Esempio n. 1
0
def getAccuracy(top, accuracy):
    classifier = Retina_cnn.retrieveModel()
    paccuracy = Retina_cnn.getAccuracy(classifier)
    accuracy.set(paccuracy * 100)
    accuracyLabel = tk.Label(top,
                             textvariable=accuracy,
                             height=2,
                             width=20,
                             fg='blue',
                             bg='orange').place(relx=0.423, rely=0.12)
Esempio n. 2
0
def predictImg(top, image_name, predicted_output):
    classifier = Retina_cnn.retrieveModel()
    predicted_output.set(Retina_cnn.predictSingle(classifier,
                                                  image_name.get()))
    tk.Label(top,
             textvariable=predicted_output,
             height=2,
             width=20,
             fg='blue',
             bg='red').place(relx=0.423, rely=0.8)
Esempio n. 3
0
def predictRetinaImg(top, image_name, predicted_output, retina_presence_str):
    classifier = Retina_cnn.retrieveModel()
    if (Retina_cnn.predictSingle(classifier, image_name.get())):
        predictImg(top, image_name, predicted_output)
        retina_presence_str.set("Retina Present")
        tk.Label(top, textvariable=retina_presence_str, height=2, width=20).place(relx=0.5, rely=0.2)
    else:
        retina_presence_str.set("Retina not Present")


        tk.Label(top, textvariable=retina_presence_str, height=2, width=20).place(relx=0.5, rely=0.2)
Esempio n. 4
0
def plotGraph(top):
    history = Retina_cnn.loadHistory()
    acc = history['accuracy']
    # print(acc)
    val_acc = history['val_accuracy']

    loss = history['loss']
    val_loss = history['val_loss']
    Gui_graphplot.createWindowforGraph(top, acc, val_acc, loss, val_loss)
Esempio n. 5
0
def generateModel(top):
    Retina_cnn.savingModel()