Esempio n. 1
0
with open('xtrain_gray.npy', mode="rb") as f:
    xtrain = np.load(f)
with open('ytrain_gray.npy', mode="rb") as f:
    ytrain = np.load(f)

idxs = np.arange(len(xtrain))  # -> array([0, 1, ..., 9999])
np.random.shuffle(idxs)
x_train = []
y_train = []
for i in idxs:
    x_train.append(xtrain[i])
    y_train.append(ytrain[i])
x_train = np.array(x_train)
y_train = np.array(y_train)

model = Model2.Model()
lr = 0.01
mn = 0.9
wd = 5e-04

optimization = Adam(model.parameters, learning_rate=lr)

batch_size = 1000
idxs = np.arange(len(xtrain))  # -> array([0, 1, ..., 9999])
np.random.shuffle(idxs)

for batch_cnt in range(0, len(xtrain) // batch_size):
    batch_indices = idxs[batch_cnt * batch_size: (batch_cnt + 1) * batch_size]
    batch = xtrain[batch_indices]  # random batch of our training data

    # compute the predictions for this batch by calling on model
Esempio n. 2
0
def main():
    try:
        global args
        global canvas
        global settings

        controller = None
        filemerge = None
        view = None
        model = None

        settings.initialize_prefs(canvas.max_colors())

        # Only POSIX systems are supported at this point
        fileops = FileOpsPOSIX.FileOpsPOSIX()

        if len(args) == 2:
            left = args[0]
            right = args[1]

            left = os.path.realpath(left)
            right = os.path.realpath(right)

            # Instantiate the classes and link them together.
            model = Model2.Model(fileops, left, right)
            view = View2.View(canvas, model, settings)
        else:
            # len(args) == 3
            left = args[0]
            middle = args[1]
            right = args[2]

            left = os.path.realpath(left)
            middle = os.path.realpath(middle)
            right = os.path.realpath(right)

            # Instantiate the classes and link them together.
            model = Model3.Model(fileops, left, middle, right)
            view = View3.View(canvas, model, settings)

        requested_filemerge = settings.get_value('file_merge_program')
        # print('file_merge_program:', requested_filemerge)
        if requested_filemerge == 'vim':
            filemerge = FileMergeVim.FileMergeVim()
        else:
            filemerge = FileMergeEmacs.FileMergeEmacs()
        controller = Controller.Controller(model, view, canvas, filemerge)

        # Start the model. It will enumerate and then start comparing.
        model.start_enumerate()

        # Main event loop
        while not controller.need_to_quit:
            if canvas.need_to_resize:
                view.resize()
            model.render_again = False
            view.render()
            if ((model.state() == Model2.STATE_NORMAL
                 or model.state() == Model3.STATE_NORMAL)
                    and not model.render_again and not canvas.need_to_resize):
                input = canvas.get_input(0)  # wait indefinitely
            else:
                input = canvas.get_input(1)  # timeout in 1/10 second
            controller.process_input(input)

    finally:
        # print("quitting")
        if controller is not None:
            controller.destroy()
        if filemerge is not None:
            filemerge.destroy()
        if view is not None:
            view.destroy()
        if model is not None:
            model.destroy()