'.format(i,j,tranBlocks[i].journalOffset,tranBlocks[i].offset)
        f=open(fName,'wb')
        f.write(tranBlocks[i].content)
        f.close()

    print 'Analyzing CatalogFile...'
    Analyzer.CatalogFileAnalyzer(CatalogFile)

    print 'Analyzing transactions...'
    Analyzer.TransactionAnalyzer(tranBlocks,volumeHeader.specialFileFork,volumeHeader.blockSize)

    print 'Printing record list...'
    fName='./result/recordList.csv'
    f=open(fName,'w')
    for i in range(1,tranBlocks[0]+1):

        if 0<tranBlocks.blockType[0]<4:

            for j in range(tranBlocks.content.numRecords):

                f.write(str(tranBlocks[i]))
                f.write(str(tranBlocks.content.records[j]))

        else:

            f.write(str(tranBlocks[i]))

    f.close()
    '''
from BloomFilter import *
from rrm import *
from Collector import *
import scipy.stats as stats
import numpy as np
import pylab as plt

MyCollector = Collector(0.5, 0.5)
#print(bf)
'''
mu=50
sigma=10
x=np.arange(0,101,1)
y=stats.norm.pdf(x,50,10)
'''
lambd = 0.05
x = np.arange(0, 101, 1)
z = np.zeros(101)
y = lambd * np.exp(-lambd * x)
for i in np.arange(0, 101):
    y[i] = y[i] * 100000
    y[i] = int(y[i])

for index in range(101):
    for i in range(int(y[index])):
        data = BloomFilter(index, 5)
        bf = data.getBloomFilter()
        start = data.getSecurityDomain1()
        end = data.getSecurityDomain2()
        response = RRM(bf, 0.5, 0.5, 0, 127)
        pbf = response.randomer()
Esempio n. 8
0
 def run(self):
     Collector.CollectNetflow()
Esempio n. 9
0
def collect_data(organism1, organism2, option, update):
    print 'Transferring protein interaction annotations, %s interfaces:\n> '  \
     '%s to %s' % (option.upper(), organism1.info, organism2.info)
    collector = Collector(organism1, organism2, option)
    return collector.run(update=update)
Esempio n. 10
0
def main():

    while True:

        logger = None

        try:
            collector = Collector.Collector(config)
            logger = collector.get_logger()
            db = collector.get_db()

            if not args.skip_weather:
                print '\nInitialising import of traffic and weather data...\n'
                print '\nRetrieving weather data...'

                #todo make option to manually specify cities to process? (maybe)
                manual_cities = []

                weather_api_client = WeatherAPI.Client(
                    config['weather']['api']['token'],
                    config['weather']['api']['endpoint'], logger)

                # set the rate limit to 2 seconds per request
                weather_api_client.set_rate_limit(2)

                weather_collector = WeatherCollect.Collect(
                    config, weather_api_client, db)
                cities = config['weather']['api']['cities']

                #if there is a list of cities passed, process them, otherwise use the configured list
                if len(manual_cities) > 0:
                    weather_collector.set_cities(manual_cities)
                else:
                    weather_collector.set_cities(cities)

                logger.info(
                    'Processing the following cities for weather data: %s',
                    ", ".join(cities))
                # start collecting the weather data
                stats = weather_collector.collect()

                # log information regarding collection
                logger.info(
                    'Collected statistics for %d cities successfully, %d failed.'
                    % (stats['success'], stats['failed']))
            else:
                print '\nSkipping weather collection...'

            if not args.skip_traffic:
                logger.info('Starting collection of traffic data')
                print '\nRetrieving traffic data...'
                traffic_api_client = TrafficAPI.Client(config['traffic'],
                                                       logger)
                traffic_collector = TrafficCollect.Collect(
                    config, traffic_api_client, db)

                if len(config['traffic']['regions']) > 0:

                    # add the regions to the collector
                    for region in config['traffic']['regions']:
                        region_name = region.keys()[0]
                        traffic_collector.add_region(region_name, region)

                    # start collecting the data
                    stats = traffic_collector.collect()

                    # log information regarding collection
                    logger.info(
                        'Collection for %d regions successfully, %d failed.' %
                        (stats['success'], stats['failed']))
                else:
                    print '\nNo regions configured, not processing traffic information'

            else:
                print '\nSkipping traffic collection...'

        except Exception as exc:

            if logger is not None:
                logger.error(exc.message)

            raise exc

        print '\n Resuming collecion task in %d seconds.' % args.interval
        # rest until the interval timer has expired
        time.sleep(args.interval)
Esempio n. 11
0
               metavar='N',
               type=int,
               help="Collect data every N seconds")
p.add_argument('--skip-traffic',
               '-s',
               action="store_true",
               help="skip traffic collection")
p.add_argument('--skip-weather',
               '-w',
               action="store_true",
               help="skip weather collection")
args = p.parse_args()
print args

# get the main configuration
config = Collector.get_config('main.conf')

if not os.access('/var/log/collect', os.W_OK):
    print 'Cannot write to /var/log/collect, make sure that you run this script elevated'
    exit(1)


def main():

    while True:

        logger = None

        try:
            collector = Collector.Collector(config)
            logger = collector.get_logger()
Esempio n. 12
0
import Collector
import json

hostname = 'www2.pref.okinawa.jp'

okinawa = Collector.Collector(
    hostname,
    '/oki/Gikairep1.nsf/481e05e7edaca1db49256f540004c033/7fb73c2cf7988bc8492579e30024d9b5?OpenDocument'
)
#okinawa = Collector.Collector(hostname,'/oki/Gikairep1.nsf/481e05e7edaca1db49256f540004c033?OpenView')

logs = []

nextpath = ''
while True:
    content = okinawa.get(nextpath)
    nextpath = content['next']
    print(content)
    logs.append(content)
    if nextpath == '':
        break

json.dump(logs, open('output.json', 'w'))
def main():
    COL = col.Collector()
    tfServ = tenUtil.TensorService(COL, IMG_SIZE)
    vectorsAndLables = readFileToNpArray(FILE_PATH)
    tfServ.train_neural_network(vectorsAndLables)
    pass
Esempio n. 14
0

p = argparse.ArgumentParser(description='Trafeo collector agent')
p.add_argument('--verbose', '-v', default=None, help="Run in verbose mode")

# todo imlement at some point?
#p.add_argument('--retry', '-r', default=2, metavar='N', type=int, help="If any API fails, retry N times")

p.add_argument('--interval', '-i', default=900, metavar='N', type=int, help="Collect data every N seconds")
p.add_argument('--skip-traffic', '-s', action="store_true", help="skip traffic collection")
p.add_argument('--skip-weather', '-w', action="store_true", help="skip weather collection")
args = p.parse_args()
print args

# get the main configuration
config = Collector.get_config('main.conf')

if not os.access('/var/log/collect', os.W_OK):
    print 'Cannot write to /var/log/collect, make sure that you run this script elevated'
    exit(1)

def main():

    while True:

        logger = None

        try:
            collector = Collector.Collector(config)
            logger = collector.get_logger()
            db = collector.get_db()
Esempio n. 15
0
import Collector
# serialNumnCollector = Collector.SerialNumberCollector()
# serialset = serialNumnCollector.findOuter()
# print('已完成全部serialNumber的爬蟲')
# for n in serialset:
#     if len(n) < 5:
#         continue
#     goodsInfoCollector = Collector.GoodsInfoCollector(n)
#     goodsInfoCollector.search()
goodsInfoCollector = Collector.GoodsInfoCollector('433245')
goodsInfoCollector.search()
Esempio n. 16
0
    e.append(math.log((d * d - 4 * d + 4) / (d * d), math.e))
print(e)
N = 100000
fo = open('data5.txt', 'a+')
mu = 50
sigma = 10
x = np.arange(0, 101, 1)
y = stats.norm.pdf(x, 50, 10)
z = np.zeros(101)
for i in np.arange(0, 101):
    y[i] = y[i] * N
    y[i] = int(y[i])

for k in range(10):
    f = p[k]
    MyCollector = Collector(f, q)
    for index in range(101):
        for i in range(int(y[index])):
            data = BloomFilter(index, 4)
            bf = data.getBloomFilter()
            start = data.getSecurityDomain1()
            end = data.getSecurityDomain2()
            response = RRM(bf, f, q, start, end)
            pbf = response.randomer()
            MyCollector.receiver(pbf, start, end)
            # print(pbf)
    result = MyCollector.getResult()
    for j in range(0, 101):
        z[j] = int(result[j])
    a = 0
    b = 0
import Collector

Collector.start_function('kitten/index_dropbox.html')
Esempio n. 18
0
def main():

    Utility.DirectoryCleaning('transaction')
    Utility.DirectoryCleaning('result')

    if raw_input('Is disk connected? [y/n]: ').lower() == 'y':
        temp = Collector.VolumeFinder()
        disk = temp[0]
        select = temp[1]
        recovery = temp[2]

        print 'Collecting files...'
        temp = Collector.VolumeHeaderParser(
            Utility.DiskDump(disk, 'HFSPlusVolumeHeader', 1024, 1, 1, select))
        blockSize = temp[0]
        journalInfoBlock = temp[1]
        specialFileInfo = temp[2]

        AllocationFile = Collector.SpecialFileExtractor(
            'AllocationFile', specialFileInfo[0], disk, blockSize, select)
        ExtentsOverflowFile = Collector.SpecialFileExtractor(
            'ExtentsOverflowFile', specialFileInfo[1], disk, blockSize, select)
        CatalogFile = Collector.SpecialFileExtractor('CatalogFile',
                                                     specialFileInfo[2], disk,
                                                     blockSize, select)
        Journal = Collector.JournalExtractor(journalInfoBlock, disk, blockSize,
                                             select)

    else:

        path = raw_input('Input path of volume header\n')
        f = open(path, 'rb')

        temp = Collector.VolumeHeaderParser(f.read())
        blockSize = temp[0]
        journalInfoBlock = temp[1]
        specialFileInfo = temp[2]

        f.close()

        path = raw_input('Input path of journal\n')
        f = open(path, 'rb')
        Journal = f.read()
        f.close()

        if raw_input('Input path of catalog file(y/n)\n') == 'y':
            path = input()
            f = open(path, 'rb')
            CatalogFile = f.read()
            f.close()
        """
        if raw_input('Input path of allocation file(y/n)') == 'y':
        path=raw_input()
        f=open(path,'rb')
        AllocationFile=f.read()
        f.close()
        
        if raw_input('Input path of extents overflow file(y/n)\n') == 'y':
        path=raw_input()
        f=open(path,'rb')
        ExtentsOverflowFile=f.read()
        f.close()
        """
        recovery = False

    print 'Analyzing journal...'
    temp = Analyzer.JournalParser(Journal)
    sectorSize = temp[0]
    transaction = temp[1]

    print 'Printing transactions...'
    for i in range(1, transaction[0] + 1):
        for j in range(1, transaction[i][0] + 1):
            fName = './transaction/transaction' + str(i) + '_' + str(
                j) + '(sector' + hex(transaction[i][j][0]) + ')'
            f = open(fName, 'wb')
            f.write(transaction[i][j][1])
            f.close()

    print 'Analyzing CatalogFile...'
    nameAndParent = Analyzer.CatalogFileAnalyzer(CatalogFile)

    print 'Analyzing transactions...'
    Analyzer.TransactionAnalyzer(transaction, specialFileInfo[0],
                                 specialFileInfo[2], nameAndParent, sectorSize,
                                 blockSize)

    print 'Printing record list...'
    fName = './result/recordList.csv'
    f = open(fName, 'w')
    for i in range(1, transaction[0] + 1):
        for j in range(1, transaction[i][0] + 1):

            if transaction[i][j][1][0] == 'c':

                if transaction[i][j][1][1] == 'l' or transaction[i][j][1][
                        1] == 'i':

                    for k in transaction[i][j][2].keys():

                        f.write(
                            'transaction{0}_{1} record{2}\n'.format(i, j, k) +
                            ',')

                        for l in transaction[i][j][2][k].keys():

                            if l == 'nodeName':
                                f.write('{0} : {1}\n'.format(
                                    l, transaction[i][j][2][k][l].encode(
                                        'utf-8')) + ',')

                            else:
                                f.write('{0} : {1}\n'.format(
                                    l, transaction[i][j][2][k][l]) + ',')

                        f.write('\n')

                elif transaction[i][j][1][1] == 'h':

                    f.write('transaction{0}_{1}\n'.format(i, j) + ',')

                    for k in transaction[i][j][2].keys():
                        f.write(
                            '{0} : {1}\n'.format(k, transaction[i][j][2][k]) +
                            ',')

                    f.write('\n')

    f.close()

    print 'Deduplicating records...'
    deduplicatedRecord = Analyzer.RecordDeduplication(transaction)

    print 'Printing deduplicated records...'
    keyForType = ['recordType']
    keyForString = ['nodeName', 'fullPath']
    keyForID = ['parentID', 'CNID', 'ownerID', 'groupID']
    keyForDate = [
        'createDate', 'contentModDate', 'attributeModDate', 'accessDate'
    ]
    keyForFork = ['dataFork', 'resourceFork']

    fName = './result/deduplicatedRecordList.csv'
    f = open(fName, 'w')

    for i in keyForType:
        f.write('transaction' + ',' + i + ',')

    for i in keyForString:
        f.write(i + ',')

    for i in keyForID:
        f.write(i + ',')

    for i in keyForDate:
        f.write(i + ',')

    f.write('AllocatedFork' + ',')

    f.write('\n')

    for i in range(1, deduplicatedRecord[0][0] + 1):
        f.write(',')

        f.write('\ntransaction{0}\n'.format(i) + ',')

        for j in range(1, deduplicatedRecord[0][i][0] + 1):

            f.write('\ntransaction{0}_{1}\n'.format(i, j))

            for k in range(1, deduplicatedRecord[0][i][j][0] + 1):

                if deduplicatedRecord[0][i][j][k]['recordType'] < 3:

                    for l in keyForType:
                        if deduplicatedRecord[0][i][j][k][l] == 1:
                            f.write(',')
                            f.write('folder')
                        else:
                            f.write(',')
                            f.write('file')

                    for l in keyForString:
                        f.write(',')
                        f.write(
                            deduplicatedRecord[0][i][j][k][l].encode('utf-8'))
                    f.write(',')

                    for l in keyForID:
                        f.write(hex(deduplicatedRecord[0][i][j][k][l])[2:])
                    f.write(',')

                    for l in keyForDate:
                        f.write((datetime.datetime(1904, 1, 1) +
                                 datetime.timedelta(
                                     seconds=deduplicatedRecord[0][i][j][k][l])
                                 ).isoformat(' ') + ',')

                    if deduplicatedRecord[0][i][j][k]['recordType'] == 2:

                        duplicated = ''
                        allocatedFork = 0
                        for l in keyForFork:
                            for m in range(
                                    1,
                                    deduplicatedRecord[0][i][j][k][l][0] + 1):
                                if deduplicatedRecord[0][i][j][k][l][m][
                                        0] == 1:
                                    allocatedFork += 1
                                elif deduplicatedRecord[0][i][j][k][l][m][
                                        0] == -1:
                                    duplicated = '(duplicated)'

                        f.write('{0}/{1}{2}'.format(
                            allocatedFork,
                            deduplicatedRecord[0][i][j][k]['dataFork'][0] +
                            deduplicatedRecord[0][i][j][k]['resourceFork'][0],
                            duplicated) + ',')

                    f.write('\n')

    f.close()

    if recovery:
        print 'Recoverying deleted files...'
        Analyzer.DataRecovery(disk, deduplicatedRecord[2], blockSize)