Esempio n. 1
0
def main():

    #### Create a response object
    response = Response()
    ranker = ARAXRanker()

    #### Get a Message to work on
    messenger = ARAXMessenger()
    print("INFO: Fetching message to work on from arax.rtx.ai", flush=True)
    message = messenger.fetch_message(
        'https://arax.rtx.ai/api/rtx/v1/message/2614')
    if message is None:
        print("ERROR: Unable to fetch message")
        return

    ranker.aggregate_scores(message, response=response)

    #### Show the final result
    print(response.show(level=Response.DEBUG))
    print("Results:")
    for result in message.results:
        confidence = result.confidence
        if confidence is None:
            confidence = 0.0
        print("  -" + '{:6.3f}'.format(confidence) + f"\t{result.essence}")
Esempio n. 2
0
def main():
    # For faster testing, cache the testing messages locally
    import requests_cache
    requests_cache.install_cache('ARAX_ranker_testing_cache')

    import argparse
    argparser = argparse.ArgumentParser(description='Ranker system')
    argparser.add_argument('--local', action='store_true', help='If set, use local RTXFeedback database to fetch messages')
    params = argparser.parse_args()

    # --- Create a response object
    response = ARAXResponse()
    ranker = ARAXRanker()

    # --- Get a Message to work on
    from ARAX_messenger import ARAXMessenger
    messenger = ARAXMessenger()
    if not params.local:
        print("INFO: Fetching message to work on from arax.ncats.io", flush=True)
        message = messenger.fetch_message('https://arax.ncats.io/api/rtx/v1/message/2614')  # acetaminophen - > protein, just NGD as virtual edge
        # message = messenger.fetch_message('https://arax.ncats.io/api/rtx/v1/message/2687')  # neutropenia -> drug, predict_drug_treats_disease and ngd
        # message = messenger.fetch_message('https://arax.ncats.io/api/rtx/v1/message/2701') # observed_expected_ratio and ngd
        # message = messenger.fetch_message('https://arax.ncats.io/api/rtx/v1/message/2703')  # a huge one with jaccard
        # message = messenger.fetch_message('https://arax.ncats.io/api/rtx/v1/message/2706')  # small one with paired concept frequency
        # message = messenger.fetch_message('https://arax.ncats.io/api/rtx/v1/message/2709')  # bigger one with paired concept frequency

    # For local messages due to local changes in code not rolled out to production:
    if params.local:
        sys.path.append(os.path.dirname(os.path.abspath(__file__)) + "/../../UI/Feedback")
        from RTXFeedback import RTXFeedback
        araxdb = RTXFeedback()
        message_dict = araxdb.getMessage(294)  # local version of 2709 but with updates to COHD
        # message_dict = araxdb.getMessage(297)
        # message_dict = araxdb.getMessage(298)
        # message_dict = araxdb.getMessage(299)  # observed_expected_ratio different disease
        # message_dict = araxdb.getMessage(300)  # chi_square
        # message_dict = araxdb.getMessage(302)  # chi_square, different disease
        # message_dict = araxdb.getMessage(304)  # all clinical info, osteoarthritis
        # message_dict = araxdb.getMessage(305)  # all clinical info, neurtropenia
        # message_dict = araxdb.getMessage(306)  # all clinical info, neurtropenia, but with virtual edges
        # message_dict = araxdb.getMessage(307)  # all clinical info, osteoarthritis, but with virtual edges
        # message_dict = araxdb.getMessage(322)  # Parkinsons Jaccard, top 50
        # message_dict = araxdb.getMessage(324)  # chi_square, KG2
        # message_dict = araxdb.getMessage(325)  # chi_square, ngd, KG2
        # message_dict = araxdb.getMessage(326)  # prob drug treats disease as attribute to all edge thrombocytopenia
        # message_dict = araxdb.getMessage(327)
        # add_qnode(name=DOID:1227, id=n00)
        # add_qnode(type=protein, is_set=true, id=n01)
        # add_qnode(type=chemical_substance, id=n02)
        # add_qedge(subject=n00, object=n01, id=e00)
        # add_qedge(subject=n01, object=n02, id=e01, type=physically_interacts_with)
        # expand(edge_id=[e00,e01], kp=ARAX/KG1)
        # overlay(action=compute_jaccard, start_node_id=n00, intermediate_node_id=n01, end_node_id=n02, virtual_relation_label=J1)
        # overlay(action=predict_drug_treats_disease, source_qnode_id=n02, target_qnode_id=n00, virtual_relation_label=P1)
        # overlay(action=overlay_clinical_info, chi_square=true, virtual_relation_label=C1, source_qnode_id=n00, target_qnode_id=n02)
        # overlay(action=compute_ngd, virtual_relation_label=N1, source_qnode_id=n00, target_qnode_id=n01)
        # overlay(action=compute_ngd, virtual_relation_label=N2, source_qnode_id=n00, target_qnode_id=n02)
        # overlay(action=compute_ngd, virtual_relation_label=N3, source_qnode_id=n01, target_qnode_id=n02)
        # resultify(ignore_edge_direction=true)
        # filter_results(action=limit_number_of_results, max_results=100)
        from ARAX_messenger import ARAXMessenger
        message = ARAXMessenger().from_dict(message_dict)

    if message is None:
        print("ERROR: Unable to fetch message")
        return

    # ranker.aggregate_scores(message,response=response)
    ranker.aggregate_scores_dmk(message, response=response)

    # Show the final result
    print(response.show(level=ARAXResponse.DEBUG))
    print("Results:")

    for result in message.results:
        confidence = result.confidence
        if confidence is None:
            confidence = 0.0
        print("  -" + '{:6.3f}'.format(confidence) + f"\t{result.essence}")
    # print(json.dumps(message.to_dict(),sort_keys=True,indent=2))

    # Show the message number
    print(json.dumps(ast.literal_eval(repr(message.id)), sort_keys=True, indent=2))