def Merge(ID): print ID info = Info.GetVideoInfo(ID) f_name = info['match_path'] + '/' + name f = open(f_name, 'r') data = json.load(f) f.close() key_lst = sorted(data.keys()) pano_lst = [] for key in key_lst: loc = data[key] print key try: panoid = GSV.getIDbyloc(lat=loc[0], lon=loc[1]) except: data.pop(key) continue #print panoid if panoid is None: data.pop(key) continue elif not panoid in pano_lst: pano_lst.append(panoid) try: loc = GSV.getLocationbyID(panoid) data[key] = [float(loc[0]), float(loc[1])] except: data.pop(key) continue else: data.pop(key) f = open(info['match_path'] + '/google_info.json', 'w') f.write(json.dumps(data, indent=4)) f.close()
def GetResultLst(ID): print ID info = Info.GetVideoInfo(ID) frame_sift_lst = [x for x in sorted(os.listdir(info['frame_sift_path'])) if x.endswith('.sift')] pano_sift_lst = [x for x in sorted(os.listdir(info['pano_sift_path'])) if x.endswith('.sift')] fisher_result = np.load(Info.GetFisherResultFileName(info)) match_score = np.load(Info.GetMatchFunMFileName(info)) #print match_score f = open(Info.GetMatchLstFileName(info), 'w') for frame_index, frame_sift_name in enumerate(frame_sift_lst): arg_sort_index = np.argsort(match_score[frame_index, :]) highest_index = arg_sort_index[-1] highest_score = match_score[frame_index, highest_index] second_index = arg_sort_index[-2] second_score = match_score[frame_index, second_index] ratio = float(highest_score) / float(second_score) if highest_score >= THRESHOLD: frame_name = frame_sift_name.split('.')[0] + '.jpg' pano_sift_name = pano_sift_lst[fisher_result[frame_index, highest_index]] pano_name = pano_sift_name.split('.')[0] + '.jpg' pano_id = pano_name[5:27] print pano_id loc = GoogleSV.getLocationbyID(pano_id) if loc is None: continue s = '%s\t%s\t%s\t%s\t%d\n'%(frame_name, pano_name, loc[0], loc[1], highest_score) f.write(s) f.close()
def Label(ID): info = Info.GetVideoInfo(ID) frame_lst = [x for x in sorted(os.listdir(info['frame_path'])) if x.endswith] i = 0 f = open(Info.GetMatchLstFileName(info), 'w') while True: f_name = info['frame_path'] + '/' + frame_lst[i] command = 'eog %s'%f_name subprocess.call(command, shell=True) panoid = raw_input('Pano ID : ') loc = GSV.getLocationbyID(panoid) print loc s = '%s\t%s\t%s\t%s\n'%(frame_lst[i], panoid, loc[0], loc[1]) f.write(s) i += 10 if i >= 125: f.close() return f.close()
def Label(ID): info = Info.GetVideoInfo(ID) frame_lst = [ x for x in sorted(os.listdir(info['frame_path'])) if x.endswith ] i = 0 f = open(Info.GetMatchLstFileName(info), 'w') while True: f_name = info['frame_path'] + '/' + frame_lst[i] command = 'eog %s' % f_name subprocess.call(command, shell=True) panoid = raw_input('Pano ID : ') loc = GSV.getLocationbyID(panoid) print loc s = '%s\t%s\t%s\t%s\n' % (frame_lst[i], panoid, loc[0], loc[1]) f.write(s) i += 10 if i >= 125: f.close() return f.close()
def GetResultLst(ID): print ID info = Info.GetVideoInfo(ID) frame_sift_lst = [ x for x in sorted(os.listdir(info['frame_sift_path'])) if x.endswith('.sift') ] pano_sift_lst = [ x for x in sorted(os.listdir(info['pano_sift_path'])) if x.endswith('.sift') ] fisher_result = np.load(Info.GetFisherResultFileName(info)) match_score = np.load(Info.GetMatchFunMFileName(info)) #print match_score f = open(Info.GetMatchLstFileName(info), 'w') for frame_index, frame_sift_name in enumerate(frame_sift_lst): arg_sort_index = np.argsort(match_score[frame_index, :]) highest_index = arg_sort_index[-1] highest_score = match_score[frame_index, highest_index] second_index = arg_sort_index[-2] second_score = match_score[frame_index, second_index] ratio = float(highest_score) / float(second_score) if highest_score >= THRESHOLD: frame_name = frame_sift_name.split('.')[0] + '.jpg' pano_sift_name = pano_sift_lst[fisher_result[frame_index, highest_index]] pano_name = pano_sift_name.split('.')[0] + '.jpg' pano_id = pano_name[5:27] print pano_id loc = GoogleSV.getLocationbyID(pano_id) if loc is None: continue s = '%s\t%s\t%s\t%s\t%d\n' % (frame_name, pano_name, loc[0], loc[1], highest_score) f.write(s) f.close()