def __init__(self, filename_baseline,filename_mean_sd): self.structure = Structures.Structures(3, 34, 7, 256) self.my_attention_network = self.structure.structure_11_cnn_attention_dot() #load weights self.my_attention_network.load_weights(filename_baseline) self.dictionary = pickle.load(open(filename_mean_sd, "rb")) self.mean_train = self.dictionary.get("mean") self.sd_train = self.dictionary.get("sd")
def __init__(self, filename_baseline,filename_mean_sd, Conv=False): self.Conv = Conv if(self.Conv==False): self.structure = Structures.Structures(5, 136, 7, 256) self.my_attention_network = self.structure.structure_11_cnn_attention_dot2() #load weights self.my_attention_network.load_weights(filename_baseline) self.dictionary = pd.read_csv("./mean_std.csv").to_dict('list') self.mean_train = self.dictionary.get("mean") self.sd_train = self.dictionary.get("sd") else: self.structure = Structures.Structures(119,34,7,60) self.my_attention_network = self.structure.structure_convolutions_attention() # load weights self.my_attention_network.load_weights(filename_baseline) self.dictionary = pickle.load(open(filename_mean_sd, "rb")) self.mean_train = self.dictionary.get("mean") self.sd_train = self.dictionary.get("sd")
def __init__(self, data): super().__init__() self.data_offset = Structures.BootSectorOffsets() self._data = data # check data ? self.bs_jmp_boot = self.get_data(0, 3) # 0 3 self.bs_oem_name = self.get_data(3, 8) # 3 8 self.bpb_bytes_per_sector = self.get_data(11, 2, True) # 11 2 self.bpb_sectors_per_cluster = self.get_data(13, 1, True) # 13 1 self.bpb_reserved_region_sectors_count = self.get_data(14, 2, True) # 14 2 self.bpb_number_fats = self.get_data(16, 1, True) # 16 1 self.bpb_root_entry_count = self.get_data( 17, 2, True) # 17 2 for fat32 it zero self.bpb_total_sectors_16 = self.get_data( 19, 2, True) # 19 2 old field in fat 32 must be zero self.bpb_media = self.get_data(21, 1) # 21 1 stand self.bpb_fat_size_16 = self.get_data(22, 2, True) # 22 2 self.bpb_sectors_per_track = self.get_data(24, 2, True) # 24 2 self.bpb_number_heads = self.get_data( 26, 2, True) # 26 2 amount of disk heads self.bpb_hidden_sectors = self.get_data(28, 4, True) # 28 4 self.bpb_total_sectors_32 = self.get_data( 32, 4, True) # 32 4 new 32 bit field sm old 16 bit field self.bpb_fat_size_32 = self.get_data( 36, 4, True) # 36 4 amount of sectors one fat self.bpb_ext_flags = self.get_data(40, 2, True) # 40 2 self.file_system_version = self.get_data(42, 2) # 42 2 self.bpb_root_cluster = self.get_data(44, 4, True) # 44 4 self.bpb_file_system_information = self.get_data(48, 2, True) # 48 2 self.bpb_backup_boot_sector = self.get_data(50, 2, True) # 50 2 self.bpb_reserved = self.get_data(52, 12) # 52 12 self.bs_driver_number = self.get_data(64, 1) # 64 1 self.bs_reserved1 = self.get_data(65, 1) # 65 1 self.bs_boot_signature = self.get_data(66, 1) # 66 1 self.bs_volume_id = self.get_data(67, 4) # 67 4 self.bs_volume_label = self.get_data(71, 11) # 71 11 self.bs_file_system_type = self.get_data(82, 8) # 82 8 self._cluster_size = self.bpb_sectors_per_cluster * self.bpb_bytes_per_sector self._fat_zone_offset = self.bpb_bytes_per_sector * self.bpb_reserved_region_sectors_count self._second_cluster_offset = self.fat_zone_offset self._second_cluster_offset += self.bpb_number_fats * self.bpb_fat_size_32 * self.bpb_bytes_per_sector self._fat_size = (self.root_directory_offset - self.fat_zone_offset) // self.bpb_number_fats self._fat_offsets_list = self._fat_offsets_list() self._data_clusters_amount = self._calc_data_clusters() self._mirroring = None self._active_fat = None self._parse_ext_flags()
print("Rosbag opened at "+metaInfo["dir"]) leftImage=None rightImage=None visoData=None frames=[] #####extract messages from rosbag ############# for topic,msg,t in bag.read_messages(topics=['/viso_extractor/output','/bumblebee/left/ROI','/bumblebee/right/ROI']): if(topic=="/viso_extractor/output"): visoData=msg if(topic=="/bumblebee/left/ROI"): leftImage=msg if(topic=="/bumblebee/right/ROI"): rightImage=msg if((leftImage!=None)and(rightImage!=None)and(visoData!=None)): frameData=Structures.singleFrame(leftImage,rightImage,visoData,len(frames)) frames.append(frameData) leftImage=None rightImage=None visoData=None print("frames extracted "+str(len(frames))) bag.close() print("Rosbag Closed at "+metaInfo["dir"]) #################### #####Calculate Statistics (skip the first frame always) for index in range(1,len(frames)): data={"RMS"} matches=Structures.getVisoMatches(frames[index].viso) epiError=Structures.getEpiPolarError(matches["current"]) rms=Structures.getRMS(epiError) try:
block_subblock[self.subblock_index_dct[value]] = block for routeblock, subblock in enumerate(final_state): subblock_idx, day_routeblock = np.where(self.all_state==subblock) subblock_idx, day_routeblock = subblock_idx[0], day_routeblock[0] routeblock_day[self.routeblock_index_dct[routeblock]] = day_routeblock routeblock_subblock[self.routeblock_index_dct[routeblock]] = self.subblock_index_dct[subblock_idx] return routeblock_day, routeblock_subblock, block_subblock if __name__ == "__main__": df = pd.read_excel(r'data.xlsx', sheet_name='route_block') RB = Structures.RouteBlock(df) #print('Индексы мал. блоков: ', RB.routeblock_index_dct) #print('Связь мал. блоков и терминала: ', RB.routeblock_terminal_dct) #print('Расстояние мал. блоков: ', RB.routeblock_distance_dct) #print('Объемы мал. блоков: ', RB.routeblock_volume_dct) #print('Смежность блоков:', RB.routeblock_adjacency_matrix) data_block = pd.read_excel(r'data.xlsx', sheet_name='subblock') SUBBLOCK = Structures.Block_SubBlock(data_block) #print('Индексы подблоков: ', SUBBLOCK.subblock_index_dct) #print('Связь блоков и подблоков: ', SUBBLOCK.block_subblock_dct) #print('Связь подблоков и терминалов: ', SUBBLOCK.subblock_terminal_dct) data_car_terminal = pd.read_excel(r'data.xlsx', sheet_name='small_cars_terminal') Terminal = Structures.Terminal(data_car_terminal)
import socket import sys from threading import Thread import pickle import Structures mainDueDateOrg = Structures.DueDateOrganizer() class DuesyInstance(object): def __init__(self, port_num): self.server = ThreadedServer('localhost',port_num) print("Initializing Server...") self.server.start() class ThreadedServer(Thread): def __init__(self, host, port): Thread.__init__(self) self.host = host self.port = port self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.sock.bind((self.host,self.port)) def listenToClient(self, client, add): size = 1024 while True: try: data = client.recv(size) if data:
def __init__(self): if len(sys.argv) >= 4: if len(sys.argv) == 4: self.name = str(sys.argv[3]) else: serverName = '' nameList = sys.argv[3:] for name in nameList: serverName += str(name) + ' ' serverName = serverName[:-1] self.name = serverName self.port = int(sys.argv[2]) if sys.argv[1] != 'localhost': self.address = int(sys.argv[1]) else: self.address = 'localhost' else: print "!! Command poorly formed. Should look like 'python MUDserver.py localhost 7734 test' or similar. !!" self.id_counter = 0 self.idle_timeout = CONFIG.IDLE_TIMEOUT self.log_file = None self.chat_log_file_byDate = None self.connected_clients = [] self.cc = self.connected_clients self.server_run = True self.engine_state = 'running' self.player_data = {} self.pd = self.player_data self.timers = [] self.move_timers = [] self.current_time = 0 self.startup_time = time.time() self.delta_time = 0 self.last_time = 0 self.god_list = [] # with open('../data/god_list', 'r') as f: # self.god_list = f.readlines() self.setupLog() self.setupClientRecords() self.TelnetServer = TelnetServer( #address should be a blank string for deployment across a network, as blank allows the server to use any network interface it finds. #localhost is for testing where server and clients both exist on one computer, without going across the network port=self.port, address=self.address, on_connect=self.on_connect, on_disconnect=self.on_disconnect, timeout = .05 ) self.Engine = Engine.Engine(self, self.server_run, self.god_list, self.cc, self.pd) self.Renderer = Renderer.Renderer(self) self.chatManager = ChatManager.chatManager(self) self.structureManager = Structures.StructureManager(self) self.structureManager.loadAreas() self.saveManager = SaveManager.SaveManager(self)
# DEPENDENCIES import secrets import math import Wordlists import Structures # MACROS w = Wordlists.Wordlists() s = Structures.Structures() # MAIN FUNCTION def welcome(): # Print menu print("Welcome to the passSentence Generator.") print("Please choose your password strength:") print("[0] Basic Strength (~44 bits entropy)") print("[1] Extra Strength (~77 bits entropy)") print("[2] Cryptographic Strenth (~128 bits entropy)") # Get input char = input(">> ") # Process input if int(char) == 0: genBasicSentence() elif int(char) == 1: genMediumSentence() elif int(char) == 2: genCryptoSentence()
t0.append(0) for i in range(len(grid.elements)): for j in range(len(grid.elements[i].nodes)): t0[grid.elements[i].nodes[j].id - 1] = grid.elements[i].nodes[j].temp new_vector = list(np.array(global_C.gC).dot(np.array(t0))) for i in range(global_data.nN): new_vector[i] += global_P.gP[i] t1_vector = list( np.linalg.solve(np.array(global_H.gH), np.array(new_vector))) min_temp = min(t1_vector) max_temp = max(t1_vector) return t1_vector, min_temp, max_temp, new_vector global_data = S.GlobalData() init_temp, sim_time, step_time, amb_temp, alfa, Height, Width, N_Height, N_Width, spec_heat, conduct, dens = FR.read( 'GlobalData.txt') global_data.assign_values(init_temp, sim_time, step_time, amb_temp, alfa, Height, Width, N_Height, N_Width, spec_heat, conduct, dens) grid = S.FEMgrid() grid.create(global_data) grid.show() for i in range(len(grid.elements)): points_tab = [] are_edges = [] for j in range(len(grid.elements[i].nodes)): point = [grid.elements[i].nodes[j].x, grid.elements[i].nodes[j].y] points_tab.append(point)
def __init__(self): self.data_offsets = Structures.BootSectorOffsets()
import Structures as S import math as m universal_element = S.UniversalElement() points_tab = [[0, 0], [0.025, 0], [0.025, 0.025], [0, 0.025]] conduct = 30 spec_heat = 700 dens = 7800 alfa = 25 are_edges = [1, 0, 0, 0] class matrixH(): def __init__(self): self.H = [] def calc_H(self, points_tab, K): J_matrices = [] for i in range(4): J_matrices.append(universal_element.calc_jacobian(points_tab, i)) all_det_J = [] for i in range(4): all_det_J.append(universal_element.calc_det(J_matrices[i])) all_J_1 = [] for i in range(4): all_J_1.append( universal_element.calc_J_1(J_matrices[i], all_det_J[i])) byX, byY = universal_element.calc_deXY(all_J_1) dx_dx_T = [] for i in range(4): dx_dx_T.append(universal_element.multiply_vector(byX[i]))
Additionally, compute the longitudinal stress in the fuselage skin (in MPa or MegaPascal): ''' altitude = 6200.0 pressure_cabin_ratio = 0.8 fuselage_radius = 3.2 skin_thickness = 0.0024 (_, pressure_alt, _) = ISA.atmospheric_details(altitude) pressure_cabin = pressure_cabin_ratio*ISA.pressure_at_sea_level pressure_difference = pressure_cabin-pressure_alt stress_circumferential = Structures.stress_circumferential( pressure_difference, fuselage_radius, skin_thickness) stress_circumferential_MPa = stress_circumferential/10.0**6 print(stress_circumferential_MPa) stress_longitudinal = Structures.stress_longitudinal( pressure_difference, fuselage_radius, skin_thickness) stress_longitudinal_MPa = stress_longitudinal/10.0**6 print(stress_longitudinal_MPa)
from keras.layers import Bidirectional, Dropout, Flatten from keras.layers.merge import Dot import keras from keras_self_attention import SeqSelfAttention from pydub import AudioSegment graph = tf.get_default_graph() ft = FeatureExtractor('mean_std.csv', BIT_PRECISION=16, sampling_rate=8000) #em = EmotionExtractor_tf.EmotionExtractor('baseline_context5_conv_simple2.weights', 'mean_std.csv') sequences_length = 256 classes = 4 context_len = 5 structure = str2.Structures(context_len, 136, classes, 256) my_attention_network = structure.structure_11_LCA_attention_dot3() my_attention_network.load_weights("vera_4_classes_lca_attention.npy") intermediate_model = Model(inputs=my_attention_network.input, outputs=my_attention_network.layers[-3].output) from keras.models import load_model def create_stress_model(): model_nn = Sequential() model_nn.add( Bidirectional(LSTM(64, return_sequences=True), input_shape=(256, 256), name="LSTM_Layer")) # you can add a label