def __init__(self, pnet_param, rnet_param, onet_param, isCuda=True): self.isCuda = isCuda self.pnet = Nets.PNet() self.rnet = Nets.RNet() self.onet = Nets.ONet() if self.isCuda: self.pnet.cuda() self.rnet.cuda() self.onet.cuda() # 加载网络参数 self.pnet.load_state_dict(torch.load(pnet_param)) self.rnet.load_state_dict(torch.load(rnet_param)) self.onet.load_state_dict(torch.load(onet_param)) # 网络是测试 self.pnet.eval() self.rnet.eval() self.onet.eval() # 定义transform为ToTensor self.__image_transform = transforms.Compose([transforms.ToTensor()])
def __init__(self, pnet_param, rnet_param, onet_param, isCuda=False): self.isCuda = isCuda # 实例化网络 self.pnet = Nets.PNet() self.rnet = Nets.RNet() self.onet = Nets.ONet() # CUDA加速网络 if self.isCuda: self.pnet().cuda() self.rnet().cuda() self.onet().cuda() # 装载网络训练结果 self.pnet.load_state_dict(torch.load(pnet_param)) self.rnet.load_state_dict(torch.load(rnet_param)) self.onet.load_state_dict(torch.load(onet_param)) self.pnet.eval() self.rnet.eval() self.onet.eval() # 将图片数据转换成NCHW self.__image_transform = transforms.Compose(transforms.ToTensor())
#!/usr/bin/env python3.6 # -*- coding:utf-8 -*- """ __author__ = "YYF" __MTime__ = 18-11-26 上午11:46 """ import Nets import Train if __name__ == '__main__': net = Nets.ONet() Trainer = Train.Trainer(net, './param/onet.pt', r'/home/lievi/celeba_gen/48') Trainer.train()