Esempio n. 1
0
def SVM_features_number_ofOpenedChunks(subject,
                                       load_residuals_regression=False,
                                       cleaned=True):
    SVM_funcs.SVM_feature_decoding_wrapper(
        subject,
        'OpenedChunks',
        SVM_dec=SVM_funcs.regression_decoder(),
        balance_features=False,
        distance=False,
        load_residuals_regression=load_residuals_regression,
        cross_val_func=None,
        list_sequences=[3, 4, 5, 6, 7])
Esempio n. 2
0
def SVM_features_sequence_structure7(subject,
                                     load_residuals_regression=False,
                                     cleaned=True):
    cross_val_func = SVM_funcs.leave_one_sequence_out
    SVM_funcs.SVM_feature_decoding_wrapper(
        subject,
        'ChunkDepth',
        load_residuals_regression=load_residuals_regression,
        cross_val_func=cross_val_func,
        list_sequences=[3, 4, 5, 6],
        nvalues_feature=4,
        SVM_dec=SVM_funcs.regression_decoder(),
        balance_features=False,
        distance=False,
        clean=cleaned)
Esempio n. 3
0
def SVM_features_number_ofOpenedChunks(subject,
                                       load_residuals_regression=True):
    if load_residuals_regression:
        resid_suffix = 'resid_cv_'
    else:
        resid_suffix = 'full_data_'
    score, distance, times = SVM_funcs.SVM_decode_feature(
        subject,
        'OpenedChunks',
        SVM_dec=SVM_funcs.regression_decoder(),
        load_residuals_regression=load_residuals_regression,
        list_sequences=[3, 4, 5, 6, 7],
        crop=[-0.1, 0.4],
        cross_val_func=None,
        balance_features=False,
        distance=False)
    save_name = config.SVM_path + subject + '/feature_decoding/' + resid_suffix + 'Number_Open_Chunks' + '_score_dict.npy'
    np.save(save_name, {'score': score, 'times': times, 'distance': distance})