def predictPneumoniaImg(top, predicted_output, pneumonia_presence_str, image_name): classifier = Pneumonia_cnn.retrieveModel() if (Pneumonia_cnn.predictSingle(classifier, image_name.get())): # predictImg(predicted_ouput) pneumonia_presence_str.set("Pneumonia Present") ag = tk.Label(top, textvariable=pneumonia_presence_str, height=2, width=20, bg='red', fg='blue', font=("Helvetica", 20)).place(relx=0.33, rely=0.8) # ag['font'] = myfont else: pneumonia_presence_str.set("Pneumonia not Present") predicted_output.set("") # tk.Label(top, textvariable=predicted_output).place(relx=0.42, rely=0.16) fg = tk.Label(top, textvariable=pneumonia_presence_str, height=2, width=20, bg='red', fg='blue', font=("Helvetica", 20)).place(relx=0.33, rely=0.8)
def getAccuracy(top, accuracy): classifier = Pneumonia_cnn.retrieveModel() paccuracy = Pneumonia_cnn.getAccuracy(classifier) accuracy.set(paccuracy * 100) accuracyLabel = tk.Label(top, textvariable=accuracy, height=1, width=15, bg='yellow', font=("Helvetica", 20)).place(relx=0.359, rely=0.122)
def plotGraph(top): history = Pneumonia_cnn.loadHistory() acc = history['accuracy'] # print(acc) val_acc = history['val_accuracy'] loss = history['loss'] val_loss = history['val_loss'] Gui_graphplot.createWindowforGraph(top, acc, val_acc, loss, val_loss)
def generateModel(top): Pneumonia_cnn.savingModel()