def compute_model(options): import numpy import astropy.io.fits as fits import JLA_library as JLA from astropy.table import Table from astropy.cosmology import FlatwCDM from scipy.interpolate import interp1d # ----------- Read in the configuration file ------------ params=JLA.build_dictionary(options.config) # ----------- Read in the SN ordering ------------------------ SNeList = numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S200', names=['id', 'lc']) nSNe = len(SNeList) for i, SN in enumerate(SNeList): SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp', '') lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') print 'There are %d SNe' % (nSNe) indices = JLA.reindex_SNe(SNeList['id'], SNe) SNe = SNe[indices] redshift = SNe['zcmb'] replace=(redshift < 0) # For SNe that do not have the CMB redshift redshift[replace]=SNe[replace]['zhel'] print len(redshift) if options.raw: # Data from the bottom left hand figure of Mosher et al. 2014. # This is option ii) that is descibed above offsets=Table.read(JLA.get_full_path(params['modelOffset']),format='ascii.csv') Delta_M=interp1d(offsets['z'], offsets['offset'], kind='linear',bounds_error=False,fill_value='extrapolate')(redshift) else: Om_0=0.303 # JLA value in the wCDM model cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.0) cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.024) Delta_M=5*numpy.log10(cosmo1.luminosity_distance(redshift)/cosmo2.luminosity_distance(redshift)) # Build the covariance matrix. Note that only magnitudes are affected Zero=numpy.zeros(nSNe) H=numpy.concatenate((Delta_M,Zero,Zero)).reshape(3,nSNe).ravel(order='F') C_model=numpy.matrix(H).T * numpy.matrix(H) date = JLA.get_date() fits.writeto('C_model_%s.fits' % (date),numpy.array(C_model),clobber=True) return None
def compute_model(options): import numpy import astropy.io.fits as fits import JLA_library as JLA from astropy.table import Table from astropy.cosmology import FlatwCDM # ----------- Read in the configuration file ------------ params = JLA.build_dictionary(options.config) # ----------- Read in the SN ordering ------------------------ SNeList = numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S200', names=['id', 'lc']) nSNe = len(SNeList) for i, SN in enumerate(SNeList): SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '') lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') print 'There are %d SNe' % (nSNe) #z=numpy.array([]) #offset=numpy.array([]) Om_0 = 0.303 # JLA value in the wCDM model cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.0) cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.024) # For the JLA SNe redshift = SNe['zcmb'] replace = (redshift < 0) # For the non JLA SNe redshift[replace] = SNe[replace]['zhel'] Delta_M = 5 * numpy.log10( cosmo1.luminosity_distance(redshift) / cosmo2.luminosity_distance(redshift)) # Build the covariance matrix. Note that only magnitudes are affected Zero = numpy.zeros(nSNe) H = numpy.concatenate((Delta_M, Zero, Zero)).reshape(3, nSNe).ravel(order='F') C_model = numpy.matrix(H).T * numpy.matrix(H) date = JLA.get_date() fits.writeto('C_model_%s.fits' % (date), numpy.array(C_model), clobber=True) return None
def compute_Cstat(options): """Python program to compute C_stat """ import numpy import astropy.io.fits as fits from astropy.table import Table import JLA_library as JLA # ----------- Read in the configuration file ------------ params=JLA.build_dictionary(options.config) # ----------- Read in the SN ordering ------------------------ SNeList = numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S200', names=['id', 'lc']) nSNe = len(SNeList) for i, SN in enumerate(SNeList): SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '') lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') # ----------- Read in the data -------------------------- print 'There are %d SNe in the sample' % (nSNe) indices = JLA.reindex_SNe(SNeList['id'], SNe) SNe=SNe[indices] C_stat=numpy.zeros(9*nSNe*nSNe).reshape(3*nSNe,3*nSNe) for i,SN in enumerate(SNe): cov=numpy.zeros(9).reshape(3,3) cov[0,0]=SN['dmb']**2. cov[1,1]=SN['dx1']**2. cov[2,2]=SN['dcolor']**2. cov[0,1]=SN['cov_m_s'] cov[0,2]=SN['cov_m_c'] cov[1,2]=SN['cov_s_c'] # symmetrise cov=cov+cov.T-numpy.diag(cov.diagonal()) C_stat[i*3:i*3+3,i*3:i*3+3]=cov # ----------- Read in the base matrix computed using salt2_stat.cc ------------ if options.base!=None: C_stat+=fits.getdata(options.base) date = JLA.get_date() fits.writeto('C_stat_%s.fits' % date,C_stat,clobber=True) return
def compute_dust(options): """Python program to compute C_dust """ import numpy import astropy.io.fits as fits import os import JLA_library as JLA # ---------- Read in the SNe list ------------------------- SNelist = numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S110', names=['id', 'lc']) for i, SN in enumerate(SNelist): SNelist['id'][i] = SNelist['id'][i].replace('lc-','').replace('.list','') # ----------- Read in the configuration file ------------ params=JLA.build_dictionary(options.config) try: salt_path = JLA.get_full_path(params['defsaltModel']) except KeyError: salt_path = '' # ----------- The lightcurve fitting ------------------- # Compute the offset between the nominal value of the extinciton # and the adjusted value # We first compute the difference in light curve fit parameters for E(B-V) * (1+offset) offset = 0.1 j = [] for SN in SNelist: inputFile = SN['lc'] print 'Fitting %s ' % (SN['lc']) workArea = JLA.get_full_path(options.workArea) dm, dx1, dc = JLA.compute_extinction_offset(SN['id'], inputFile, offset, workArea, salt_path) j.extend([dm, dx1, dc]) # But we want to compute the impact of an offset that is twice as large, hence the factor of 4 in the expression # 2017/10/13 # But we want to compute the impact of an offset that is half as large, hence the factor of 4 in the denominator # cdust = numpy.matrix(j).T * numpy.matrix(j) * 4.0 cdust = numpy.matrix(j).T * numpy.matrix(j) / 4.0 date = JLA.get_date() fits.writeto('C_dust_%s.fits' % date, cdust, clobber=True) return
def compute_model(options): import numpy import astropy.io.fits as fits import JLA_library as JLA from astropy.table import Table from astropy.cosmology import FlatwCDM # ----------- Read in the configuration file ------------ params=JLA.build_dictionary(options.config) # ----------- Read in the SN ordering ------------------------ SNeList = numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S200', names=['id', 'lc']) nSNe = len(SNeList) for i, SN in enumerate(SNeList): SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '') lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') print 'There are %d SNe' % (nSNe) #z=numpy.array([]) #offset=numpy.array([]) Om_0=0.303 # JLA value in the wCDM model cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.0) cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=Om_0, w0=-1.024) # For the JLA SNe redshift = SNe['zcmb'] replace=(redshift < 0) # For the non JLA SNe redshift[replace]=SNe[replace]['zhel'] Delta_M=5*numpy.log10(cosmo1.luminosity_distance(redshift)/cosmo2.luminosity_distance(redshift)) # Build the covariance matrix. Note that only magnitudes are affected Zero=numpy.zeros(nSNe) H=numpy.concatenate((Delta_M,Zero,Zero)).reshape(3,nSNe).ravel(order='F') C_model=numpy.matrix(H).T * numpy.matrix(H) date = JLA.get_date() fits.writeto('C_model_%s.fits' % (date),numpy.array(C_model),clobber=True) return None
def make_FilterCurves(options): filterCurve=Table.read(options.input,format='fits') f=open("des_y3a1_std_%s.dat" % (options.filterName),'w') f.write("# Written on %s\n" % (JLA.get_date())) f.write("# Derived from %s\n" % (options.input)) f.write("# Wavelength (Angstroms) Transmission\n") selection=(filterCurve["lambda"] > bounds[options.filterName]["lower"]) & (filterCurve["lambda"] < bounds[options.filterName]["upper"]) for line in filterCurve[selection]: f.write("%5.1f %7.5f\n" % (line["lambda"],line[options.filterName])) f.close return
def compute_dust(options): """Python program to compute C_dust """ import numpy import astropy.io.fits as fits import os import JLA_library as JLA # ---------- Read in the SNe list ------------------------- SNelist = numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S100', names=['id', 'lc']) for i, SN in enumerate(SNelist): SNelist['id'][i] = SNelist['id'][i].replace('lc-', '').replace('.list', '') # ----------- The lightcurve fitting ------------------- # Compute the offset between the nominal value of the extinciton # and the adjusted value offset = 0.1 j = [] for SN in SNelist: inputFile = SN['lc'] print 'Fitting %s' % (SN['id']) dm, dx1, dc = JLA.compute_extinction_offset(SN['id'], inputFile, offset) j.extend([dm, dx1, dc]) cdust = numpy.matrix(j).T * numpy.matrix(j) * 4.0 date = JLA.get_date() fits.writeto('C_dust_%s.fits' % date, cdust, clobber=True) return
def compute_dust(options): """Python program to compute C_dust """ import numpy import astropy.io.fits as fits import os import JLA_library as JLA # ---------- Read in the SNe list ------------------------- SNelist = numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S100', names=['id', 'lc']) for i, SN in enumerate(SNelist): SNelist['id'][i] = SNelist['id'][i].replace('lc-','').replace('.list','') # ----------- The lightcurve fitting ------------------- # Compute the offset between the nominal value of the extinciton # and the adjusted value offset = 0.1 j = [] for SN in SNelist: inputFile = SN['lc'] print 'Fitting %s' % (SN['id']) dm, dx1, dc = JLA.compute_extinction_offset(SN['id'], inputFile, offset) j.extend([dm, dx1, dc]) cdust = numpy.matrix(j).T * numpy.matrix(j) * 4.0 date = JLA.get_date() fits.writeto('C_dust_%s.fits' % date, cdust, clobber=True) return
def compute_Ccal(options): """Python program to compute Ccal """ import numpy import astropy.io.fits as fits from astropy.table import Table import multiprocessing as mp import matplotlib.pyplot as plt # ----------- Read in the configuration file ------------ params=JLA.build_dictionary(options.config) try: salt_prefix = params['saltPrefix'] except KeyError: salt_prefix = '' # ---------- Read in the SNe list ------------------------- SNeList = Table(numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S100', names=['id', 'lc'])) for i,SN in enumerate(SNeList): SNeList['id'][i]=SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp', '') # ---------- Read in the SN light curve fits ------------ # This is used to get the SN redshifts which are used in smoothing the Jacbian lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') # Make sure that the order is correct indices = JLA.reindex_SNe(SNeList['id'], SNe) SNe = SNe[indices] if len(indices) != len(SNeList['id']): print "We are missing SNe" exit() # ----------- Set up the structures to handle the different salt models ------- # The first model is the unperturbed salt model SALTpath=JLA.get_full_path(params['saltPath']) SALTmodels=JLA.SALTmodels(SALTpath+'/saltModels.list') nSALTmodels=len(SALTmodels)-1 print SALTmodels, nSALTmodels nSNe=len(SNeList) print 'There are %d SNe in the sample' % (nSNe) print 'There are %d SALT models' % (nSALTmodels) # Add a survey column, which we use with the smoothing, and the redshift SNeList['survey'] = numpy.zeros(nSNe,'a10') SNeList['z'] = SNe['zhel'] # Identify the SNLS, SDSS, HST and low-z SNe. We use this when smoothing the Jacobian # There is rather inelegant # We still need to allow for Vanina's naming convention when doing this for the photometric sample for i,SN in enumerate(SNeList): if SN['id'][0:4]=='SDSS': SNeList['survey'][i]='SDSS' elif SN['id'][2:4] in ['D1','D2','D3','D4']: SNeList['survey'][i]='SNLS' elif SN['id'][0:3] in ['DES']: SNeList['survey'][i]='DES' elif SN['id'][0:2]=='sn': SNeList['survey'][i]='nearby' else: SNeList['survey'][i]='high-z' # ----------- Read in the calibration matrix ----------------- Cal=fits.getdata(JLA.get_full_path(params['C_kappa'])) # Multiply the ZP submatrix by 100^2, and the two ZP-offset submatrices by 100, # because the magnitude offsets are 0.01 mag and the units of the covariance matrix are mag size=Cal.shape[0] / 2 Cal[0:size,0:size]=Cal[0:size,0:size]*10000. Cal[0:size,size:]*=Cal[0:size,size:]*100. Cal[size:,0:size]=Cal[size:,0:size]*100. # ------------- Create an area to work in ----------------------- workArea = JLA.get_full_path(options.workArea) try: os.mkdir(workArea) except: pass # ----------- The lightcurve fitting -------------------------- firstSN=True log=open('log.txt','w') for i,SN in enumerate(SNeList): J=[] try: os.mkdir(workArea+'/'+SN['id']) except: pass #firstModel=True print 'Examining SN #%d %s' % (i+1,SN['id']) # Set up the number of processes pool = mp.Pool(processes=int(options.processes)) # runSALT is the program that does the lightcurve fitting results = [pool.apply(runSALT, args=(SALTpath, SALTmodel, salt_prefix, SN['lc'], SN['id'])) for SALTmodel in SALTmodels] for result in results[1:]: # The first model is the unperturbed model dM,dX,dC=JLA.computeOffsets(results[0],result) J.extend([dM,dX,dC]) pool.close() # This prevents to many open files if firstSN: J_new=numpy.array(J).reshape(nSALTmodels,3).T firstSN=False else: J_new=numpy.concatenate((J_new,numpy.array(J).reshape(nSALTmodels,3).T),axis=0) log.write('%d rows %d columns\n' % (J_new.shape[0],J_new.shape[1])) log.close() # Compute the new covariance matrix J . Cal . J.T produces a 3 * n_SN by 3 * n_SN matrix # J=jacobian J_smoothed=numpy.array(J_new)*0.0 J=J_new # We need to concatenate the different samples ... if options.Plot: try: os.mkdir('figures') except: pass nPoints={'SNLS':11,'SDSS':11,'nearby':11,'high-z':11,'DES':11} #sampleList=['nearby','DES'] sampleList=params['smoothList'].split(',') if options.smoothed: # We smooth the Jacobian # We roughly follow the method descibed in the footnote of p13 of B14 for sample in sampleList: selection=(SNeList['survey']==sample) J_sample=J[numpy.repeat(selection,3)] for sys in range(nSALTmodels): # We need to convert to a numpy array # There is probably a better way redshifts=numpy.array([z for z in SNeList[selection]['z']]) derivatives_mag=J_sample[0::3][:,sys] # [0::3] = [0,3,6 ...] Every 3rd one #print redshifts.shape, derivatives_mag.shape, nPoints[sample] forPlotting_mag,res_mag=JLA.smooth(redshifts,derivatives_mag,nPoints[sample]) derivatives_x1=J_sample[1::3][:,sys] forPlotting_x1,res_x1=JLA.smooth(redshifts,derivatives_x1,nPoints[sample]) derivatives_c=J_sample[2::3][:,sys] forPlotting_c,res_c=JLA.smooth(redshifts,derivatives_c,nPoints[sample]) # We need to insert the new results into the smoothed Jacobian matrix in the correct place # The Jacobian ia a 3 * n_SN by nSATLModels matrix # The rows are ordered by the mag, stretch and colour of each SNe. J_smoothed[numpy.repeat(selection,3),sys]=numpy.concatenate([res_mag,res_x1,res_c]).reshape(3,selection.sum()).ravel('F') # If required, make some plots as a way of checking if options.Plot: print 'Creating plot for systematic %d and sample %s' % (sys, sample) fig=plt.figure() ax1=fig.add_subplot(311) ax2=fig.add_subplot(312) ax3=fig.add_subplot(313) ax1.plot(redshifts,derivatives_mag,'bo') ax1.plot(forPlotting_mag[0],forPlotting_mag[1],'r-') ax1.set_ylabel('mag') ax2.plot(redshifts,derivatives_x1,'bo') ax2.plot(forPlotting_x1[0],forPlotting_x1[1],'r-') ax2.set_ylabel('x1') ax3.plot(redshifts,derivatives_c,'bo') ax3.plot(forPlotting_c[0],forPlotting_c[1],'r-') ax3.set_ylabel('c') ax3.set_xlabel('z') plt.savefig('figures/%s_sys_%d.png' % (sample,sys)) plt.close() date=JLA.get_date() fits.writeto('J_%s.fits' % (date) ,J,clobber=True) fits.writeto('J_smoothed_%s.fits' % (date), J_smoothed,clobber=True) # Some matrix arithmatic # C_cal is a nSALTmodels by nSALTmodels matrix # Read in a smoothed Jacobian specified in the options if options.jacobian != None: J_smoothed=fits.getdata(options.jacobian) # else: # # Replace the NaNs in your smoothed Jacobian with zero # J_smoothed[numpy.isnan(J_smoothed)]=0 C=numpy.matrix(J_smoothed)*numpy.matrix(Cal)*numpy.matrix(J_smoothed).T if options.output==None: fits.writeto('C_cal_%s.fits' % (date), numpy.array(C), clobber=True) else: fits.writeto('%s.fits' % (options.output),numpy.array(C),clobber=True) return
def compute_rel_size(options): import numpy import astropy.io.fits as fits from astropy.table import Table import JLA_library as JLA from astropy.cosmology import FlatwCDM import os # ----------- Read in the configuration file ------------ params = JLA.build_dictionary(options.config) # ---------- Read in the SNe list ------------------------- SNeList = numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S200', names=['id', 'lc']) for i, SN in enumerate(SNeList): SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '') # ----------- Read in the data JLA -------------------------- lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') nSNe = len(SNe) print 'There are %d SNe in this sample' % (nSNe) # sort it to match the listing in options.SNlist indices = JLA.reindex_SNe(SNeList['id'], SNe) SNe = SNe[indices] # ---------- Compute the Jacobian ---------------------- # The Jacobian is an m by 4 matrix, where m is the number of SNe # The columns are ordered in terms of Om, w, alpha and beta J = [] JLA_result = { 'Om': 0.303, 'w': -1.00, 'alpha': 0.141, 'beta': 3.102, 'M_B': -19.05 } offset = {'Om': 0.01, 'w': 0.01, 'alpha': 0.01, 'beta': 0.01, 'M_B': 0.01} nFit = 4 cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=JLA_result['Om'], w0=JLA_result['w']) # Varying Om cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=JLA_result['Om'] + offset['Om'], w0=JLA_result['w']) J.append(5 * numpy.log10((cosmo1.luminosity_distance(SNe['zcmb']) / cosmo2.luminosity_distance(SNe['zcmb']))[:, 0])) # varying alpha J.append(1.0 * offset['alpha'] * SNe['x1'][:, 0]) # varying beta J.append(-1.0 * offset['beta'] * SNe['color'][:, 0]) # varying M_B J.append(offset['M_B'] * numpy.ones(nSNe)) J = numpy.matrix( numpy.concatenate((J)).reshape(nSNe, nFit, order='F') * 100.) # Set up the covariance matrices systematic_terms = [ 'bias', 'cal', 'host', 'dust', 'model', 'nonia', 'pecvel', 'stat' ] covmatrices = { 'bias': params['bias'], 'cal': params['cal'], 'host': params['host'], 'dust': params['dust'], 'model': params['model'], 'nonia': params['nonia'], 'pecvel': params['pecvel'], 'stat': params['stat'] } if options.type in systematic_terms: print "Using %s for the %s term" % (options.name, options.type) covmatrices[options.type] = options.name # Combine the matrices to compute the full covariance matrix, and compute its inverse if options.all: #read in the user provided matrix, otherwise compute it, and write it out C = fits.getdata(JLA.get_full_path(params['all'])) else: C = add_covar_matrices(covmatrices, params['diag']) date = JLA.get_date() fits.writeto('C_total_%s.fits' % (date), C, clobber=True) Cinv = numpy.matrix(C).I # Construct eta, a 3n vector eta = numpy.zeros(3 * nSNe) for i, SN in enumerate(SNe): eta[3 * i] = SN['mb'] eta[3 * i + 1] = SN['x1'] eta[3 * i + 2] = SN['color'] # Construct A, a n x 3n matrix A = numpy.zeros(nSNe * 3 * nSNe).reshape(nSNe, 3 * nSNe) for i in range(nSNe): A[i, 3 * i] = 1.0 A[i, 3 * i + 1] = JLA_result['alpha'] A[i, 3 * i + 2] = -JLA_result['beta'] # ---------- Compute W ---------------------- # W has shape m * 3n, where m is the number of fit paramaters. W = (J.T * Cinv * J).I * J.T * Cinv * numpy.matrix(A) # Note that (J.T * Cinv * J) is a m x m matrix, where m is the number of fit parameters # ----------- Compute V_x, where x represents the systematic uncertainty result = [] for term in systematic_terms: cov = numpy.matrix(fits.getdata(JLA.get_full_path(covmatrices[term]))) if 'C_stat' in covmatrices[term]: # Add diagonal term from Eq. 13 to the magnitude sigma = numpy.genfromtxt( JLA.get_full_path(params['diag']), comments='#', usecols=(0, 1, 2), dtype='f8,f8,f8', names=['sigma_coh', 'sigma_lens', 'sigma_pecvel']) for i in range(nSNe): cov[3 * i, 3 * i] += sigma['sigma_coh'][i]**2 + sigma[ 'sigma_lens'][i]**2 + sigma['sigma_pecvel'][i]**2 V = W * cov * W.T result.append(V[0, 0]) print '%20s\t%5s\t%5s\t%s' % ('Term', 'sigma', 'var', 'Percentage') for i, term in enumerate(systematic_terms): if options.type != None and term == options.type: print '* %18s\t%5.4f\t%5.4f\t%4.1f' % (term, numpy.sqrt( result[i]), result[i], result[i] / numpy.sum(result) * 100.) else: print '%20s\t%5.4f\t%5.4f\t%4.1f' % (term, numpy.sqrt( result[i]), result[i], result[i] / numpy.sum(result) * 100.) print '%20s\t%5.4f' % ('Total', numpy.sqrt(numpy.sum(result))) return
def compute_Ccal(options): """Python program to compute Ccal """ import numpy import astropy.io.fits as fits from astropy.table import Table import multiprocessing as mp import matplotlib.pyplot as plt # ----------- Read in the configuration file ------------ params = JLA.build_dictionary(options.config) try: salt_prefix = params['saltPrefix'] except KeyError: salt_prefix = '' # ---------- Read in the SNe list ------------------------- SNeList = Table( numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S100', names=['id', 'lc'])) for i, SN in enumerate(SNeList): SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '') # ---------- Read in the SN light curve fits ------------ # This is mostly used to get the redshifts of the SNe. lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') # Make sure that the order is correct indices = JLA.reindex_SNe(SNeList['id'], SNe) SNe = SNe[indices] # ----------- Set up the structures to handle the different salt models ------- SALTpath = JLA.get_full_path(params['saltPath']) SALTmodels = JLA.SALTmodels(SALTpath + '/saltModels.list') nSALTmodels = len(SALTmodels) - 1 #print SALTmodels, nSALTmodels nSNe = len(SNeList) print 'There are %d SNe in the sample' % (nSNe) print 'There are %d SALT models' % (nSALTmodels) # Add a survey column, which we use with the smoothing, and the redshift SNeList['survey'] = numpy.zeros(nSNe, 'a10') SNeList['z'] = SNe['zhel'] # Identify the SNLS, SDSS, HST and low-z SNe. We use this when smoothing the Jacobian # There is probably a more elegant and efficient way of doing this # We need to allow for Vanina's naming convention when doing this for the photometric sample for i, SN in enumerate(SNeList): if SN['id'][0:4] == 'SDSS': SNeList['survey'][i] = 'SDSS' elif SN['id'][2:4] in ['D1', 'D2', 'D3', 'D4']: SNeList['survey'][i] = 'SNLS' elif SN['id'][0:2] == 'sn': SNeList['survey'][i] = 'nearby' else: SNeList['survey'][i] = 'high-z' # ----------- Read in the calibration matrix ----------------- Cal = fits.getdata(JLA.get_full_path(params['C_kappa'])) # Multiply the ZP submatrix by 100^2, and the two ZP-offset matrices by 100, # because the magnitude offsets are 0.01 mag and the units of the covariance matrix are mag Cal[0:37, 0:37] = Cal[0:37, 0:37] * 10000. # Cal[0:37, 37:] *= Cal[0:37, 37:] * 100. Cal[37:, 0:37] = Cal[37:, 0:37] * 100. #print SALTpath # ------------- Create an area to work in ----------------------- try: os.mkdir(options.workArea) except: pass # ----------- The lightcurve fitting -------------------------- firstSN = True log = open('log.txt', 'w') for i, SN in enumerate(SNeList): J = [] try: os.mkdir(options.workArea + '/' + SN['id']) except: pass firstModel = True print 'Examining SN #%d %s' % (i + 1, SN['id']) # Set up the number of processes pool = mp.Pool(processes=int(options.processes)) results = [ pool.apply(runSALT, args=(SALTpath, SALTmodel, salt_prefix, SN['lc'], SN['id'])) for SALTmodel in SALTmodels ] for result in results[1:]: dM, dX, dC = JLA.computeOffsets(results[0], result) J.extend([dM, dX, dC]) pool.close() # This prevents to many open files if firstSN: J_new = numpy.array(J).reshape(nSALTmodels, 3).T firstSN = False else: J_new = numpy.concatenate( (J_new, numpy.array(J).reshape(nSALTmodels, 3).T), axis=0) log.write('%d rows %d columns\n' % (J_new.shape[0], J_new.shape[1])) log.close() # Compute the new covariance matrix J . Cal . J.T produces a 3 * n_SN by 3 * n_SN matrix # J=jacobian J_smoothed = numpy.array(J_new) * 0.0 J = J_new # We need to concatenate the different samples ... if options.Plot: try: os.mkdir('figures') except: pass if options.smoothed: # We smooth the Jacobian # We roughly follow the method descibed in the footnote of p13 of B14 # Note that HST is smoothed as well. nPoints = {'SNLS': 11, 'SDSS': 11, 'nearby': 11, 'high-z': 11} for sample in ['SNLS', 'SDSS', 'nearby']: selection = (SNeList['survey'] == sample) J_sample = J[numpy.repeat(selection, 3)] for sys in range(nSALTmodels): # We need to convert to a numpy array # There is probably a better way redshifts = numpy.array( [z[0] for z in SNeList[selection]['z']]) derivatives_mag = J_sample[ 0::3][:, sys] # [0::3] = [0,3,6 ...] Every 3rd one #print redshifts.shape, derivatives_mag.shape, nPoints[sample] forPlotting_mag, res_mag = JLA.smooth(redshifts, derivatives_mag, nPoints[sample]) derivatives_x1 = J_sample[1::3][:, sys] forPlotting_x1, res_x1 = JLA.smooth(redshifts, derivatives_x1, nPoints[sample]) derivatives_c = J_sample[2::3][:, sys] forPlotting_c, res_c = JLA.smooth(redshifts, derivatives_c, nPoints[sample]) # We need to insert the new results into the smoothed Jacobian matrix in the correct place # The Jacobian ia a 3 * n_SN by nSATLModels matrix # The rows are ordered by the mag, stretch and colour of each SNe. J_smoothed[numpy.repeat(selection, 3), sys] = numpy.concatenate( [res_mag, res_x1, res_c]).reshape(3, selection.sum()).ravel('F') # If required, make some plots as a way of checking if options.Plot: print 'Creating plot for systematic %d and sample %s' % ( sys, sample) fig = plt.figure() ax1 = fig.add_subplot(311) ax2 = fig.add_subplot(312) ax3 = fig.add_subplot(313) ax1.plot(redshifts, derivatives_mag, 'bo') ax1.plot(forPlotting_mag[0], forPlotting_mag[1], 'r-') ax2.plot(redshifts, derivatives_x1, 'bo') ax2.plot(forPlotting_x1[0], forPlotting_x1[1], 'r-') ax3.plot(redshifts, derivatives_c, 'bo') ax3.plot(forPlotting_c[0], forPlotting_c[1], 'r-') plt.savefig('figures/%s_sys_%d.png' % (sample, sys)) plt.close() date = JLA.get_date() fits.writeto('J_%s.fits' % (date), J, clobber=True) fits.writeto('J_smoothed_%s.fits' % (date), J_smoothed, clobber=True) # Some matrix arithmatic # C_cal is a nSALTmodels by nSALTmodels matrix # Read in a smoothed Jacobian specified in the options if options.jacobian != None: J_smoothed = fits.getdata(options.jacobian) # else: # # Replace the NaNs in your smoothed Jacobian with zero # J_smoothed[numpy.isnan(J_smoothed)]=0 C = numpy.matrix(J_smoothed) * numpy.matrix(Cal) * numpy.matrix( J_smoothed).T if options.output == None: fits.writeto('C_cal_%s.fits' % (date), numpy.array(C), clobber=True) else: fits.writeto('%s.fits' % (options.output), numpy.array(C), clobber=True) return
def compute_bias(options): import numpy import astropy.io.fits as fits import JLA_library as JLA from astropy.table import Table from astropy.cosmology import FlatwCDM from scipy.optimize import leastsq import matplotlib.pyplot as plt from scipy.stats import t # ----------- Read in the configuration file ------------ params=JLA.build_dictionary(options.config) # ----------- Read in the SN ordering ------------------------ SNeList = Table(numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S200', names=['id', 'lc'])) nSNe = len(SNeList) for i, SN in enumerate(SNeList): SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp','') lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') print 'There are %d SNe' % (nSNe) indices = JLA.reindex_SNe(SNeList['id'], SNe) SNe=SNe[indices] # Add a column that records the error in the bias correction SNe['e_bias'] = numpy.zeros(nSNe,'f8') # Read in the bias correction (see, for example, Fig.5 in B14) # Fit a polynomial to the data # Determine the uncertainties bias = numpy.genfromtxt(JLA.get_full_path(params['biasPolynomial']), skip_header=4, usecols=(0, 1, 2, 3), dtype='S10,f8,f8,f8', names=['sample', 'redshift', 'bias', 'e_bias']) if options.plot: fig=plt.figure() ax=fig.add_subplot(111) colour={'nearby':'b','SNLS':'r','SDSS':'g','DES':'k'} for sample in numpy.unique(bias['sample']): selection=(bias['sample']==sample) guess=[0,0,0] print bias[selection] plsq=leastsq(residuals, guess, args=(bias[selection]['bias'], bias[selection]['redshift'], bias[selection]['e_bias'], 'poly'), full_output=1) if plsq[4] in [1,2,3,4]: print 'Solution for %s found' % (sample) if options.plot: ax.errorbar(bias[selection]['redshift'], bias[selection]['bias'], yerr=bias[selection]['e_bias'], ecolor='k', color=colour[sample], fmt='o', label=sample) z=numpy.arange(numpy.min(bias[selection]['redshift']),numpy.max(bias[selection]['redshift']),0.001) ax.plot(z,poly(z,plsq[0]),color=colour[sample]) # For each SNe, determine the uncerainty in the correction. We use the approach descibed in # https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html # Compute the chi-sq. chisq=(((bias[selection]['bias']-poly(bias[selection]['redshift'],plsq[0]))/bias[selection]['e_bias'])**2.).sum() dof=selection.sum()-len(guess) print "Reduced chi-square value for sample %s is %5.2e" % (sample, chisq / dof) alpha=0.315 # Confidence interval is 100 * (1-alpha) # Compute the upper alpha/2 value for the student t distribution with dof thresh=t.ppf((1-alpha/2.0), dof) if options.plot and sample!='nearby': # The following is only valid for polynomial fitting functions, and we do not compute it for the nearby sample upper_curve=[] lower_curve=[] for x in z: vect=numpy.matrix([1,x,x**2.]) offset=thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0]) upper_curve.append(poly(x,plsq[0])+offset) lower_curve.append(poly(x,plsq[0])-offset) ax.plot(z,lower_curve,'--',color=colour[sample]) ax.plot(z,upper_curve,'--',color=colour[sample]) # Compute the error in the bias # We increase the absolute value # In other words, if the bias is negative, we subtract the error to make it even more negative # This is to get the correct sign in the off diagonal elements # We assume 100% correlation between SNe for i,SN in enumerate(SNe): if SN['zcmb'] > 0: redshift = SN['zcmb'] else: redshift = SN['zhel'] if JLA.survey(SN) == sample: # For the nearby SNe, the uncertainty in the bias correction is the bias correction itself if sample=='nearby': SNe['e_bias'][i]=poly(redshift,plsq[0]) #print SN['name'],redshift, SNe['e_bias'][i] else: vect = numpy.matrix([1,redshift,redshift**2.]) if poly(redshift,plsq[0]) > 0: sign = 1 else: sign = -1 SNe['e_bias'][i] = sign * thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0]) # We are getting some unrealistcally large values date = JLA.get_date() if options.plot: ax.legend() plt.savefig('C_bias_%s.png' % (date)) plt.close() # Compute the bias matrix # Zero=numpy.zeros(nSNe) H=numpy.concatenate((SNe['e_bias'],Zero,Zero)).reshape(3,nSNe).ravel(order='F') C_bias = numpy.matrix(H).T * numpy.matrix(H) fits.writeto('C_bias_%s.fits' % (date),C_bias,clobber=True) return None
def compute_bias(options): import numpy import astropy.io.fits as fits import JLA_library as JLA from astropy.table import Table from astropy.cosmology import FlatwCDM from scipy.optimize import leastsq import matplotlib.pyplot as plt from scipy.stats import t # ----------- Read in the configuration file ------------ params=JLA.build_dictionary(options.config) # ----------- Read in the SN ordering ------------------------ SNeList = Table(numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S200', names=['id', 'lc'])) nSNe = len(SNeList) for i, SN in enumerate(SNeList): SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '') lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') print 'There are %d SNe' % (nSNe) indices = JLA.reindex_SNe(SNeList['id'], SNe) SNe=SNe[indices] # Add a column that records the error in the bias SNe['e_bias'] = numpy.zeros(nSNe,'f8') # Read in the points from B14 figure # Fit a polynomial to the data # Determine the uncertainties bias = numpy.genfromtxt(JLA.get_full_path(params['biasPolynomial']), skip_header=3, usecols=(0, 1, 2, 3), dtype='S10,f8,f8,f8', names=['sample', 'redshift', 'bias', 'e_bias']) if options.plot: fig=plt.figure() ax=fig.add_subplot(111) colour={'nearby':'b','SNLS':'r','SDSS':'g'} for sample in numpy.unique(bias['sample']): selection=(bias['sample']==sample) guess=[0,0,0] plsq=leastsq(residuals, guess, args=(bias[selection]['bias'], bias[selection]['redshift'], bias[selection]['e_bias'], 'poly'), full_output=1) if plsq[4] in [1,2,3,4]: print 'Solution for %s found' % (sample) if options.plot: ax.errorbar(bias[selection]['redshift'], bias[selection]['bias'], yerr=bias[selection]['e_bias'], ecolor='k', color=colour[sample], fmt='o', label=sample) z=numpy.arange(numpy.min(bias[selection]['redshift']),numpy.max(bias[selection]['redshift']),0.001) ax.plot(z,poly(z,plsq[0]),color=colour[sample]) # For each SNe, determine the uncerainty in the correction. We use the covariance martix # prediction bounds for the fitted curve. # https://www.astro.rug.nl/software/kapteyn/kmpfittutorial.html # Compute the chi-sq. chisq=(((bias[selection]['bias']-poly(bias[selection]['redshift'],plsq[0]))/bias[selection]['e_bias'])**2.).sum() dof=selection.sum()-len(guess) print "Reduced chi-square value for sample %s is %5.2e" % (sample, chisq / dof) alpha=0.315 # Confidence interval is 100 * (1-alpha) # Compute the upper alpha/2 vallue for the student t distribution with dof thresh=t.ppf((1-alpha/2.0), dof) if options.plot: # The following is only valid for polynomial fitting functions upper_curve=[] lower_curve=[] for x in z: vect=numpy.matrix([1,x,x**2.]) offset=thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0]) upper_curve.append(poly(x,plsq[0])+offset) lower_curve.append(poly(x,plsq[0])-offset) ax.plot(z,lower_curve,'--',color=colour[sample]) ax.plot(z,upper_curve,'--',color=colour[sample]) # Compute the error in the bias # We increase the absolute vlaue # In other words, if the bias is negative, we subtract the error to make it even more negative # We assume 100% correlation between SNe for i,SN in enumerate(SNe): if JLA.survey(SN) == sample: if SN['zcmb'] > 0: redshift = SN['zcmb'] else: redshift = SN['zhel'] vect = numpy.matrix([1,redshift,redshift**2.]) if poly(redshift,plsq[0]) > 0: sign = 1 else: sign = -1 SNe['e_bias'][i] = sign * thresh * numpy.sqrt(chisq / dof * (vect*numpy.matrix(plsq[1])*vect.T)[0,0]) # We are getting some unrealistcally large values if options.plot: ax.legend() plt.show() plt.close() # Compute the bias matrix # date = JLA.get_date() Zero=numpy.zeros(nSNe) H=numpy.concatenate((SNe['e_bias'],Zero,Zero)).reshape(3,nSNe).ravel(order='F') C_bias = numpy.matrix(H) fits.writeto('C_bias_%s.fits' % (date),C_bias.T*C_bias,clobber=True) return None
def add_covar_matrices(options): """ Python program that adds the individual covariance matrices into a single matrix """ import time import numpy import astropy.io.fits as fits import JLA_library as JLA params = JLA.build_dictionary(options.config) # Read in the terms that account for uncertainties in perculiar velocities, # instrinsic dispersion and, lensing # Read in the covariance matrices matrices = [] systematic_terms = ['bias', 'cal', 'host', 'dust', 'model', 'nonia', 'pecvel', 'stat'] covmatrices = {'bias':params['bias'], 'cal':params['cal'], 'host':params['host'], 'dust':params['dust'], 'model':params['model'], 'nonia':params['nonia'], 'pecvel':params['pecvel'], 'stat':params['stat']} for term in systematic_terms: matrices.append(fits.getdata(JLA.get_full_path(covmatrices[term]), 0)) # Add the matrices size = matrices[0].shape add = numpy.zeros(size[0]**2.).reshape(size[0], size[0]) for matrix in matrices: add += matrix # Write out this matrix. This is C_eta in qe. 13 of B14 date=JLA.get_date() fits.writeto('C_eta_%s.fits' % (date), add, clobber=True) # Compute A nSNe = size[0]/3 jla_results = {'Om':0.303, 'w':-1.027, 'alpha':0.141, 'beta':3.102} arr = numpy.zeros(nSNe*3*nSNe).reshape(nSNe, 3*nSNe) for i in range(nSNe): arr[i, 3*i] = 1.0 arr[i, 3*i+1] = jla_results['alpha'] arr[i, 3*i+2] = -jla_results['beta'] cov = numpy.matrix(arr) * numpy.matrix(add) * numpy.matrix(arr).T # Add the diagonal terms sigma = numpy.genfromtxt(JLA.get_full_path(params['diag']), comments='#', usecols=(0, 1, 2), dtype='f8,f8,f8', names=['sigma_coh', 'sigma_lens', 'sigma_pecvel']) for i in range(nSNe): cov[i, i] += sigma['sigma_coh'][i]**2 + \ sigma['sigma_lens'][i]**2 + \ sigma['sigma_pecvel'][i]**2 fits.writeto('C_total_%s.fits' % (date), cov, clobber=True) return
def compute_nonIa(options): """Pythom program to compute the systematic unsertainty related to the contamimation from Ibc SNe""" import numpy import astropy.io.fits as fits from astropy.table import Table, MaskedColumn, vstack import JLA_library as JLA # The program computes the covaraince for the spectroscopically confirmed SNe Ia only # The prgram assumes that the JLA SNe are first in any list # Taken from C11 # Inputs are the rates of SNe Ia and Ibc, the most likely contaminant # Ia rate - Perett et al. # SN Ibc rate - proportional to the star formation rate - Hopkins and Beacom # SN Ib luminosity distribution. Li et al + bright SN Ibc Richardson # The bright Ibc population # d_bc = 0.25 # The offset in magnitude between the Ia and bright Ibc # s_bc = 0.25 # The magnitude spread # f_bright = 0.25 # The fraction of Ibc SN that are bright # Simulate the characteristics of the SNLS survey # Apply outlier rejection # All SNe that pass the cuts are included in the sample # One then has a mixture of SNe Ia and SNe Ibc # and the average magnitude at each redshift is biased. This # is called the raw bias. One multiplies the raw bias by the fraction of # objects classified as SNe Ia* # The results are presented in 7 redshift bins defined in table 14 of C11 # We use these results to generate the matrix. # Only the SNLS SNe in the JLA sample are considered. # For the photometrically selected sample and other surveys, this will probably be different # JLA compute this for the SNLS sample only # We assume that the redshift in this table refers to the left hand edge of each bin # ----------- Read in the configuration file ------------ params = JLA.build_dictionary(options.config) data=numpy.genfromtxt(JLA.get_full_path(params['classification']),comments="#",usecols=(0,1,2),dtype=['float','float','float'],names=['redshift','raw_bias','fraction']) z_bin=data['redshift'] raw_bias=data['raw_bias'] f_star=data['fraction'] # The covaraiance between SNe Ia in the same redshift bin is fully correlated # Otherwise, it is uncorrelated # ----------- Read in the configuration file ------------ params = JLA.build_dictionary(options.config) SNeList = numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S200', names=['id', 'lc']) for i, SN in enumerate(SNeList): SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '').replace('_smp','') lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') # Add a bin column and a column that specifies if the covariance needs to be computed SNe['bin'] = 0 SNe['eval'] = False # make the order of data (in SNe) match SNeList indices = JLA.reindex_SNe(SNeList['id'], SNe) SNe = SNe[indices] nSNe = len(SNe) # Identify the SNLS SNe in the JLA sample # We use the source and the name to decide if we want to add corrections for non-Ia contamination # Identify the DESS SNe in the DES sample. for i, SN in enumerate(SNe): try: # If the source keyword exists if (SN['source'] == 'JLA' or SN['source'] == 'SNLS_spec') and SN['name'][2:4] in ['D1', 'D2', 'D3', 'D4']: SNe['eval'][i] = True elif (SN['source']== 'SNLS_photo') and (SN['name'][2:4] in ['D1', 'D2', 'D3', 'D4'] or (SN['name'][0:2] in ['D1', 'D2', 'D3', 'D4'])): SNe['eval'][i] = True except: # If the source keyword does not exist if SN['name'][0:3]=="DES": SNe['eval'][i] = True print list(SNe['eval']).count(True) # Work out which redshift bin each SNe belongs to # In numpy.digitize, the bin number starts at 1, so we subtract 1 -- need to check... SNe['bin'] = numpy.digitize(SNe['zhel'], z_bin)-1 # Build the covariance matrix C_nonIa = numpy.zeros(nSNe*3*nSNe*3).reshape(nSNe*3, nSNe*3) # It only computes the covariance for the spectroscopically confirmed SNLS SNe # We assume that covariance between redshift bins is uncorrelated # Within a redshift bin, we assume 100% covariance between SNe in that bin for i in range(nSNe): bin1 = SNe['bin'][i] if SNe['eval'][i]: print SNe['zhel'][i], bin1, raw_bias[bin1], f_star[bin1], i for j in range(nSNe): bin2 = SNe['bin'][j] if SNe['eval'][j] and SNe['eval'][i] and bin1 == bin2: C_nonIa[3*i, 3*j] = (raw_bias[bin1] * f_star[bin1])**2 # print SNe['bin'][:239] # I am unable to reproduce this JLA covariance matrix date = JLA.get_date() fits.writeto('C_nonIa_%s.fits' % date, numpy.array(C_nonIa), clobber=True) return
def compute_nonIa(options): """Pythom program to compute the systematic unsertainty related to the contamimation from Ibc SNe""" import numpy import astropy.io.fits as fits from astropy.table import Table, MaskedColumn, vstack import JLA_library as JLA # The program computes the covaraince for the spectroscopically confirmed SNe Ia only # The prgram assumes that the JLA SNe are first in any list # Taken from C11 # Inputs are the rates of SNe Ia and Ibc, the most likely contaminant # Ia rate - Perett et al. # SN Ibc rate - proportional to the star formation rate - Hopkins and Beacom # SN Ib luminosity distribution. Li et al + bright SN Ibc Richardson # The bright Ibc population # d_bc = 0.25 # The offset in magnitude between the Ia and bright Ibc # s_bc = 0.25 # The magnitude spread # f_bright = 0.25 # The fraction of Ibc SN that are bright # Simulate the characteristics of the SNLS survey # Apply outlier rejection # All SNe that pass the cuts are included in the sample # One then has a mixture of SNe Ia and SNe Ibc # and the average magnitude at each redshift is biased. This # is called the raw bias. One multiplies the raw bias by the fraction of # objects classified as SNe Ia* # The results are presented in 7 redshift bins defined in table 14 of C11 # We use these results to generate the matrix. # Only the SNLS SNe in the JLA sample are considered. # For the photometrically selected sample and other surveys, this will probably be different # JLA compute this for the SNLS sample only # We assume that the redshift in this table refers to the left hand edge of each bin z_bin = numpy.array([0.0, 0.1, 0.26, 0.41, 0.57, 0.72, 0.89, 1.04]) raw_bias = numpy.array([0.0, 0.015, 0.024, 0.024, 0.024, 0.023, 0.026, 0.025]) f_star = numpy.array([0.0, 0.00, 0.06, 0.14, 0.17, 0.24, 0.50, 0.00]) # The covaraiance between SNe Ia in the same redshift bin is fully correlated # Otherwise, it is uncorrelated # ----------- Read in the configuration file ------------ params = JLA.build_dictionary(options.config) SNeList = numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S200', names=['id', 'lc']) nSNe = len(SNeList) for i, SN in enumerate(SNeList): SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '') lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') # Add a bin column and a column that specified of the covariance is non-zero SNe['bin'] = 0 SNe['eval'] = False # make order of data (in SNe) match SNeList indices = JLA.reindex_SNe(SNeList['id'], SNe) SNe = SNe[indices] # Identify the SNLS SNe in the JLA sample for i, SN in enumerate(SNe): if SN['source'][0] == 'JLA' and SN['name'][0][2:4] in ['D1', 'D2', 'D3', 'D4']: SNe['eval'][i] = True # Work out which redshift bin each SNe belongs to # In numpy.digitize, the bin number starts at 1, so we subtract 1 SNe['bin'] = numpy.digitize(SNe['zhel'], z_bin)-1 # Build the covariance matrix C_nonIa = numpy.zeros(nSNe*3*nSNe*3).reshape(nSNe*3, nSNe*3) # It is only computes the covariance for the spectroscopically confirmed SNLS SNe # We assume that covariance between redshift bins is uncorrelated for i in range(nSNe): bin1 = SNe['bin'][i] for j in range(nSNe): bin2 = SNe['bin'][j] if SNe['eval'][j] and SNe['eval'][i] and bin1 == bin2: C_nonIa[3*i, 3*j] = (raw_bias[bin1] * f_star[bin1])*(raw_bias[bin2] * f_star[bin2]) date = JLA.get_date() fits.writeto('C_nonIa_%s.fits' % date, numpy.array(C_nonIa), clobber=True) return
def merge_lightcurve_fits(options): """Pythom program to merge the lightcurve fit results into a sigle format""" import numpy import astropy import JLA_library as JLA from astropy.table import Table, MaskedColumn, vstack params = JLA.build_dictionary(options.config) # ---------------- JLA ------------------------ lightCurveFits = JLA.get_full_path(params['JLAlightCurveFits']) f=open(lightCurveFits) header=f.readlines() f.close() names=header[0].strip('#').split() # I imagine that the tables package in astropy could also be used to read the ascii input file SNeSpec = Table(numpy.genfromtxt(lightCurveFits, skip_header=1, dtype='S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8', names=names)) nSNeSpec=len(SNeSpec) print 'There are %d SNe from the spectrscopically confirmed sample' % (nSNeSpec) # Add an extra column to the table SNeSpec['source']=['JLA']*nSNeSpec # ---------------- Shuvo's sample ------------------------ # Photometrically identified SNe in Shuvo's sample, if the parameter exists if params['photLightCurveFits']!='None': lightCurveFits = JLA.get_full_path(params['photLightCurveFits']) SNePhot=Table.read(lightCurveFits, format='fits') nSNePhot=len(SNePhot) print 'There are %d SNe from the photometric sample' % (nSNePhot) # Converting from Shuvo's names to thosed used by JLA conversion={'name':'name_adj', 'zcmb':None, 'zhel':'z', 'dz':None, 'mb':'mb', 'dmb':'emb', 'x1':'x1', 'dx1':'ex1', 'color':'c', 'dcolor':'ec', '3rdvar':'col27', 'd3rdvar':'d3rdvar', 'tmax':None, 'dtmax':None, 'cov_m_s':'cov_m_x1', 'cov_m_c':'cov_m_c', 'cov_s_c':'cov_x1_c', 'set':None, 'ra':None, 'dec':None, 'biascor':None} # Add the uncertainty in the mass column SNePhot['d3rdvar']=(SNePhot['col29']+SNePhot['col28'])/2. - SNePhot['col27'] # Remove columns that are not listed in conversion for colname in SNePhot.colnames: if colname not in conversion.values(): SNePhot.remove_column(colname) for key in conversion.keys(): # Rename the column if it does not already exist if conversion[key]!=None and conversion[key]!=key: SNePhot.rename_column(conversion[key], key) elif conversion[key]==None: # Create it, mask it, and fill all values SNePhot[key]=MaskedColumn(numpy.zeros(nSNePhot), numpy.ones(nSNePhot,bool)) SNePhot[key].fill_value=-99 # does not work as expected, so we set it explicitly in the next line SNePhot[key]=-99.9 else: # Do nothing if the column already exists pass # Add the source column SNePhot['source']="Phot_Uddin" # ---------------------- CfA4 ---------------------------------- if params['CfA4LightCurveFits']!='None': lightCurveFits = JLA.get_full_path(params['CfA4LightCurveFits']) f=open(lightCurveFits) header=f.readlines() f.close() names=header[0].strip('#').split(',') SNeCfA4=Table(numpy.genfromtxt(lightCurveFits, skip_header=1, dtype='S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8', names=names,delimiter=',')) nSNeCfA4=len(SNeCfA4) conversion={'name':'name', 'zcmb':None, 'zhel':'z', 'dz':None, 'mb':'mb', 'dmb':'emb', 'x1':'x1', 'dx1':'ex1', 'color':'c', 'dcolor':'ec', '3rdvar':None, 'd3rdvar':None, 'tmax':None, 'dtmax':None, 'cov_m_s':'cov_m_x1', 'cov_m_c':'cov_m_c', 'cov_s_c':'cov_x1_c', 'set':None, 'ra':None, 'dec':None, 'biascor':None} # Remove columns that are not listed in conversion for colname in SNeCfA4.colnames: if colname not in conversion.values(): SNeCfA4.remove_column(colname) for key in conversion.keys(): # Rename the column if it does not already exist if conversion[key]!=None and conversion[key]!=key: SNeCfA4.rename_column(conversion[key], key) elif conversion[key]==None: # Create it, mask it, and fill all values SNeCfA4[key]=MaskedColumn(numpy.zeros(nSNeCfA4), numpy.ones(nSNeCfA4,bool)) SNeCfA4[key].fill_value=-99 # does not work as expected, so we set it explicitly in the next line SNeCfA4[key]=-99.9 else: # Do nothing if the column already exists pass # Add the source column SNeCfA4['source']="CfA4" try: SNe=vstack([SNeSpec,SNePhot,SNeCfA4]) except: SNe=SNeSpec # Write out the result as a FITS table date = JLA.get_date() SNe.write('%s_%s.fits' % (options.output, date), format='fits') return
def compute_nonIa_fraction(options): import numpy import astropy.io.fits as fits from astropy.table import Table import JLA_library as JLA import matplotlib.pyplot as plt # ----------- Read in the configuration file ------------ params = JLA.build_dictionary(options.config) # ----------- Read in the SNe --------------------------- SNeList = numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S200', names=['id', 'lc']) for i, SN in enumerate(SNeList): SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '') redshift=[] SNtype=[] for SN in SNeList: if 'DES' in SN['lc']: z,t=getVariable(SN['lc'],['Z_HELIO','SNTYPE']) redshift.append(float(z)) SNtype.append(int(t)) nSNe=len(redshift) types=numpy.zeros(nSNe,dtype=[('redshift','f4'),('SNtype','i4')]) types['redshift']=redshift types['SNtype']=SNtype print "There are %d SNe" % (nSNe) bins=numpy.array([0.00,0.10,0.26,0.41,0.57,0.72,0.89,1.04]) bias=numpy.array([0.00,0.015,0.024,0.024,0.024,0.023,0.026,0.025]) selection=(types['SNtype']==1) SNeIa=numpy.histogram(types[selection]['redshift'],bins) SNeIa_total=numpy.histogram(types['redshift'],bins) print SNeIa, SNeIa_total if options.plot: fig=plt.figure() ax=fig.add_subplot(111) ax.hist(types[selection]['redshift'],bins=bins, histtype='step', color='b') ax.hist(types['redshift'],bins=bins, histtype='step', color='g') plt.show() if nSNe > SNeIa_total[0].sum(): print 'Oops' exit() # Write out as an ascii table output=open(JLA.get_full_path(params['classification']),'w') output.write('# DES SN classification\n') output.write('# Written on %s\n' % (JLA.get_date())) output.write('# redshift\tRaw_bias\tfraction\n') output.write('%4.2f\t%4.3f\t%4.3f\n' % (0.0,0.0,0.0)) for i in range(len(bins)-1): if SNeIa_total[0][i] > 0: output.write('%4.2f\t%4.3f\t%4.3f\n' % (bins[i+1],bias[i+1],1.0-1.0*SNeIa[0][i]/SNeIa_total[0][i])) output.close() return
"-l", "--lcfits", dest="lcfits", default="lightCurveFits", help="Key in config file pointing to lightcurve fit parameters") (options, args) = parser.parse_args() params = JLA.build_dictionary(options.config) lcfile = JLA.get_full_path(params[options.lcfits]) SN_data = Table.read(lcfile, format='fits') SN_list_long = np.genfromtxt(options.SNlist, usecols=(0), dtype='S30') SN_list = [ name.replace('lc-', '').replace('.list', '') for name in SN_list_long ] SN_indices = JLA.reindex_SNe(SN_list, SN_data) SN_data = SN_data[SN_indices] velfile = JLA.get_full_path(params['velocityField']) vel_correction = VelocityCorrection(velfile) #z_correction = vel_correction.apply(SN_data) C_pecvel = vel_correction.covmat_pecvel(SN_data) date = JLA.get_date() fits.writeto('C_pecvel_%s.fits' % date, np.array(C_pecvel), clobber=True)
help="Parameter file containing the location of various JLA parameters") parser.add_option("-s", "--SNlist", dest="SNlist", help="List of SNe") parser.add_option("-l", "--lcfits", dest="lcfits", default="lightCurveFits", help="Key in config file pointing to lightcurve fit parameters") (options, args) = parser.parse_args() params = JLA.build_dictionary(options.config) lcfile = JLA.get_full_path(params[options.lcfits]) SN_data = Table.read(lcfile, format='fits') SN_list_long = np.genfromtxt(options.SNlist, usecols=(0), dtype='S30') SN_list = [name.replace('lc-', '').replace('.list', '') for name in SN_list_long] SN_indices = JLA.reindex_SNe(SN_list, SN_data) SN_data = SN_data[SN_indices] velfile = JLA.get_full_path(params['velocityField']) vel_correction = VelocityCorrection(velfile) #z_correction = vel_correction.apply(SN_data) C_pecvel = vel_correction.covmat_pecvel(SN_data) date = JLA.get_date() fits.writeto('C_pecvel_%s.fits' % date, np.array(C_pecvel), clobber=True)
def add_covar_matrices(options): """ Python program that adds the individual covariance matrices into a single matrix """ import time import numpy import astropy.io.fits as fits import JLA_library as JLA params = JLA.build_dictionary(options.config) # Read in the terms that account for uncertainties in perculiar velocities, # instrinsic dispersion and, lensing # Read in the covariance matrices matrices = [] systematic_terms = [ 'bias', 'cal', 'host', 'dust', 'model', 'nonia', 'pecvel', 'stat' ] covmatrices = { 'bias': params['bias'], 'cal': params['cal'], 'host': params['host'], 'dust': params['dust'], 'model': params['model'], 'nonia': params['nonia'], 'pecvel': params['pecvel'], 'stat': params['stat'] } for term in systematic_terms: matrices.append(fits.getdata(JLA.get_full_path(covmatrices[term]), 0)) # Add the matrices size = matrices[0].shape add = numpy.zeros(size[0]**2.).reshape(size[0], size[0]) for matrix in matrices: add += matrix # Write out this matrix. This is C_eta in qe. 13 of B14 date = JLA.get_date() fits.writeto('C_eta_%s.fits' % (date), add, clobber=True) # Compute A nSNe = size[0] / 3 jla_results = {'Om': 0.303, 'w': -1.027, 'alpha': 0.141, 'beta': 3.102} arr = numpy.zeros(nSNe * 3 * nSNe).reshape(nSNe, 3 * nSNe) for i in range(nSNe): arr[i, 3 * i] = 1.0 arr[i, 3 * i + 1] = jla_results['alpha'] arr[i, 3 * i + 2] = -jla_results['beta'] cov = numpy.matrix(arr) * numpy.matrix(add) * numpy.matrix(arr).T # Add the diagonal terms sigma = numpy.genfromtxt(JLA.get_full_path(params['diag']), comments='#', usecols=(0, 1, 2), dtype='f8,f8,f8', names=['sigma_coh', 'sigma_lens', 'sigma_pecvel']) for i in range(nSNe): cov[i, i] += sigma['sigma_coh'][i]**2 + \ sigma['sigma_lens'][i]**2 + \ sigma['sigma_pecvel'][i]**2 fits.writeto('C_total_%s.fits' % (date), cov, clobber=True) return
def train_SALT2(options): # Read in the configuration file params=JLA.build_dictionary(options.config) # Make the initialisation and training directories mkdir(params['trainingDir']) # Copy accross files from the initDir to the trainingDir for file in os.listdir(params['initDir']): sh.copy(params['initDir']+'/'+file,params['trainingDir']) # Make the output directory date=date=JLA.get_date() outputDir="/%s/data_%s_%s_%s/" % (params['outputDir'],date,params['trainingSample'],params['snpcaVersion']) mkdir(outputDir) os.chdir(params['trainingDir']) # Part a) First training, withiout error snake # Step 1 - Train without the error snake cmd=['pcafit', '-l','trainingsample_snls_sdss_v5.list', '-c','training_without_error_snake.conf', '-p','pca_1_opt1_final.list', '-d'] sp.call(' '.join(cmd),shell=True) # Step 2 - Compute uncertainties cmd=['write_pca_uncertainties', 'pca_1_opt1_final.list', 'full_weight_1.fits', '2', '1.0', '1.0'] sp.call(' '.join(cmd),shell=True) # Step 3 - Compute error snake cmd=['Compute_error_snake', 'trainingsample_snls_sdss_v5.list', 'training_without_error_snake.conf', 'pca_1_opt1_final.list', 'full_weight_1.fits', 'covmat_1_with_constraints.fits'] sp.call(' '.join(cmd),shell=True) sh.copy('pca_1_opt1_final.list', 'pca_1_opt1_final_first.list') sh.copy('model_covmat_for_error_snake.fits','model_covmat_for_error_snake_first.fits') sh.copy('salt2_lc_dispersion_scaling.dat', 'salt2_lc_dispersion_scaling_first.dat') # Part b Second training, with the error snake # Step 4 - Second training using the output from the first three steps cmd=['pcafit', '-l','trainingsample_snls_sdss_v5.list', '-c','training_with_error_snake.conf', '-p','pca_1_opt1_final_first.list', '-d'] sp.call(' '.join(cmd),shell=True) # Step 5 - Recompute uncertainties cmd=['write_pca_uncertainties', 'pca_1_opt1_final.list', 'full_weight_1.fits', '2', '1.0', '1.0']
def compute_C_K(options): import JLA_library as JLA import jla_FGCM as FGCM import numpy import astropy.io.fits as fits # ----------- Read in the configuration file ------------ params = JLA.build_dictionary(options.config) # ----------- We read in the JLA version of C_Kappa ------------ nDim = 52 # The number of elements in the DES C_Kappa matrix C_K_DES = numpy.zeros(nDim * nDim).reshape(nDim, nDim) SMP_ZP = 0.001 # The accuracy of the SMP ZPs # 6.6 mmag RMS scatter between FGCM and GAIA # The first factor of sqrt(2) comes from asuuming that GAIA and DES contrinute eually to the error # The second factor of sqrt(2) arises because we are taking the difference between two points, one where the standard is, and another where the SN is. uniformity = 0.0066 / numpy.sqrt(3.) # Following BBC nC26202_Observations = {'DES_g':133,'DES_r':21,'DES_i':27,'DES_z':78} # Number of times C26202 has been observed FGCM_unc = 0.005 # The RMS scatter in FGCM standard magnitudes chromatic_differential = 0.0 # Set to zero for now if options.base: # Read in the JLA matrix and extract the appropriate rows and columns # The matrix is structured in blocks with ZPs first, # and uncertainties in the filter curves second # The order is specified in salt2_calib_variations_all/saltModels.list # CfA3 and CfA4 are in rows 10 to 19 and 46 to 56 (starting at row 1) # We write these to rows 1 to 10 and 27 to 36 # CSP are in rows 20 to 25 and 57 to 62. # We write these to rows 11 to 16 and 37 to 42 C_K_JLA = fits.getdata(JLA.get_full_path(params['C_kappa_JLA'])) # Extract the relevant columns and rows # ZPs first # Since the indices for CfA4, CfA4, and CSP are consecutive, we do this all at once size = C_K_JLA.shape[0] C_K_DES[0:16, 0:16] = C_K_JLA[9:25,9:25] # Filter curves second C_K_DES[27:42, 27:42] = C_K_JLA[9+size/2:25+size/2,9+size/2:25+size/2] # Cross terms. Not needed, as they are zero # C_K_DES[0:16, 23:39] = C_K_JLA[9:25,9+size/2:25+size/2] # C_K_DES[23:39, 0:16] = C_K_JLA[9+size/2:25+size/2,9:25] # Read in the table listing the uncertainties in the ZPs and # effective wavelengths filterUncertainties = numpy.genfromtxt(JLA.get_full_path(params['filterUncertainties']), comments='#',usecols=(0,1,2,3,4), dtype='S30,f8,f8,f8,f8', names=['filter', 'zp', 'zp_off', 'wavelength', 'central']) # For the Bc filter of CfA, and the V1 and V2 filters of CSP, # we asumme that they have the same sized systematic uncertainteies as # B filter of CfA and V1 and V2 filters of CSP # We could either copy these terms across or recompute them. # We choose to recompute them # Compute the terms in DES, this includes the cross terms # We first compute them separately, then add them to the matrix nFilters = len(filterUncertainties) C_K_new = numpy.zeros(nFilters*nFilters*4).reshape(nFilters*2, nFilters*2) # 1) DES controlled uncertainties # This uncertainty in the ZP has seeral components # a) The uncertainty in the differential chromatic correction (set to zero for now) # Note that this error is 100% correlated to the component of b) that comes from the filter curve # b) The uncertainty in the measurement of the transfer to the AB system # using the observations of C26202 # c) The SN field-to-field variation between DES and GAIA for i, filt in enumerate(filterUncertainties): if 'DES' in filt['filter']: error_I0,error_chromatic,error_AB=FGCM.prop_unc(params,filt) #print numpy.sqrt((error_AB)**2. + (FGCM_unc)**2. / nC26202_Observations[filt['filter']]) C_K_new[i, i] = uniformity**2. + (error_AB)**2.+(FGCM_unc)**2. / nC26202_Observations[filt['filter']] + SMP_ZP**2. print '%s %5.4f' % (filt['filter'],numpy.sqrt(C_K_new[i, i])) C_K_new[i, i+nFilters] = (error_AB) * filt['wavelength'] C_K_new[i+nFilters, i] = (error_AB) * filt['wavelength'] C_K_new[i+nFilters, i+nFilters] = (filt['wavelength'])**2. else: C_K_new[i, i] = (filt['zp'] / 1000.)**2. + (filt['zp_off'] / 3. / 1000.)**2. # 2a) B14 3.4.1 The uncertainty associated to the measurement of # the Secondary CALSPEC standards # The uncerteinty is assumed to be uncorrelated between filters # It only affects the diagonal terms of the ZPs # It is estmated from repeat STIS measurements of the standard # AGK+81D266 Bohlin et al. 2000 AJ 120, 437 and Bohlin 1999 ISR 99-07 nObs_C26202 = 1 # It's been observed once unc_transfer = 0.003 # 0.3% uncertainty for i, filt1 in enumerate(filterUncertainties): C_K_new[i, i] += unc_transfer**2. / nObs_C26202 # 2b) B14 3.4.1 The uncertainty in the colour of the WD system 0.5% # from 3,000-10,000 # The uncertainty is computed with respect to the Bessell B filter. # The Bessell B filter is the filter we use in computing the dist. modulus # The absolute uncertainty at the rest frame wavelengt of the B band # is not important here, as this is absorbed into the # combination of the absolute B band magnitude of SNe Ia and # the Hubble constant. slope = 0.005 waveStart = 300 waveEnd = 1000. # central = 436.0 # Corresponds to B filter central = 555.6 # Used in the Pantheon sample # Note that 2.5 * log_10 (1+x) ~ x for |x| << 1 for i, filt1 in enumerate(filterUncertainties): for j, filt2 in enumerate(filterUncertainties): if i >= j: C_K_new[i, j] += (slope / (waveEnd - waveStart) * (filt1['central']-central)) * \ (slope / (waveEnd - waveStart) * (filt2['central']-central)) C_K_new = C_K_new+C_K_new.T-numpy.diag(C_K_new.diagonal()) if options.base: # We do not update sel = numpy.zeros(nDim, bool) sel[0:16] = True sel[23:39] = True sel2d = numpy.matrix(sel).T * numpy.matrix(sel) C_K_new[sel2d] = 0.0 C_K_DES += C_K_new # Write out the results date = JLA.get_date() hdu = fits.PrimaryHDU(C_K_DES) hdu.writeto("%s_%s.fits" % (options.output, date), clobber=True) return
def compute_C_K(options): import JLA_library as JLA import numpy import astropy.io.fits as fits # ----------- Read in the configuration file ------------ params = JLA.build_dictionary(options.config) # ----------- We read in the JLA version of C_Kappa ------------ if options.base: # CfA1 and CfA2 not treated separately and we use the JLA uncertainties nDim = 42 else: # CfA1 and CfA2 treated separately, and we use the Pantheon uncertainties nDim = 58 C_K_H0 = numpy.zeros(nDim * nDim).reshape(nDim, nDim) if options.base: # Read in the JLA matrix and extract the appropriate rows and columns # The matrix is structured in blocks with ZPs first, # and uncertainties in the filter curves second # The order is specified in salt2_calib_variations_all/saltModels.list # Standard, Landolt photometry is in rows 5 to 9 and rows 42 to 46 # Keplercam is in rows 10 to 14 and 47 to 51 # 4 Shooter is in rows 15 to 19 and 52 5o 56 # CSP is in rows 20 to 25 and 56 to 62 C_K_JLA = fits.getdata(JLA.get_full_path(params['C_kappa_JLA'])) # Extract the relevant columns and rows # ZPs first # Since the indices are consecutive, we do this all at once size = C_K_JLA.shape[0] C_K_H0[0:21, 0:21] = C_K_JLA[4:25,4:25] # Filter curves second C_K_H0[21:42, 21:42] = C_K_JLA[4+size/2:25+size/2,4+size/2:25+size/2] else: filterUncertainties = numpy.genfromtxt(JLA.get_full_path(params['filterUncertainties']), comments='#',usecols=(0,1,2,3,4), dtype='S30,f8,f8,f8,f8', names=['filter', 'zp', 'zp_off', 'wavelength', 'central']) # 1) ZP and filter uncertainty # We add a third of the offset found in Scolnic et al. for i, filt in enumerate(filterUncertainties): C_K_H0[i, i] = (filt['zp'] / 1000.)**2. + (filt['zp_off'] / 3. / 1000.)**2. C_K_H0[i+29, i+29] = (filt['wavelength'])**2. # 2a) B14 3.4.1 The uncertainty associated to the measurement of # the Secondary CALSPEC standards # The uncerteinty is assumed to be uncorrelated between filters # It only affects the diagonal terms of the ZPs # It is estmated from repeat STIS measurements of the standard # AGK+81D266 Bohlin et al. 2000 AJ 120, 437 and Bohlin 1999 ISR 99-07 # This is the most pessimistic option. We assume that only one standard was observed nObs = 1 # It's been observed once unc_transfer = 0.003 # 0.3% uncertainty for i, filt1 in enumerate(filterUncertainties): C_K_H0[i, i] += unc_transfer**2. / nObs # 2b) B14 3.4.1 The uncertainty in the colour of the WD system 0.5% # from 3,000-10,000 # The uncertainty is computed with respect to the Bessell B filter. # The Bessell B filter is the filter we use in computing the dist. modulus # The absolute uncertainty at the rest frame wavelengt of the B band # is not important here, as this is absorbed into the # combination of the absolute B band magnitude of SNe Ia and # the Hubble constant. slope = 0.005 waveStart = 300 waveEnd = 1000. # central = 436.0 # Corresponds to B filter central = 555.6 # Used in the Pantheon sample # Note that 2.5 * log_10 (1+x) ~ x for |x| << 1 for i, filt1 in enumerate(filterUncertainties): for j, filt2 in enumerate(filterUncertainties): if i >= j: C_K_H0[i, j] += (slope / (waveEnd - waveStart) * (filt1['central']-central)) * \ (slope / (waveEnd - waveStart) * (filt2['central']-central)) C_K_H0 = C_K_H0+C_K_H0.T-numpy.diag(C_K_H0.diagonal()) # Write out the results date = JLA.get_date() hdu = fits.PrimaryHDU(C_K_H0) hdu.writeto("%s_%s.fits" % (options.output, date), clobber=True) return
def compute_nonIa(options): """Pythom program to compute the systematic unsertainty related to the contamimation from Ibc SNe""" import numpy import astropy.io.fits as fits from astropy.table import Table, MaskedColumn, vstack import JLA_library as JLA # The program computes the covaraince for the spectroscopically confirmed SNe Ia only # The prgram assumes that the JLA SNe are first in any list # Taken from C11 # Inputs are the rates of SNe Ia and Ibc, the most likely contaminant # Ia rate - Perett et al. # SN Ibc rate - proportional to the star formation rate - Hopkins and Beacom # SN Ib luminosity distribution. Li et al + bright SN Ibc Richardson # The bright Ibc population # d_bc = 0.25 # The offset in magnitude between the Ia and bright Ibc # s_bc = 0.25 # The magnitude spread # f_bright = 0.25 # The fraction of Ibc SN that are bright # Simulate the characteristics of the SNLS survey # Apply outlier rejection # All SNe that pass the cuts are included in the sample # One then has a mixture of SNe Ia and SNe Ibc # and the average magnitude at each redshift is biased. This # is called the raw bias. One multiplies the raw bias by the fraction of # objects classified as SNe Ia* # The results are presented in 7 redshift bins defined in table 14 of C11 # We use these results to generate the matrix. # Only the SNLS SNe in the JLA sample are considered. # For the photometrically selected sample and other surveys, this will probably be different # JLA compute this for the SNLS sample only # We assume that the redshift in this table refers to the left hand edge of each bin z_bin = numpy.array([0.0, 0.1, 0.26, 0.41, 0.57, 0.72, 0.89, 1.04]) raw_bias = numpy.array( [0.0, 0.015, 0.024, 0.024, 0.024, 0.023, 0.026, 0.025]) f_star = numpy.array([0.0, 0.00, 0.06, 0.14, 0.17, 0.24, 0.50, 0.00]) # The covaraiance between SNe Ia in the same redshift bin is fully correlated # Otherwise, it is uncorrelated # ----------- Read in the configuration file ------------ params = JLA.build_dictionary(options.config) SNeList = numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S200', names=['id', 'lc']) nSNe = len(SNeList) for i, SN in enumerate(SNeList): SNeList['id'][i] = SNeList['id'][i].replace('lc-', '').replace('.list', '') lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') # Add a bin column and a column that specified of the covariance is non-zero SNe['bin'] = 0 SNe['eval'] = False # make order of data (in SNe) match SNeList indices = JLA.reindex_SNe(SNeList['id'], SNe) SNe = SNe[indices] # Identify the SNLS SNe in the JLA sample for i, SN in enumerate(SNe): if SN['source'][0] == 'JLA' and SN['name'][0][2:4] in [ 'D1', 'D2', 'D3', 'D4' ]: SNe['eval'][i] = True # Work out which redshift bin each SNe belongs to # In numpy.digitize, the bin number starts at 1, so we subtract 1 SNe['bin'] = numpy.digitize(SNe['zhel'], z_bin) - 1 # Build the covariance matrix C_nonIa = numpy.zeros(nSNe * 3 * nSNe * 3).reshape(nSNe * 3, nSNe * 3) # It is only computes the covariance for the spectroscopically confirmed SNLS SNe # We assume that covariance between redshift bins is uncorrelated for i in range(nSNe): bin1 = SNe['bin'][i] for j in range(nSNe): bin2 = SNe['bin'][j] if SNe['eval'][j] and SNe['eval'][i] and bin1 == bin2: C_nonIa[3 * i, 3 * j] = (raw_bias[bin1] * f_star[bin1]) * (raw_bias[bin2] * f_star[bin2]) date = JLA.get_date() fits.writeto('C_nonIa_%s.fits' % date, numpy.array(C_nonIa), clobber=True) return
def merge_lightcurve_fits(options): """Pythom program to merge the lightcurve fit results into a sigle format""" import numpy import astropy import JLA_library as JLA from astropy.table import Table, MaskedColumn, vstack params = JLA.build_dictionary(options.config) # ---------------- JLA ------------------------ lightCurveFits = JLA.get_full_path(params['JLAlightCurveFits']) f = open(lightCurveFits) header = f.readlines() f.close() names = header[0].strip('#').split() # I imagine that the tables package in astropy could also be used to read the ascii input file SNeSpec = Table( numpy.genfromtxt( lightCurveFits, skip_header=1, dtype= 'S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8', names=names)) nSNeSpec = len(SNeSpec) print 'There are %d SNe from the spectrscopically confirmed sample' % ( nSNeSpec) # Add an extra column to the table SNeSpec['source'] = ['JLA'] * nSNeSpec # ---------------- Shuvo's sample ------------------------ # Photometrically identified SNe in Shuvo's sample, if the parameter exists if params['photLightCurveFits'] != 'None': lightCurveFits = JLA.get_full_path(params['photLightCurveFits']) SNePhot = Table.read(lightCurveFits, format='fits') nSNePhot = len(SNePhot) print 'There are %d SNe from the photometric sample' % (nSNePhot) # Converting from Shuvo's names to thosed used by JLA conversion = { 'name': 'name_adj', 'zcmb': None, 'zhel': 'z', 'dz': None, 'mb': 'mb', 'dmb': 'emb', 'x1': 'x1', 'dx1': 'ex1', 'color': 'c', 'dcolor': 'ec', '3rdvar': 'col27', 'd3rdvar': 'd3rdvar', 'tmax': None, 'dtmax': None, 'cov_m_s': 'cov_m_x1', 'cov_m_c': 'cov_m_c', 'cov_s_c': 'cov_x1_c', 'set': None, 'ra': None, 'dec': None, 'biascor': None } # Add the uncertainty in the mass column SNePhot['d3rdvar'] = (SNePhot['col29'] + SNePhot['col28']) / 2. - SNePhot['col27'] # Remove columns that are not listed in conversion for colname in SNePhot.colnames: if colname not in conversion.values(): SNePhot.remove_column(colname) for key in conversion.keys(): # Rename the column if it does not already exist if conversion[key] != None and conversion[key] != key: SNePhot.rename_column(conversion[key], key) elif conversion[key] == None: # Create it, mask it, and fill all values SNePhot[key] = MaskedColumn(numpy.zeros(nSNePhot), numpy.ones(nSNePhot, bool)) SNePhot[ key].fill_value = -99 # does not work as expected, so we set it explicitly in the next line SNePhot[key] = -99.9 else: # Do nothing if the column already exists pass # Add the source column SNePhot['source'] = "Phot_Uddin" # ---------------------- CfA4 ---------------------------------- if params['CfA4LightCurveFits'] != 'None': lightCurveFits = JLA.get_full_path(params['CfA4LightCurveFits']) f = open(lightCurveFits) header = f.readlines() f.close() names = header[0].strip('#').split(',') SNeCfA4 = Table( numpy.genfromtxt(lightCurveFits, skip_header=1, dtype='S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8', names=names, delimiter=',')) nSNeCfA4 = len(SNeCfA4) conversion = { 'name': 'name', 'zcmb': None, 'zhel': 'z', 'dz': None, 'mb': 'mb', 'dmb': 'emb', 'x1': 'x1', 'dx1': 'ex1', 'color': 'c', 'dcolor': 'ec', '3rdvar': None, 'd3rdvar': None, 'tmax': None, 'dtmax': None, 'cov_m_s': 'cov_m_x1', 'cov_m_c': 'cov_m_c', 'cov_s_c': 'cov_x1_c', 'set': None, 'ra': None, 'dec': None, 'biascor': None } # Remove columns that are not listed in conversion for colname in SNeCfA4.colnames: if colname not in conversion.values(): SNeCfA4.remove_column(colname) for key in conversion.keys(): # Rename the column if it does not already exist if conversion[key] != None and conversion[key] != key: SNeCfA4.rename_column(conversion[key], key) elif conversion[key] == None: # Create it, mask it, and fill all values SNeCfA4[key] = MaskedColumn(numpy.zeros(nSNeCfA4), numpy.ones(nSNeCfA4, bool)) SNeCfA4[ key].fill_value = -99 # does not work as expected, so we set it explicitly in the next line SNeCfA4[key] = -99.9 else: # Do nothing if the column already exists pass # Add the source column SNeCfA4['source'] = "CfA4" try: SNe = vstack([SNeSpec, SNePhot, SNeCfA4]) except: SNe = SNeSpec # Write out the result as a FITS table date = JLA.get_date() SNe.write('%s_%s.fits' % (options.output, date), format='fits') return
def compute_rel_size(options): import numpy import astropy.io.fits as fits from astropy.table import Table import JLA_library as JLA from astropy.cosmology import FlatwCDM import os # ----------- Read in the configuration file ------------ params=JLA.build_dictionary(options.config) # ---------- Read in the SNe list ------------------------- SNeList=numpy.genfromtxt(options.SNlist,usecols=(0,2),dtype='S30,S200',names=['id','lc']) for i,SN in enumerate(SNeList): SNeList['id'][i]=SNeList['id'][i].replace('lc-','').replace('.list','') # ----------- Read in the data JLA -------------------------- lcfile = JLA.get_full_path(params[options.lcfits]) SNe = Table.read(lcfile, format='fits') nSNe=len(SNe) print 'There are %d SNe in this sample' % (nSNe) # sort it to match the listing in options.SNlist indices = JLA.reindex_SNe(SNeList['id'], SNe) SNe=SNe[indices] # ---------- Compute the Jacobian ---------------------- # The Jacobian is an m by 4 matrix, where m is the number of SNe # The columns are ordered in terms of Om, w, alpha and beta J=[] JLA_result={'Om':0.303,'w':-1.00,'alpha':0.141,'beta':3.102,'M_B':-19.05} offset={'Om':0.01,'w':0.01,'alpha':0.01,'beta':0.01,'M_B':0.01} nFit=4 cosmo1 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=JLA_result['Om'], w0=JLA_result['w']) # Varying Om cosmo2 = FlatwCDM(name='SNLS3+WMAP7', H0=70.0, Om0=JLA_result['Om']+offset['Om'], w0=JLA_result['w']) J.append(5*numpy.log10((cosmo1.luminosity_distance(SNe['zcmb'])/cosmo2.luminosity_distance(SNe['zcmb']))[:,0])) # varying alpha J.append(1.0*offset['alpha']*SNe['x1'][:,0]) # varying beta J.append(-1.0*offset['beta']*SNe['color'][:,0]) # varying M_B J.append(offset['M_B']*numpy.ones(nSNe)) J = numpy.matrix(numpy.concatenate((J)).reshape(nSNe,nFit,order='F') * 100.) # Set up the covariance matrices systematic_terms = ['bias', 'cal', 'host', 'dust', 'model', 'nonia', 'pecvel', 'stat'] covmatrices = {'bias':params['bias'], 'cal':params['cal'], 'host':params['host'], 'dust':params['dust'], 'model':params['model'], 'nonia':params['nonia'], 'pecvel':params['pecvel'], 'stat':params['stat']} if options.type in systematic_terms: print "Using %s for the %s term" % (options.name,options.type) covmatrices[options.type]=options.name # Combine the matrices to compute the full covariance matrix, and compute its inverse if options.all: #read in the user provided matrix, otherwise compute it, and write it out C=fits.getdata(JLA.get_full_path(params['all'])) else: C=add_covar_matrices(covmatrices,params['diag']) date=JLA.get_date() fits.writeto('C_total_%s.fits' % (date), C, clobber=True) Cinv=numpy.matrix(C).I # Construct eta, a 3n vector eta=numpy.zeros(3*nSNe) for i,SN in enumerate(SNe): eta[3*i]=SN['mb'] eta[3*i+1]=SN['x1'] eta[3*i+2]=SN['color'] # Construct A, a n x 3n matrix A=numpy.zeros(nSNe*3*nSNe).reshape(nSNe,3*nSNe) for i in range(nSNe): A[i,3*i]=1.0 A[i,3*i+1]=JLA_result['alpha'] A[i,3*i+2]=-JLA_result['beta'] # ---------- Compute W ---------------------- # W has shape m * 3n, where m is the number of fit paramaters. W=(J.T * Cinv * J).I * J.T* Cinv* numpy.matrix(A) # Note that (J.T * Cinv * J) is a m x m matrix, where m is the number of fit parameters # ----------- Compute V_x, where x represents the systematic uncertainty result=[] for term in systematic_terms: cov=numpy.matrix(fits.getdata(JLA.get_full_path(covmatrices[term]))) if 'C_stat' in covmatrices[term]: # Add diagonal term from Eq. 13 to the magnitude sigma = numpy.genfromtxt(JLA.get_full_path(params['diag']),comments='#',usecols=(0,1,2),dtype='f8,f8,f8',names=['sigma_coh','sigma_lens','sigma_pecvel']) for i in range(nSNe): cov[3*i,3*i] += sigma['sigma_coh'][i] ** 2 + sigma['sigma_lens'][i] ** 2 + sigma['sigma_pecvel'][i] ** 2 V=W * cov * W.T result.append(V[0,0]) print '%20s\t%5s\t%5s\t%s' % ('Term','sigma','var','Percentage') for i,term in enumerate(systematic_terms): if options.type!=None and term==options.type: print '* %18s\t%5.4f\t%5.4f\t%4.1f' % (term,numpy.sqrt(result[i]),result[i],result[i]/numpy.sum(result)*100.) else: print '%20s\t%5.4f\t%5.4f\t%4.1f' % (term,numpy.sqrt(result[i]),result[i],result[i]/numpy.sum(result)*100.) print '%20s\t%5.4f' % ('Total',numpy.sqrt(numpy.sum(result))) return
def reorderSNe(options): # The ordering of the SNe produced by salt2_stat does not reflect the order they were input # The ordering in the output file is written to the file sne_mu.list # SDSS SNe in the JLA sample get called @SN 12856.0, which means that the output of salt2_stat has these names. # Some nearby SNe have sn in front of their names. Others do not # In one case a lower case v is used # DES SNe in the DES sample are listed as 01248677 import numpy import astropy.io.fits as fits import JLA_library as JLA from astropy.table import Table # ----------- Read in the SN ordering ------------------------ SNeList = Table(numpy.genfromtxt(options.SNlist, usecols=(0, 2), dtype='S30,S200', names=['id', 'lc'])) # ----------- Read in the file that specifies the ordering of the matrix produced by Cstat ------------ statList = Table(numpy.genfromtxt(options.input, usecols=(0,1), dtype='S30,float', names=['id','z'],skip_header=13)) # We use the -9 as a way to catch errors. reindex=numpy.zeros(len(SNeList),int)-9 for i,SNname in enumerate(SNeList['id']): name=SNname.replace("lc-","").replace(".list","").replace('_smp','') print i,name for j,SNname2 in enumerate(statList['id']): if SNname2 == name or ("SDSS"+SNname2.replace(".0","") == name and "SDSS" in name) or \ (SNname2.replace("sn","")==name.replace("sn","")) or ("DES" in name and "DES_0"+SNname2==name): if reindex[i]!=-9: print SNname,SNname2 reindex[i]=j print SNname,SNname2,i,j for index,value in enumerate(reindex): if value==-9: print "Error" print index,SNeList[index]['id'] exit() print "The numbers should be the same" print len(SNeList), len(statList), len(numpy.unique(reindex)) # ----------- Read in Cstat and re-order -------------------------------------- Cstat=fits.getdata(options.file) # We use brute force to reorder the elements # Recall that for each SNe, there is an error associated with the peak mag, colour and stretch Cstat_new=numpy.copy(Cstat) * 0.0 nSNe=len(SNeList) for i in range(nSNe): for j in range(nSNe): Cstat_new[3*reindex[i]:3*reindex[i]+3,3*reindex[j]:3*reindex[j]+3]=Cstat[3*i:3*i+3,3*j:3*j+3] date = JLA.get_date() fits.writeto('%s_Cstat_%s.fits' % (options.prefix,date),Cstat_new,clobber=True) return None
def merge_lightcurve_fits(options): """Pythom program to merge the lightcurve fit results into a sigle format""" import numpy import astropy import os import JLA_library as JLA from astropy.table import Table, MaskedColumn, vstack from scipy.optimize import leastsq params = JLA.build_dictionary(options.config) # ---------------- JLA ------------------------ lightCurveFits = JLA.get_full_path(params['JLAlightCurveFits']) f=open(lightCurveFits) header=f.readlines() f.close() names=header[0].strip('#').split() # I imagine that the tables package in astropy could also be used to read the ascii input file SNeSpec = Table(numpy.genfromtxt(lightCurveFits, skip_header=1, dtype='S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8', names=names)) nSNeSpec=len(SNeSpec) print 'There are %d SNe from the spectrscopically confirmed sample' % (nSNeSpec) # Add an extra column to the table SNeSpec['source']=['JLA']*nSNeSpec # -------------- Malmquist bias fits malmBias={} if options.bias: # Compute the bias correction bias = numpy.genfromtxt(JLA.get_full_path(params['biasPolynomial']), skip_header=3, usecols=(0, 1, 2, 3), dtype='S10,f8,f8,f8', names=['sample', 'redshift', 'bias', 'e_bias']) for sample in numpy.unique(bias['sample']): selection=(bias['sample']==sample) guess=[0,0,0] plsq=leastsq(residuals, guess, args=(bias[selection]['bias'], bias[selection]['redshift'], bias[selection]['e_bias'], 'poly'), full_output=1) if plsq[4] in [1,2,3,4]: print 'Solution for %s found' % (sample) malmBias[sample]=plsq[0] # ---------------- Shuvo's sample aka JLA++ ------------------------ # Photometrically identified SNe in Shuvo's sample, if the parameter exists if params['photLightCurveFits']!='None': lightCurveFits = JLA.get_full_path(params['photLightCurveFits']) SNePhot=Table.read(lightCurveFits, format='fits') nSNePhot=len(SNePhot) print 'There are %d SNe from the photometric sample' % (nSNePhot) # Converting from Shuvo's names to thosed used by JLA conversion={'name':'name_adj', 'zcmb':None, 'zhel':'z', 'dz':None, 'mb':'mb', 'dmb':'emb', 'x1':'x1', 'dx1':'ex1', 'color':'c', 'dcolor':'ec', '3rdvar':'col27', 'd3rdvar':'d3rdvar', 'tmax':None, 'dtmax':None, 'cov_m_s':'cov_m_x1', 'cov_m_c':'cov_m_c', 'cov_s_c':'cov_x1_c', 'set':None, 'ra':'col4', 'dec':'col5', 'biascor':None} # Add the uncertainty in the mass column SNePhot['d3rdvar']=(SNePhot['col29']+SNePhot['col28'])/2. - SNePhot['col27'] # Remove columns that are not listed in conversion for colname in SNePhot.colnames: if colname not in conversion.values(): SNePhot.remove_column(colname) for key in conversion.keys(): # Rename the column if it does not already exist if conversion[key]!=None and conversion[key]!=key: SNePhot.rename_column(conversion[key], key) elif conversion[key]==None: # Create it, mask it, and fill all values SNePhot[key]=MaskedColumn(numpy.zeros(nSNePhot), numpy.ones(nSNePhot,bool)) SNePhot[key].fill_value=-99 # does not work as expected, so we set it explicitly in the next line SNePhot[key]=-99.9 else: # Do nothing if the column already exists pass # Compute the bias correction for i,SN in enumerate(SNePhot): if 'SDSS' in SN['name']: SNePhot['biascor'][i]=poly(SN['zhel'],malmBias['SDSS']) else: SNePhot['biascor'][i]=poly(SN['zhel'],malmBias['SNLS']) # Add the source column SNePhot['source']="Phot_Uddin" # ---------------------- CfA4 ---------------------------------- if params['CfA4LightCurveFits']!='None': lightCurveFits = JLA.get_full_path(params['CfA4LightCurveFits']) f=open(lightCurveFits) header=f.readlines() f.close() names=header[0].strip('#').split(',') SNeCfA4=Table(numpy.genfromtxt(lightCurveFits, skip_header=1, dtype='S12,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8,f8', names=names,delimiter=',')) nSNeCfA4=len(SNeCfA4) conversion={'name':'name', 'zcmb':None, 'zhel':'z', 'dz':None, 'mb':'mb', 'dmb':'emb', 'x1':'x1', 'dx1':'ex1', 'color':'c', 'dcolor':'ec', '3rdvar':None, 'd3rdvar':None, 'tmax':None, 'dtmax':None, 'cov_m_s':'cov_m_x1', 'cov_m_c':'cov_m_c', 'cov_s_c':'cov_x1_c', 'set':None, 'ra':None, 'dec':None, 'biascor':None} # Remove columns that are not listed in conversion for colname in SNeCfA4.colnames: if colname not in conversion.values(): SNeCfA4.remove_column(colname) for key in conversion.keys(): # Rename the column if it does not already exist if conversion[key]!=None and conversion[key]!=key: SNeCfA4.rename_column(conversion[key], key) elif conversion[key]==None: # Create it, mask it, and fill all values SNeCfA4[key]=MaskedColumn(numpy.zeros(nSNeCfA4), numpy.ones(nSNeCfA4,bool)) SNeCfA4[key].fill_value=-99 # does not work as expected, so we set it explicitly in the next line SNeCfA4[key]=-99.9 else: # Do nothing if the column already exists pass # Add the source column SNeCfA4['source']="CfA4" # We also need to gather information on the host mass, the host mass uncertainty, CMB redshift and Malmquist bias CfA4lightcurves=[] CfA4_lcDirectories=params['CfA4MassesAndCMBz'].split(',') for lcDir in CfA4_lcDirectories: listing=os.listdir(JLA.get_full_path(lcDir)) for lc in listing: CfA4lightcurves.append(JLA.get_full_path(lcDir)+lc) for i,SN in enumerate(SNeCfA4): for lc in CfA4lightcurves: if SN['name'][2:] in lc: keywords=getKeywords(lc) SNeCfA4[i]['zcmb']=keywords['REDSHIFT_CMB'] SNeCfA4[i]['3rdvar']=keywords['HOSTGAL_LOGMASS'] SNeCfA4[i]['d3rdvar']=keywords['e_HOSTGAL_LOGMASS'] SNeCfA4[i]['ra']=keywords['RA'] SNeCfA4[i]['dec']=keywords['DECL'] if SNeCfA4[i]['3rdvar'] < 0: SNeCfA4[i]['3rdvar']=-99.9 SNeCfA4[i]['d3rdvar']=-99.9 # Compute the bias correction SNeCfA4['biascor']=poly(SNeCfA4['zcmb'],malmBias['nearby']) try: SNe=vstack([SNeSpec,SNePhot,SNeCfA4]) except: SNe=SNeSpec # print len(SNe),len(numpy.unique(SNe['name'])) # Write out the result as a FITS table date = JLA.get_date() SNe.write('%s_%s.fits' % (options.output, date), format='fits', overwrite=True) return