for train_index, test_index in rskf.split(X, y):
     X_train, X_test = X.iloc[train_index], X.iloc[test_index]
     y_train, y_test = le.fit_transform(y.iloc[train_index]),le.transform(y.iloc[test_index])
     HC_clusters, acc, je = Methods.heirachical_clustering(X_train,y_train, X_test, y_test, Nc)
     HC_['acc'].append(acc)
     HC_['je'].append(je)
     gc.collect()
     Kmeans_clusters, acc, je = Methods.start_Kmeans(X_train,y_train, X_test, y_test,Nc, trueLabel,itt,sValue)
     Kmeans_['acc'].append(acc)
     Kmeans_['je'].append(je)
     gc.collect()
     acc, je = Methods.start_PSO(X_train, X_test, y_train, y_test,Nc,NParticles, itt)
     PSO_['acc'].append(acc)
     PSO_['je'].append(je)
     gc.collect()
     HC_Kmeans_clusters, acc, je = Methods.HC_Kmeans(X_train,X_test,y_train,y_test,Nc,HC_clusters,itt,sValue)
     HC_Kmeans_['acc'].append(acc)
     HC_Kmeans_['je'].append(je)
     gc.collect()
     acc, je = Methods.Hybrid_PSO(X_train,X_test,y_train,y_test,Nc,Kmeans_clusters,NParticles, itt)
     Kmeans_PSO_['acc'].append(acc)
     Kmeans_PSO_['je'].append(je)
     gc.collect()
     acc, je = Methods.Hybrid_PSO(X_train,X_test,y_train,y_test,Nc,HC_clusters,NParticles, itt)
     HC_PSO_['acc'].append(acc)
     HC_PSO_['je'].append(je)
     gc.collect()
     acc, je = Methods.Hybrid_PSO(X_train,X_test,y_train,y_test,Nc,HC_Kmeans_clusters,NParticles, itt)
     HC_Kmeans_PSO_['acc'].append(acc)
     HC_Kmeans_PSO_['je'].append(je)
     gc.collect()