Esempio n. 1
0
def getClift(rule, s, c, decision_table, list_judgeNominal):
    supp, conf = LERS.getSupportConfidence(rule, decision_table,list_judgeNominal)
    rule_c = mlem2.delEfromRule(rule,s)
    rule_c = rule_c.setValue(s,c)
    supp_c, conf_c = LERS.getSupportConfidence(rule_c, decision_table, list_judgeNominal)
    clift = conf / conf_c
    return(clift)
Esempio n. 2
0
def getElift(rule, attr, v, decision_table, list_judgeNominal):
    supp, conf = LERS.getSupportConfidence(rule, decision_table, list_judgeNominal)
    rule_s = delEFromRule(rule, attr, v)
    supp_s, conf_s = LERS.getSupportConfidence(rule_s, decision_table, list_judgeNominal)
    if conf_s == 0: elift = 999
    else : elift = conf / conf_s
    return(elift)
def MLEM2_LERS(FILENAME, iter1, iter2):
    # rule induction and rule save
    fullpath_filename = DIR_UCI + "/" + FILENAME + "/rules/" + "rules_" + str(iter1) + "-" + str(iter2) + ".pkl"
    rules = (
        mlem2.loadPickleRules(fullpath_filename)
        if os.path.isfile(fullpath_filename)
        else mlem2.getRulesByMLEM2(FILENAME, iter1, iter2)
    )
    if not os.path.isfile(fullpath_filename):
        mlem2.savePickleRules(rules, fullpath_filename)

    # test data setup
    decision_table_test, decision_class = getData(FILENAME, iter1, iter2, T="test")
    list_judgeNominal = getJudgeNominal(decision_table_test, FILENAME)

    # predict by LERS
    predictions = LERS.predictByLERS(rules, decision_table_test, list_judgeNominal)

    # 正答率を求める
    accuracy = accuracy_score(decision_class, predictions)
    # rules の数を求める
    num = len(rules)
    # 各クラスのrulesの数を求める
    num_class = strNumClassRules(rules)
    # 平均の長さを求める
    mean_length = mlem2.getMeanLength(rules)
    # 平均支持度と平均確信度を求める
    decision_table_train, decision_class = getData(FILENAME, iter1, iter2, T="train")
    list_judgeNominal = getJudgeNominal(decision_table_train, FILENAME)
    mean_support, mean_conf = LERS.getSupportConfidenceRules(rules, decision_table_train, list_judgeNominal)
    # AccとRecallを求める
    acc_recall = LERS.getAccurayRecall(rules, decision_table_train, list_judgeNominal)

    # ファイルにsave
    savepath = DIR_UCI + "/" + FILENAME + "/fairness/00_normal/MLEM2_LERS.csv"
    with open(savepath, "a") as f:
        f.writelines(
            "MLEM2_LERS,{FILENAME},{iter1},{iter2},{acc},{num},{num_class},{mean_length},{mean_support},{mean_conf},{acc_recall}".format(
                FILENAME=FILENAME,
                iter1=iter1,
                iter2=iter2,
                acc=accuracy,
                num=num,
                num_class=num_class,
                mean_length=mean_length,
                mean_support=mean_support,
                mean_conf=mean_conf,
                acc_recall=strAccRecall(rules, acc_recall),
            )
            + "\n"
        )
    return 0
Esempio n. 4
0
def Apriori_LERS(FILENAME, iter1, iter2, minsup, minconf) :
          
    # rule induction
    fullpath_filename = '/data/uci/'+FILENAME+'/apriori/'+'rules_'+str(iter1)+'-'+str(iter2)+'-'+str(minsup)+'-'+str(minconf)+'.pkl'
    rules = mlem2.loadPickleRules(fullpath_filename) if os.path.isfile(fullpath_filename) else apriori.getRulesByApriori(FILENAME, iter1, iter2, minsup, minconf) 

    # rule save
    if not os.path.isfile(fullpath_filename): mlem2.savePickleRules(rules, fullpath_filename) 

    # test data setup
    filepath = '/data/uci/'+FILENAME+'/'+FILENAME+'-test'+str(iter1)+'-'+str(iter2)+'.tsv'
    decision_table_test = mlem2.getDecisionTable(filepath)
    decision_table_test = decision_table_test.dropna()
    decision_class = decision_table_test[decision_table_test.columns[-1]].values.tolist()

    filepath = '/data/uci/'+FILENAME+'/'+FILENAME+'.nominal'
    list_nominal = mlem2.getNominalList(filepath)
    list_judgeNominal = mlem2.getJudgeNominal(decision_table_test, list_nominal)
    
    # predict by LERS
    predictions = LERS.predictByLERS(rules, decision_table_test, list_judgeNominal)
    
    # 正答率を求める
    accuracy = accuracy_score(list(map(str,decision_class)), predictions)
    
    #print('{FILENAME} : {iter1} {iter2}'.format(FILENAME=FILENAME,iter1=iter1,iter2=iter2))    
    logging.basicConfig(filename=os.path.dirname(os.path.abspath("__file__"))+'/'+FILENAME+'.log',format='%(asctime)s,%(message)s',level=logging.DEBUG)
    logging.info('Apriori_LERS,{FILENAME},{iter1},{iter2},{acc},{minsup},{minconf}'.format(FILENAME=FILENAME,iter1=iter1,iter2=iter2,acc=accuracy,minsup=minsup,minconf=minconf))
    
    return(accuracy)
Esempio n. 5
0
def MLEM2_LERS(FILENAME, iter1, iter2) :

    # rule induction
    fullpath_filename = DIR_UCI+'/'+FILENAME+'/rules/'+'rules_'+str(iter1)+'-'+str(iter2)+'.pkl'
    rules = mlem2.loadPickleRules(fullpath_filename) if os.path.isfile(fullpath_filename) else mlem2.getRulesByMLEM2(FILENAME, iter1, iter2)

    # rule save
    if not os.path.isfile(fullpath_filename): mlem2.savePickleRules(rules, fullpath_filename)

    # test data setup
    filepath = DIR_UCI+'/'+FILENAME+'/'+FILENAME+'-test'+str(iter1)+'-'+str(iter2)+'.tsv'
    decision_table_test = mlem2.getDecisionTable(filepath)
    decision_table_test = decision_table_test.dropna()
    decision_class = decision_table_test[decision_table_test.columns[-1]].values.tolist()

    filepath = DIR_UCI+'/'+FILENAME+'/'+FILENAME+'.nominal'
    list_nominal = mlem2.getNominalList(filepath)
    list_judgeNominal = mlem2.getJudgeNominal(decision_table_test, list_nominal)

    # predict by LERS
    predictions = LERS.predictByLERS(rules, decision_table_test, list_judgeNominal)

    # 正答率を求める
    accuracy = accuracy_score(decision_class, predictions)

    #print('{FILENAME} : {iter1} {iter2}'.format(FILENAME=FILENAME,iter1=iter1,iter2=iter2))
    #logging.info('MLEM2_LERS,1,{FILENAME},{iter1},{iter2},{acc}'.format(FILENAME=FILENAME,iter1=iter1,iter2=iter2,acc=accuracy))
    savepath = DIR_UCI+'/'+FILENAME+'/MLEM2_LERS.csv'
    with open(savepath, "a") as f :
        f.writelines('MLEM2_LERS,1,{FILENAME},{iter1},{iter2},{acc}'.format(FILENAME=FILENAME,iter1=iter1,iter2=iter2,acc=accuracy)+"\n")

    return(accuracy)
Esempio n. 6
0
def MLEM2_RuleClusteringByRandom_LERS(FILENAME, iter1, iter2, k):

    # rule induction
    fullpath_filename = DIR_UCI + '/' + FILENAME + '/rules/' + 'rules_' + str(
        iter1) + '-' + str(iter2) + '.pkl'
    rules = mlem2.loadPickleRules(fullpath_filename) if os.path.isfile(
        fullpath_filename) else mlem2.getRulesByMLEM2(FILENAME, iter1, iter2)

    # rule save
    if not os.path.isfile(fullpath_filename):
        mlem2.savePickleRules(rules, fullpath_filename)

    # rule clustering
    fullpath_filename = DIR_UCI + '/' + FILENAME + '/rules_cluster_random/' + 'rules-' + str(
        k) + '_' + str(iter1) + '-' + str(iter2) + '.pkl'
    rules = mlem2.loadPickleRules(fullpath_filename) if os.path.isfile(
        fullpath_filename) else clustering.getRuleClusteringByRandom(rules,
                                                                     k=k)

    # rule save
    if not os.path.isfile(fullpath_filename):
        mlem2.savePickleRules(rules, fullpath_filename)

    # test data setup
    filepath = DIR_UCI + '/' + FILENAME + '/' + FILENAME + '-test' + str(
        iter1) + '-' + str(iter2) + '.tsv'
    decision_table_test = mlem2.getDecisionTable(filepath)
    decision_table_test = decision_table_test.dropna()
    decision_class = decision_table_test[
        decision_table_test.columns[-1]].values.tolist()

    filepath = DIR_UCI + '/' + FILENAME + '/' + FILENAME + '.nominal'
    list_nominal = mlem2.getNominalList(filepath)
    list_judgeNominal = mlem2.getJudgeNominal(decision_table_test,
                                              list_nominal)

    # predict by LERS
    predictions = LERS.predictByLERS(rules, decision_table_test,
                                     list_judgeNominal)

    # 正答率を求める
    accuracy = accuracy_score(decision_class, predictions)

    #logging.info('MLEM2_RuleClusteringByRandom_LERS,{k},{FILENAME},{iter1},{iter2},{acc}'.format(FILENAME=FILENAME,k=k,iter1=iter1,iter2=iter2,acc=accuracy))
    savepath = DIR_UCI + '/' + FILENAME + '/MLEM2_RuleClusteringByRandom_LERS.csv'
    with open(savepath, "a") as f:
        f.writelines(
            'MLEM2_RuleClusteringByRandom_LERS,{k},{FILENAME},{iter1},{iter2},{acc}'
            .format(
                FILENAME=FILENAME, k=k, iter1=iter1, iter2=iter2,
                acc=accuracy) + "\n")

    return (accuracy)
Esempio n. 7
0
def Apriori_LERS(FILENAME, iter1, iter2, minsup, minconf):

    # rule induction
    fullpath_filename = '/data/uci/' + FILENAME + '/apriori/' + 'rules_' + str(
        iter1) + '-' + str(iter2) + '-' + str(minsup) + '-' + str(
            minconf) + '.pkl'
    rules = mlem2.loadPickleRules(fullpath_filename) if os.path.isfile(
        fullpath_filename) else apriori.getRulesByApriori(
            FILENAME, iter1, iter2, minsup, minconf)

    # rule save
    if not os.path.isfile(fullpath_filename):
        mlem2.savePickleRules(rules, fullpath_filename)

    # test data setup
    filepath = '/data/uci/' + FILENAME + '/' + FILENAME + '-test' + str(
        iter1) + '-' + str(iter2) + '.tsv'
    decision_table_test = mlem2.getDecisionTable(filepath)
    decision_table_test = decision_table_test.dropna()
    decision_class = decision_table_test[
        decision_table_test.columns[-1]].values.tolist()

    filepath = '/data/uci/' + FILENAME + '/' + FILENAME + '.nominal'
    list_nominal = mlem2.getNominalList(filepath)
    list_judgeNominal = mlem2.getJudgeNominal(decision_table_test,
                                              list_nominal)

    # predict by LERS
    predictions = LERS.predictByLERS(rules, decision_table_test,
                                     list_judgeNominal)

    # 正答率を求める
    accuracy = accuracy_score(list(map(str, decision_class)), predictions)

    #print('{FILENAME} : {iter1} {iter2}'.format(FILENAME=FILENAME,iter1=iter1,iter2=iter2))
    logging.basicConfig(filename=os.path.dirname(os.path.abspath("__file__")) +
                        '/' + FILENAME + '.log',
                        format='%(asctime)s,%(message)s',
                        level=logging.DEBUG)
    logging.info(
        'Apriori_LERS,{FILENAME},{iter1},{iter2},{acc},{minsup},{minconf}'.
        format(FILENAME=FILENAME,
               iter1=iter1,
               iter2=iter2,
               acc=accuracy,
               minsup=minsup,
               minconf=minconf))

    return (accuracy)
Esempio n. 8
0
def MLEM2_RuleClusteringByConsistentTimesSimExceptMRule_LERS(FILENAME, iter1, iter2, k, m) :
    # rule induction
    fullpath_filename = DIR_UCI+'/'+FILENAME+'/rules/'+'rules_'+str(iter1)+'-'+str(iter2)+'.pkl'
    rules = mlem2.loadPickleRules(fullpath_filename) if os.path.isfile(fullpath_filename) else mlem2.getRulesByMLEM2(FILENAME, iter1, iter2) 

    # rule save
    if not os.path.isfile(fullpath_filename): mlem2.savePickleRules(rules, fullpath_filename) 

    # rule clustering
    filepath = DIR_UCI+'/'+FILENAME+'/'+FILENAME+'-train'+str(iter1)+'-'+str(iter2)+'.tsv'
    decision_table = mlem2.getDecisionTable(filepath)
    colnames = mlem2.getColNames(decision_table)
    
    filepath = DIR_UCI+'/'+FILENAME+'/'+FILENAME+'.nominal'
    list_nominal = mlem2.getNominalList(filepath)
    list_judgeNominal = mlem2.getJudgeNominal(decision_table, list_nominal)

    fullpath_filename = DIR_UCI+'/'+FILENAME+'/rules_cluster_consistent_times_sim_except_mrule/'+'rules-'+str(k)+'_'+str(iter1)+'-'+str(iter2)+'.pkl'
    rules = mlem2.loadPickleRules(fullpath_filename) if os.path.isfile(fullpath_filename) else clustering.getRuleClusteringByConsistentTimesSimilarityExceptMRule(rules, colnames, list_judgeNominal, k=k, m=m)

    # rule save
    if not os.path.isfile(fullpath_filename): mlem2.savePickleRules(rules, fullpath_filename) 

    # test data setup
    filepath = DIR_UCI+'/'+FILENAME+'/'+FILENAME+'-test'+str(iter1)+'-'+str(iter2)+'.tsv'
    decision_table_test = mlem2.getDecisionTable(filepath)
    decision_table_test = decision_table_test.dropna()
    decision_class = decision_table_test[decision_table_test.columns[-1]].values.tolist()

    filepath = DIR_UCI+'/'+FILENAME+'/'+FILENAME+'.nominal'
    list_nominal = mlem2.getNominalList(filepath)
    list_judgeNominal = mlem2.getJudgeNominal(decision_table_test, list_nominal)
    
    # predict by LERS
    predictions = LERS.predictByLERS(rules, decision_table_test, list_judgeNominal)
    
    # 正答率を求める
    accuracy = accuracy_score(decision_class, predictions)
    
    #print('{FILENAME} : {iter1} {iter2}'.format(FILENAME=FILENAME,iter1=iter1,iter2=iter2))    
    #logging.info('MLEM2_RuleClusteringByConsistentSimExceptMRule_LERS,{k},{FILENAME},{iter1},{iter2},{acc}'.format(FILENAME=FILENAME,k=k,iter1=iter1,iter2=iter2,acc=accuracy))
    savepath = DIR_UCI+'/'+FILENAME+'/MLEM2_RuleClusteringByConsistentTimesSimExceptMRule_LERS.csv'
    with open(savepath, "a") as f :
        f.writelines('MLEM2_RuleClusteringByConsistentTimesSimExceptMRule_LERS,{k},{FILENAME},{iter1},{iter2},{acc}'.format(FILENAME=FILENAME,k=k,iter1=iter1,iter2=iter2,acc=accuracy)+"\n")
    
    return(accuracy)
Esempio n. 9
0
    #rules_new = getRuleClusteringBySimilarity(rules, colnames, list_judgeNominal, k=3)
    #rules_new = getRuleClusteringByRandom(rules, k=3)
    #rules_new = getRuleClusteringBySameCondition(rules, k=3)
    #rules_new = getRuleClusteringByConsistentSimilarity(rules, colnames, list_judgeNominal, k=3)
    #rules_new = getRuleClusteringByConsistentSimilarityExceptMRule(rules, colnames, list_judgeNominal, k=3, m=3)
    #rules_new = getRuleClusteringByConsistentTimesSimilarityExceptMRule(rules, colnames, list_judgeNominal, k=3, m=3)    
    rules_new = getRuleClusteringBySimilarityExceptMRule(rules, colnames, list_judgeNominal, k=3, m=3)
    rules_new = getRuleClusteringByConsistentExceptMRule(rules, colnames, list_judgeNominal, k=3, m=3)

    # predict by LERS
    filepath = '/mnt/data/uci/'+FILENAME+'/'+FILENAME+'-test'+str(iter1)+'-'+str(iter2)+'.tsv'
    decision_table_test = mlem2.getDecisionTable(filepath)
    decision_table_test = decision_table_test.dropna()
    decision_class = decision_table_test[decision_table_test.columns[-1]].values.tolist()
    
    predictions = LERS.predictByLERS(rules_new, decision_table_test, list_judgeNominal)
    print(accuracy_score(decision_class, predictions))  

    # 全セットで確かめ
    #for iter1 in range(1,11):
    #    for iter2 in range(1,11):
    #        print('i1:{iter1} i2:{iter2}'.format(iter1=iter1,iter2=iter2))
    #        rules = mlem2.getRulesByMLEM2(FILENAME, iter1, iter2)
    #        filepath = '/data/uci/'+FILENAME+'/'+FILENAME+'-train'+str(iter1)+'-'+str(iter2)+'.tsv'
    #        decision_table = mlem2.getDecisionTable(filepath)
    #        colnames = mlem2.getColNames(decision_table)
    
    #        filepath = '/data/uci/'+FILENAME+'/'+FILENAME+'.nominal'
    #        list_nominal = mlem2.getNominalList(filepath)
    #        list_judgeNominal = mlem2.getJudgeNominal(decision_table, list_nominal)
    
Esempio n. 10
0
# ========================================
# main
# ========================================
if __name__ == "__main__":

    FILENAME = 'hayes-roth'
    iter1 = 4
    iter2 = 5
    minsup = 10
    minconf = 1.0
        
    rules = getRulesByApriori(FILENAME, iter1, iter2, minsup, minconf)

    # test data setup
    filepath = '/data/uci/'+FILENAME+'/'+FILENAME+'-test'+str(iter1)+'-'+str(iter2)+'.tsv'
    decision_table_test = mlem2.getDecisionTable(filepath)
    decision_table_test = decision_table_test.dropna()
    decision_class = decision_table_test[decision_table_test.columns[-1]].values.tolist()

    filepath = '/data/uci/'+FILENAME+'/'+FILENAME+'.nominal'
    list_nominal = mlem2.getNominalList(filepath)
    list_judgeNominal = mlem2.getJudgeNominal(decision_table_test, list_nominal)
    
    # predict by LERS
    predictions = LERS.predictByLERS(rules, decision_table_test, list_judgeNominal)
    
    # 正答率を求める
    accuracy = accuracy_score(list(map(str,decision_class)), predictions)
    print(accuracy)
Esempio n. 11
0
def MLEM2_delEAlphaRule_LERS(FILENAME, iter1, iter2, DELFUN, CLASS,
                             ATTRIBUTE_VALUE, alpha):
    print(datetime.now().strftime('%Y/%m/%d %H:%M:%S') + ' ' + FILENAME + ' ' +
          str(iter1) + ' ' + str(iter2) + ' ' + DELFUN.__name__ + ' ' +
          strAttributeValue(ATTRIBUTE_VALUE) + ' ' + str(alpha) + ' ' +
          "START")

    # rule induction and rule save
    fullpath_filename = DIR_UCI + '/' + FILENAME + '/rules/' + 'rules_' + str(
        iter1) + '-' + str(iter2) + '.pkl'
    rules = mlem2.loadPickleRules(fullpath_filename) if os.path.isfile(
        fullpath_filename) else mlem2.getRulesByMLEM2(FILENAME, iter1, iter2)
    if not os.path.isfile(fullpath_filename):
        mlem2.savePickleRules(rules, fullpath_filename)

    # train data setup
    decision_table_train, decision_class = getData(FILENAME,
                                                   iter1,
                                                   iter2,
                                                   T="train")
    list_judgeNominal = getJudgeNominal(decision_table_train, FILENAME)

    # alpha差別的なルールの基本条件削除 or ルールを削除
    if CLASS != "ALL":
        rules_target = mlem2.getRulesClass(rules, CLASS)
        rules_nontarget = mlem2.getRulesClass(rules, CLASS, judge=False)
        for attr in ATTRIBUTE_VALUE:
            for e in ATTRIBUTE_VALUE[attr]:
                rules_target = DELFUN(rules_target, attr, e,
                                      decision_table_train, list_judgeNominal,
                                      alpha)
        rules_target.extend(rules_nontarget)
        rules = rules_target
    else:
        for attr in ATTRIBUTE_VALUE:
            for e in ATTRIBUTE_VALUE[attr]:
                rules = DELFUN(rules, attr, e, decision_table_train,
                               list_judgeNominal, alpha)

    print(datetime.now().strftime('%Y/%m/%d %H:%M:%S') + ' ' + FILENAME + ' ' +
          str(iter1) + ' ' + str(iter2) + ' ' + DELFUN.__name__ + ' ' +
          strAttributeValue(ATTRIBUTE_VALUE) + ' ' + str(alpha) + ' ' +
          "RULES")

    # test data setup
    decision_table_test, decision_class = getData(FILENAME,
                                                  iter1,
                                                  iter2,
                                                  T="test")
    list_judgeNominal = getJudgeNominal(decision_table_test, FILENAME)

    # predict by LERS
    predictions = LERS.predictByLERS(rules, decision_table_test,
                                     list_judgeNominal)

    # 正答率を求める
    accuracy = accuracy_score(decision_class, predictions)
    # rules の数を求める
    num = len(rules)
    # 各クラスのrulesの数を求める
    num_class = strNumClassRules(rules)
    # 平均の長さを求める
    mean_length = mlem2.getMeanLength(rules)
    # 平均支持度と平均確信度を求める
    list_judgeNominal = getJudgeNominal(decision_table_train, FILENAME)
    mean_support, mean_conf = LERS.getSupportConfidenceRules(
        rules, decision_table_train, list_judgeNominal)
    # AccとRecallを求める
    acc_recall = LERS.getAccurayRecall(rules, decision_table_train,
                                       list_judgeNominal)

    # ファイルにsave
    savepath = DIR_UCI + '/' + FILENAME + '/fairness/02_alpha_preserve/MLEM2_delEAlphaRule_LERS.csv'
    with open(savepath, "a") as f:
        f.writelines(
            'MLEM2_delEAlphaRule_LERS,{DELFUN},{CLASS},{FILENAME},{ATTRIBUTE_VALUE},{alpha},{iter1},{iter2},{acc},{num},{num_class},{mean_length},{mean_support},{mean_conf},{acc_recall}'
            .format(DELFUN=DELFUN.__name__,
                    CLASS=CLASS,
                    FILENAME=FILENAME,
                    ATTRIBUTE_VALUE=strAttributeValue(ATTRIBUTE_VALUE),
                    alpha=alpha,
                    iter1=iter1,
                    iter2=iter2,
                    acc=accuracy,
                    num=num,
                    num_class=num_class,
                    mean_length=mean_length,
                    mean_support=mean_support,
                    mean_conf=mean_conf,
                    acc_recall=strAccRecall(rules, acc_recall)) + "\n")
    print(datetime.now().strftime('%Y/%m/%d %H:%M:%S') + ' ' + FILENAME + ' ' +
          str(iter1) + ' ' + str(iter2) + ' ' + DELFUN.__name__ + ' ' +
          strAttributeValue(ATTRIBUTE_VALUE) + ' ' + str(alpha) + ' ' + "END")

    return (0)
Esempio n. 12
0
    # rule induction
    rules = mlem2.getRulesByMLEM2(FILENAME, iter1, iter2)

    # test data
    filepath = DIR_UCI+FILENAME+'/'+FILENAME+'-test'+str(iter1)+'-'+str(iter2)+'.tsv'
    decision_table_test = mlem2.getDecisionTable(filepath)
    decision_table_test = decision_table_test.dropna()
    decision_class = decision_table_test[decision_table_test.columns[-1]].values.tolist()

    # nominal data
    filepath = DIR_UCI+FILENAME+'/'+FILENAME+'.nominal'
    list_nominal = mlem2.getNominalList(filepath)
    list_judgeNominal = mlem2.getJudgeNominal(decision_table_test, list_nominal)
    
    # predict by LERS
    predictions = LERS.predictByLERS(rules, decision_table_test, list_judgeNominal)
    
    # 正答率を求める
    accuracy_score(decision_class, predictions)
    
    # rules の数を求める
    num = len(rules)
    # 平均の長さを求める
    mean_length = mlem2.getMeanLength(rules)

    # train data setup
    decision_table_train, decision_class = getData(FILENAME, iter1, iter2, T = "train")
    list_judgeNominal = getJudgeNominal(decision_table_train, FILENAME)

    # 平均支持度と平均確信度を求める
    mean_support, mean_conf = LERS.getSupportConfidenceRules(rules, decision_table_train, list_judgeNominal)
def MLEM2_delEAlphaRule_LERS(FILENAME, iter1, iter2, DELFUN, CLASS, ATTRIBUTE_VALUE, alpha):
    print(
        datetime.now().strftime("%Y/%m/%d %H:%M:%S")
        + " "
        + FILENAME
        + " "
        + str(iter1)
        + " "
        + str(iter2)
        + " "
        + DELFUN.__name__
        + " "
        + strAttributeValue(ATTRIBUTE_VALUE)
        + " "
        + str(alpha)
        + " "
        + "START"
    )

    # rule induction and rule save
    fullpath_filename = DIR_UCI + "/" + FILENAME + "/rules/" + "rules_" + str(iter1) + "-" + str(iter2) + ".pkl"
    rules = (
        mlem2.loadPickleRules(fullpath_filename)
        if os.path.isfile(fullpath_filename)
        else mlem2.getRulesByMLEM2(FILENAME, iter1, iter2)
    )
    if not os.path.isfile(fullpath_filename):
        mlem2.savePickleRules(rules, fullpath_filename)

    # train data setup
    decision_table_train, decision_class = getData(FILENAME, iter1, iter2, T="train")
    list_judgeNominal = getJudgeNominal(decision_table_train, FILENAME)

    # alpha差別的なルールの基本条件削除 or ルールを削除
    if CLASS != "ALL":
        rules_target = mlem2.getRulesClass(rules, CLASS)
        rules_nontarget = mlem2.getRulesClass(rules, CLASS, judge=False)
        for attr in ATTRIBUTE_VALUE:
            for e in ATTRIBUTE_VALUE[attr]:
                rules_target = DELFUN(rules_target, attr, e, decision_table_train, list_judgeNominal, alpha)
        rules_target.extend(rules_nontarget)
        rules = rules_target
    else:
        for attr in ATTRIBUTE_VALUE:
            for e in ATTRIBUTE_VALUE[attr]:
                rules = DELFUN(rules, attr, e, decision_table_train, list_judgeNominal, alpha)

    print(
        datetime.now().strftime("%Y/%m/%d %H:%M:%S")
        + " "
        + FILENAME
        + " "
        + str(iter1)
        + " "
        + str(iter2)
        + " "
        + DELFUN.__name__
        + " "
        + strAttributeValue(ATTRIBUTE_VALUE)
        + " "
        + str(alpha)
        + " "
        + "RULES"
    )

    # test data setup
    decision_table_test, decision_class = getData(FILENAME, iter1, iter2, T="test")
    list_judgeNominal = getJudgeNominal(decision_table_test, FILENAME)

    # predict by LERS
    predictions = LERS.predictByLERS(rules, decision_table_test, list_judgeNominal)

    # 正答率を求める
    accuracy = accuracy_score(decision_class, predictions)
    # rules の数を求める
    num = len(rules)
    # 各クラスのrulesの数を求める
    num_class = strNumClassRules(rules)
    # 平均の長さを求める
    mean_length = mlem2.getMeanLength(rules)
    # 平均支持度と平均確信度を求める
    list_judgeNominal = getJudgeNominal(decision_table_train, FILENAME)
    mean_support, mean_conf = LERS.getSupportConfidenceRules(rules, decision_table_train, list_judgeNominal)
    # AccとRecallを求める
    acc_recall = LERS.getAccurayRecall(rules, decision_table_train, list_judgeNominal)

    # ファイルにsave
    savepath = DIR_UCI + "/" + FILENAME + "/fairness/02_alpha_preserve/MLEM2_delEAlphaRule_LERS.csv"
    with open(savepath, "a") as f:
        f.writelines(
            "MLEM2_delEAlphaRule_LERS,{DELFUN},{CLASS},{FILENAME},{ATTRIBUTE_VALUE},{alpha},{iter1},{iter2},{acc},{num},{num_class},{mean_length},{mean_support},{mean_conf},{acc_recall}".format(
                DELFUN=DELFUN.__name__,
                CLASS=CLASS,
                FILENAME=FILENAME,
                ATTRIBUTE_VALUE=strAttributeValue(ATTRIBUTE_VALUE),
                alpha=alpha,
                iter1=iter1,
                iter2=iter2,
                acc=accuracy,
                num=num,
                num_class=num_class,
                mean_length=mean_length,
                mean_support=mean_support,
                mean_conf=mean_conf,
                acc_recall=strAccRecall(rules, acc_recall),
            )
            + "\n"
        )
    print(
        datetime.now().strftime("%Y/%m/%d %H:%M:%S")
        + " "
        + FILENAME
        + " "
        + str(iter1)
        + " "
        + str(iter2)
        + " "
        + DELFUN.__name__
        + " "
        + strAttributeValue(ATTRIBUTE_VALUE)
        + " "
        + str(alpha)
        + " "
        + "END"
    )

    return 0
Esempio n. 14
0
    # rule induction
    rules = mlem2.getRulesByMLEM2(FILENAME, iter1, iter2)

    # test data
    filepath = DIR_UCI+FILENAME+'/'+FILENAME+'-test'+str(iter1)+'-'+str(iter2)+'.tsv'
    decision_table_test = mlem2.getDecisionTable(filepath)
    decision_table_test = decision_table_test.dropna()
    decision_class = decision_table_test[decision_table_test.columns[-1]].values.tolist()

    # nominal data
    filepath = DIR_UCI+FILENAME+'/'+FILENAME+'.nominal'
    list_nominal = mlem2.getNominalList(filepath)
    list_judgeNominal = mlem2.getJudgeNominal(decision_table_test, list_nominal)
    
    # predict by LERS
    predictions = LERS.predictByLERS(rules, decision_table_test, list_judgeNominal)
    
    # 正答率を求める
    accuracy_score(decision_class, predictions)
    
    # rules の数を求める
    num = len(rules)
    # 平均の長さを求める
    mean_length = mlem2.getMeanLength(rules)

    # train data setup
    decision_table_train, decision_class = getData(FILENAME, iter1, iter2, T = "train")
    list_judgeNominal = getJudgeNominal(decision_table_train, FILENAME)

    # 平均支持度と平均確信度を求める
    mean_support, mean_conf = LERS.getSupportConfidenceRules(rules, decision_table_train, list_judgeNominal)