Esempio n. 1
0
 def __init__(self):
     self.dict = {3: [1, 2, 4, 5, 8]}
     self.d = os.getcwd() + '\\Datas'
     self.fn = FN.FN(d=self.d + '\\RawXlsx')
     self.fn.analyzeExtensions()
     self.filesName = []
     for i in self.fn.filesName:
         self.filesName.append(self.fn.analyzeFN(i))
         pass
Esempio n. 2
0
 def __getFilesName(self, dir, typeList):
     filesName = []
     fn = FN.FN(dir)
     fn.analyzeExtensions()
     for i in fn.filesName:
         temp = fn.analyzeFN(i)
         if temp[2] in typeList:
             filesName.append(temp)
     return filesName
Esempio n. 3
0
 def __init__(self):
     self.dict = {3: [1, 2, 4, 5, 8]}
     self.wordsType = [
         'vi.', 'vt.', 'a.', 'n.', 'ad.', 'v.', 'prep.', 'suffix', 'infml.'
     ]
     self.wordsType2 = []
     self.d = os.getcwd() + '\\Datas'
     self.fn = FN.FN(d=self.d + '\\RawXlsx')
     self.fn.analyzeExtensions()
     self.filesName = []
     for i in self.fn.filesName:
         self.filesName.append(self.fn.analyzeFN(i))
         pass
Esempio n. 4
0
 def __init__(self):
     self.d = r'D:\0COCO\本科\英语四六级\六级词汇词根+联想记忆法(MP3+文本)'
     self.fn = FN.FN(d=self.d)
     self.fn.analyzeExtensions()
     self.filesName = []
     self.wordsType = [
         'vt.', 'adj.', 'n.', 'v.', 'vi.', 'adv.', 'prep.', 'conj.'
     ]
     self.wordsType2 = []
     for i in self.fn.filesName:
         temp = self.fn.analyzeFN(i)
         if temp[2] == '.lrc':
             self.filesName.append(temp)
         pass
Esempio n. 5
0
 def __init__(self, recreate=False):
     self.d = os.getcwd() + '\\Datas'
     self.fn = FN.FN(d=self.d + '\\ModifyXlsx')
     self.fn.analyzeExtensions()
     self.font = Font(name='Arial',
                      size=11,
                      bold=False,
                      italic=False,
                      vertAlign=None,
                      underline='none',
                      strike=False,
                      color='FF000000')
     self.space = [' ', ' ']
     if (recreate):
         md = ModifyData.MD()
         md.test()
     self.spy = Spyder.Spy()
     if (not os.path.exists(self.d + '\\Mp3')):
         os.mkdir(self.d + '\\Mp3')
     pass
Esempio n. 6
0
import PDP

data=sio.loadmat('ex7data1')
X=data['X']


#Part One: Load Example Dataset
print 'One: ======== Load Example Dataset1 ... '
plt.plot(X[:,0],X[:,1],'bo')
plt.axis(xmin=0.5,xmax=6.5,ymin=2,ymax=8)
plt.title('Example Dataset1')


#Part Two: Principal Component Analysis
print 'Two: ================ Running PCA on example dataset...'
result=FN.featureNormalize(X)

X_norm=result[0]
mu=result[1]
res=PCA.pca(X_norm)
U=res[0]
S=res[1]
S=np.eye(S.shape[0])*S


print 'Top eigenvector: '
print 'U[:,0] = %f %f ' % (U[0,0],U[1,0])
print '(You should expect to see -0.707107, -0.707107)'

tmp1=mu+1.5*np.dot(S[0,0],U[:,0].transpose())
tmp2=mu+1.5*np.dot(S[1,1],U[:,1].transpose())
Esempio n. 7
0
import psyneulink as pnl
import FN

FN = pnl.Composition(name='FN')

FNpop_0 = pnl.IntegratorMechanism(name='FNpop_0',
                                  function=pnl.FitzHughNagumoIntegrator(
                                      name='Function_FitzHughNagumoIntegrator',
                                      d_v=1,
                                      initial_v=-1))

FN.add_node(FNpop_0)
import FN
import CF
import os

if __name__ == '__main__':
    wordDir = r'D:\temp\project\01Tests\3-fightPlane\Classes'
    scrEnc = 'utf-8'
    desEnc = 'gbk'
    Type = ['.cpp', '.h', '.lrc']
    fn1 = FN.FN(wordDir)
    fn1.analyzeExtensions()
    c = 1
    error = []
    oldFiles = []
    for i in fn1.filesName:
        t = fn1.analyzeFN(i)
        if t[2] in Type:
            try:
                with open(t[0] + t[1] + t[2], 'r', encoding=scrEnc) as f:
                    text = f.read()
                    fileDir = t[0] + t[1] + t[2]
                    if (fileDir.find('_coco56_GBK_To_UTF-8') == -1):
                        print('c=', c, sep='')
                        print(t)
                        c += 1
                        oldFiles.append(fileDir)
                        newFileDir = t[0] + t[1] + '_coco56_GBK_To_UTF-8' + t[2]
                        if (not os.path.exists(newFileDir)):
                            with open(newFileDir, 'w', encoding=desEnc) as f2:
                                f2.write(text)
            except UnicodeDecodeError:
Esempio n. 9
0
import FN
import CF
import os

if  __name__ == '__main__':
    fn1 = FN.FN(r'D:\0COCO\System\桌面\SpeedPan\C++ Primer视频教程(初级中级高级)')
    fn1.analyzeExtensions()
    d = fn1.filesNum
    d = sorted(d.items(), key=lambda item:item[1], reverse=True)
    '''
    这里的d.items()实际上是将d转换为可迭代对象,
    迭代对象的元素为 (‘lilee’,25)、(‘wangyan’,21)、(‘liqun’,32)、(‘lidaming’,19),
    items()方法将字典的元素 转化为了元组,
    而这里key参数对应的lambda表达式的意思则是选取元组中的第二个元素作为比较参数
    (如果写作key=lambda item:item[0]的话则是选取第一个元素作为比较对象,也就是key值作为比较对象。
    lambda x:y中x表示输出参数,y表示lambda 函数的返回值),
    所以采用这种方法可以对字典的value进行排序。
    注意排序后的返回值是一个list,而原字典中的名值对被转换为了list中的元组。
    '''
    print(d)
Esempio n. 10
0
import FN
import CF
import os

if __name__ == '__main__':
    fn1 = FN.FN(
        r'H:\OneDrive - revolutionize B2C bandwidth\视频教程\架构H:\OneDrive - revolutionize B2C bandwidth\视频教程\架构'
    )
    fn1.analyzeExtensions()
    d = fn1.filesNum
    d = sorted(d.items(), key=lambda item: item[1], reverse=True)
    '''
    这里的d.items()实际上是将d转换为可迭代对象,
    迭代对象的元素为 (‘lilee’,25)、(‘wangyan’,21)、(‘liqun’,32)、(‘lidaming’,19),
    items()方法将字典的元素 转化为了元组,
    而这里key参数对应的lambda表达式的意思则是选取元组中的第二个元素作为比较参数
    (如果写作key=lambda item:item[0]的话则是选取第一个元素作为比较对象,也就是key值作为比较对象。
    lambda x:y中x表示输出参数,y表示lambda 函数的返回值),
    所以采用这种方法可以对字典的value进行排序。
    注意排序后的返回值是一个list,而原字典中的名值对被转换为了list中的元组。
    '''
    print(d)
Esempio n. 11
0
result=LC.learningCurve(tmp1,y,tmp2,yval,Lambda)
l1=plt.plot(np.array(range(m))+1,result[0],'r',np.array(range(m))+1,result[1],'b')
plt.title('Learning curve for linear regression')
plt.legend(l1,('Train','Cross Validataion'),loc=1)
plt.xlabel('Number of training examples')

plt.ylabel('Error')
plt.show()


#Part Five: Feature Mapping for Polynomial Regression
print 'Five: ==========================Feature Mapping for Polynomial Regression...'
p=8
X_poly=PF.polyFeatures(X,p)

result=FN.featureNormalize(X_poly)
X_poly=result[0]
mu=result[1]
sigma=result[2]

X_poly=np.hstack((np.ones((m,1)),X_poly))
Xtest=data['Xtest']

X_poly_test=PF.polyFeatures(Xtest,p)

X_poly_test=X_poly_test-mu
X_poly_test=X_poly_test/sigma
X_poly_text=np.hstack((np.ones((X_poly_test.shape[0],1)),X_poly_test))

X_poly_val=PF.polyFeatures(Xval,p)
Esempio n. 12
0
@author: aa
"""
import numpy as np
import FN
import GDM
import NE

print 'Loading data ...'

data=np.loadtxt('ex1data2.txt',delimiter=',')
X=data[:,0:2]
y=data[:,2]
m=len(y)

print 'Normalizing Features ...'
tmp=FN.featureNormalize(X)
X=tmp[0]
mu=tmp[1]
sigma=tmp[2]

X=np.hstack((np.ones((m,1)), X))

print 'Running gradient descent ...'

alpha = 0.1
num_iters=1000

theta=np.zeros((3,1))

tmp=GDM.gradientDescentMulti(X,y,theta,alpha,num_iters)
theta=tmp[0]