Esempio n. 1
0
def MakeLineListTable(ions=[], wls=[], outFile=d.TableDir + 'Table2.dat'):
    lines, refs = LL.getLines(elements=ions, wavelengthRange=wls,\
        dataFormat=None)
    unused1, unused2, weights = RC.GetSolarCorrections()

    fp = open(outFile, 'w')
    fmt, db = BuildFormatString(table2Format,
                                DataLabels=table2Labels,
                                DataUnits=table2Units,
                                DataExp=table2Desc,
                                MakeBbBDesc=True)
    fp.write(db)
    allIons = sorted(set(np.array(lines)[:, 1]))
    lineData = []
    for i in allIons:
        ion = np.round(i, decimals=1)
        (elem, state, unused) = el.getIonState(el.getIonName(ion))
        ionLines = np.array(
            sorted([l for l in lines if np.round(l[1], decimals=1) == ion],
                   key=lambda l: l[0]))
        for line in ionLines:
            wl = np.round(line[0], decimals=3)
            xp = line[2]
            gf = line[3]
            if gf < 0:
                gfs = '-'
            else:
                gfs = ''
            gf = abs(gf)
            try:
                qu = int(weights[ion][wl])
            except KeyError:
                qu = 0
            rf = line[5]
            lineData.append([elem, state, wl, xp, gfs, gf, qu, rf])
    for line in lineData:
        fp.write(fmt.format(*line) + '\n')
    fp.close()
Esempio n. 2
0
def MakeSolarCompTable(outFilename=k.TempAbOutFilename,
                       headerLeft='',
                       headerRight=''):
    # Function creates a LaTeX table with elemental abundances as calculated from
    # our Solar reference spectrum, based on a "quality" measurement of each line.
    # Each column of the table represents a measurement using lines of a particular
    # quality or better. The final column is represents all of the measured lines.
    corrections, lines, weights = RC.GetSolarCorrections()

    # We're going to create one column for each "quality" setting from the
    # returned weights list. Basically, each weight is a quality level.
    # The columnDict contains:
    # {weight:{ion:[ab,std,#lines],...},...}
    columnDict = {}
    for wt in k.AbWeights:
        columnDict[wt] = {}

    allIonList = sorted(lines.keys())
    for ion in allIonList:
        ionLines = lines[ion]
        # A single line will not show up as a list of one item. Rather, the
        # entire list will be that one line's parameters...grrr.
        if not u.is_list(ionLines[0]):
            ionLines = [ionLines]
        for wt in k.AbWeights:
            wtLines = np.array([line for line in ionLines \
                        if line[0] in weights[ion] and weights[ion][line[0]] >= wt])
            if len(wtLines) > 0:
                asplundCorr = PA.ptoe[int(ion) - 1][PA.abIdx]
                columnDict[wt][ion] = [
                    np.mean(wtLines[:, 5]) + asplundCorr,
                    np.std(wtLines[:, 5]),
                    len(wtLines)
                ]

    # Create a nice column title for each quality type:
    nameList = [
        r'$\Delta\leq{0:1.2f}$'.format(r[1]) for r in k.AbWeightRanges[:-1]
    ]
    nameList.append('All lines')

    outfile = open(outFilename, 'w')

    latexHeader = STP.kLaTexHeader1 + '\\rhead{\\textbf{' + headerRight\
                  + '}}\n\\lhead{\\textbf{' + headerLeft\
                  + '}}\n\\begin{document}\n'
    outfile.write(latexHeader)

    outfile.write('\\begin{landscape}\n'\
                  + '\\hspace*{-5cm}\n'\
                  + '\\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|')
    outfile.write(
        '}\n\\multicolumn{1}{l}{Ion} & \\multicolumn{1}{l}{Asplund (2009)}')

    for name in nameList:
        outfile.write(' & \\multicolumn{{1}}{{l}}{{{0}}}'.format(name))
    outfile.write('\\\\\n\\hline\n')

    for ion in allIonList:
        outfile.write('{0} & {1:1.2f}$\pm${2:1.2f}'.format(el.getIonName(ion),\
                                          PA.ptoe[int(ion)-1][PA.abIdx],\
                                          PA.ptoe[int(ion)-1][PA.solarErrIdx]))

        for wt in k.AbWeights:
            if ion in columnDict[wt].keys() and columnDict[wt][ion][2] > 0:
                outfile.write(' & {0:1.2f}$\pm${1:1.2f} ({2:d})'.\
                  format(columnDict[wt][ion][0]-PA.ptoe[int(ion)-1][PA.abIdx],
                         columnDict[wt][ion][1],
                         columnDict[wt][ion][2]))
            else:
                outfile.write(' & \\multicolumn{1}{c|}{---} ')

        outfile.write('\\\\\n\\hline\n')

    outfile.write('\\label{{tab:SolarAbs}}\n' +
                  '\\end{tabular}\n\\end{landscape}\n' + '\\clearpage\n')

    outfile.write('\\end{document}\n')
    outfile.close()
Esempio n. 3
0
def PlotXPAbs(starData,
              clusterName='NGC-0752',
              ionList=kAllIonList,
              fileTag='',
              labelPlot=True,
              labelPoints=False,
              showTrendLine=False,
              modelAtms=None,
              pradks=None,
              referenceCorrect=False):
    # Make XP vs. Ab for the passed star
    # One element per plot.
    starName = starData[0]
    starParmTuple = tuple(starData[1:])

    isGiant = RC.isGiantStar(starParmTuple)
    if isGiant:
        modelPath = k.GiantModelPath
    else:
        modelPath = k.DwarfModelPath

    if modelAtms == None or pradks == None:
        modelFiles = mk.findDataFiles(modelPath)
        modelAtms, pradks = mk.LoadModels(modelFiles)

    abdict, uncorrLines, unusedMin, unusedMax = \
                AB.CalcAbsAndLines(clusterName+' '+starName,
                                   tuple(starData[1:6]), ionList=ionList,
                                   modelAtms=modelAtms, pradks=pradks)
    # uncorrLines:
    # # {elem.ion:[[Wavelength, Ex.Pot., logGf, eqw, logRW, abund],...]}

    if referenceCorrect:
        if isGiant:  # Obligatory comment on bad Giant corrections, and using
            # Solar instead.
            correctDict, referenceLines, lineWeights = \
            RC.GetSolarCorrections(ionList=ionList,
                                modelAtms=modelAtms,
                                pradks=pradks)
        else:
            correctDict, referenceLines, lineWeights = \
            RC.GetDwarfCorrections(ionList=ionList,
                                modelAtms=modelAtms,
                                pradks=pradks)

    correctionsAvailable = False
    if len(correctDict) > 0 and len(referenceLines) > 0:
        correctionsAvailable = True

    for ion in ionList:
        if ion not in uncorrLines.keys():
            continue
        # Does this element have NLTE corrections available? Note: we do
        # this BEFORE Solar corrections, which assumes that the same
        # NLTE corrections are already applied to any Solar corrections
        # we use.
        if ion in NLTEIons:
            LTELines = AB.CorrectNLTEAbs(ion, uncorrLines[ion],
                                         tuple(starData[1:6]))
        else:
            if ion in uncorrLines.keys():
                LTELines = uncorrLines[ion]
            else:
                # Either synthesized lines, or none available
                LTELines = np.array([])

        # Do we want the "reference corrected" abundances?
        if referenceCorrect and correctionsAvailable:
            tempAdj,tempAll = \
                    RC.SortAndFilterLines(LTELines,
                                       ion,
                                       tuple(starData[1:6]),
                                       solarCorrect=referenceCorrect,
                                       solarLines=referenceLines[ion],
                                       solarCorrs=correctDict[ion],
                                       lineWeights=lineWeights[ion])

            # correctedLines:
            #           [[ab, line STR score, wl, "quality"], ...]
            # allLines:
            #           [[ab, line STR score, wl],...]
            # We want to use np.arrays, so...
            allLines = np.array(tempAll)
            correctedLines = np.array(tempAdj)
            if len(allLines) == 0 or len(correctedLines) == 0:
                correctionsAvailable = False
            elif len(allLines) == 1 or len(correctedLines) == 1:
                print('Single Line determination:{0}'.format(starData[0]))
                print(allLines, correctedLines)
        # One plot per ion.
        if labelPlot:
            plotLabel = 'XP vs Ab for [{2}/H] in {0} {1}.'.\
                        format(clusterName, starName, el.getIonName(ion))
        else:
            plotLabel = ''

        if referenceCorrect and correctionsAvailable:
            tempPoints = []
            for line in uncorrLines[ion]:
                correctedAbs = [l[0] for l in correctedLines if \
                                u.in_range(l[2],line[0]-0.05, line[0]+0.05)]
                if len(correctedAbs) > 0:
                    tempPoints.append(
                        [line[1],
                         np.mean(correctedAbs), line[3], line[0]])
                else:
                    tempPoints.append([line[1], line[5], line[3], line[0]])
            XPAbPoints = np.array(tempPoints)
        else:
            XPAbPoints = np.array([[line[1],line[5],line[3],line[0]]\
                                for line in uncorrLines[ion]])
        if labelPoints:
            # Label the points with the wavelength
            pointLabels = ['{0:2.3f}'.format(point[3]) \
                           for point in XPAbPoints]
        else:
            pointLabels = None

        ps.XPAbPlot(XPAbPoints,
                    starName,
                    ion,
                    fileTag=fileTag + 'XPAb',
                    plotTitle=plotLabel,
                    pointLabels=pointLabels,
                    showTrendLine=showTrendLine)
Esempio n. 4
0
def GetAbTable(clusterName='NGC-0752',
               starDataList=None,
               ions=kAllIonList,
               filterBlends=False,
               referenceCorrect=False,
               useDAOSpec=False,
               gModelAtms=None,
               gPradks=None,
               dModelAtms=None,
               dPradks=None):
    # Returns a dictionary with each star name (key) has a list of elements
    # (secondary key), with a list containing [Abundance in [X/H], variance in the
    # line measurements, count of lines measured, average quality score]:
    # returnDict={starName:{ion:[[X/H],stdev, count, avg.quality],...},...}
    if starDataList == None:
        starDataList = GetAllStarParms(clusterName=clusterName)

    # Since we're doing a bunch of lines (uh...), we'll need both giant and
    # dwarf references. Giant references are prefixed by a 'g', dwarfs by 'd'.
    if gModelAtms == None or gPradks == None:
        gModelFiles = mk.findDataFiles(k.GiantModelPath)
        gModelAtms, gPradks = mk.LoadModels(gModelFiles)

    if dModelAtms == None or dPradks == None:
        dModelFiles = mk.findDataFiles(k.DwarfModelPath)
        dModelAtms, dPradks = mk.LoadModels(dModelFiles)

    # We need iron to do relative abundances:
    if 26.0 not in ions:
        ions.append(26.0)


# Turns out our giant corrections are not good
#    gCorrectDict, gReferenceLines, gLineWeights = \
#           GetGiantCorrections(ionList=ions,
#                               modelAtms=gModelAtms,
#                               pradks=gPradks)
# So, use the Solar corrections for now
    gCorrectDict, gReferenceLines, gLineWeights = \
            RC.GetSolarCorrections(ionList=ions,
                                modelAtms=dModelAtms,
                                pradks=dPradks)


    dCorrectDict, dReferenceLines, dLineWeights = \
            RC.GetDwarfCorrections(ionList=ions,
                                modelAtms=dModelAtms,
                                pradks=dPradks)

    tableDict = {}

    for starData in starDataList:
        starName = starData[0]
        starParms = tuple(starData[1:6])
        if RC.isGiantStar(starParms):
            modelAtms = gModelAtms
            pradks = gPradks
            referenceLines = gReferenceLines
            referenceDict = gCorrectDict
            lineWeights = gLineWeights
        else:
            modelAtms = dModelAtms
            pradks = dPradks
            referenceLines = dReferenceLines
            referenceDict = dCorrectDict
            lineWeights = dLineWeights

        tableDict[starName] = GetAbsForStar(starData, ions=ions,\
                filterBlends=filterBlends, refCorrect=referenceCorrect,\
                refDict=referenceDict, refLines=referenceLines, \
                lineWeights=lineWeights, useDAOSpec=useDAOSpec, \
                modelAtms=modelAtms, pradks=pradks)

    return tableDict
def MakeVPlots(clusterName='NGC-0752',
               starDataList=None,
               fileTag='',
               filterBlends=False,
               referenceCorrect=False,
               useDAOSpec=False,
               ions=[20.0]):
    # Function plots V_turb vs. sigma [Ca/H] (sigma is the line-to-line
    # standard deviation of the measured Ca lines), for a range of V_turb values.
    # Intended to provide a spectroscopic confirmation/adjustment
    # for photometrically-determined parameters.
    if starDataList is None:
        starDataList = STP.GetAllStarParms(clusterName=clusterName)

    dModelFiles = mk.findDataFiles(k.DwarfModelPath)
    dModelAtms, dPradks = mk.LoadModels(dModelFiles)
    dCorrectDict, dReferenceLines, dLineWeights = \
            RC.GetDwarfCorrections(ionList=ions,
                                modelAtms=dModelAtms,
                                pradks=dPradks)

    gModelFiles = mk.findDataFiles(k.GiantModelPath)
    gModelAtms, gPradks = mk.LoadModels(gModelFiles)
    # Note: We're using dwarf corrections for giant stars...
    # because they're better than giant corrections for the
    # giant stars. This needs to be fixed. :(
    gCorrectDict, gReferenceLines, gLineWeights = \
            RC.GetSolarCorrections(ionList=ions,
                                modelAtms=dModelAtms,
                                pradks=dPradks)
    # For now, CaI appears to work best for all stars.
    # VI, Ti I/II, Fe I/II, Cr I/II also work, but not as well - (See Reddy, et al. 2012).
    #    ions = [20.0]
    abDict = {}

    colorArray=['r','orange','gold','darkgreen','navy',\
                'm','saddlebrown','skyblue','hotpink']

    for starParms in starDataList:
        if RC.isGiantStar(starParms[1:]):
            modelAtms = gModelAtms
            pradks = gPradks
            refLines = gReferenceLines
            refDict = gCorrectDict
            lineWeights = gLineWeights
        else:
            modelAtms = dModelAtms
            pradks = dPradks
            refLines = dReferenceLines
            refDict = dCorrectDict
            lineWeights = dLineWeights

        starPoints = {}
        for v in np.linspace(0.5, 3.0, 26):
            parmTuple = (starParms[0], starParms[1], starParms[2], v, \
                         starParms[4], starParms[5], starParms[6])

            abDict[v] = STP.GetAbsForStar(parmTuple, ions=ions,\
                filterBlends=filterBlends, refCorrect=referenceCorrect,\
                refDict=refDict, refLines=refLines, lineWeights=lineWeights,\
                useDAOSpec=useDAOSpec, modelAtms=modelAtms, pradks=pradks)

            for ion in abDict[v].keys():
                if ion not in starPoints.keys():
                    starPoints[ion] = {}
                if abDict[v][ion][0] == 0.:
                    continue
                starPoints[ion][v] = abDict[v][ion][1]

        colorIdx = 0

        ymaxes = []
        for ion in starPoints.keys():
            Xs = sorted(np.array(list(starPoints[ion].keys())))
            if len(Xs) == 0 or ion in STP.SynthAbsDict.keys():
                continue
            Ys = np.array([starPoints[ion][x] for x in Xs])
            if len(Xs) < 2 or len(Ys) < 2:
                continue
            Ys = Ys / min(Ys)
            ymaxes.append(max(Ys))
            try:
                minV = Xs[np.where(Ys == min(Ys))[0][0]]
            except IndexError:
                continue
            pyplot.plot(Xs,
                        Ys,
                        label=r'$({1}) V_{{turb}}={0:3.1f}km/sec$'.format(
                            minV, el.getIonName(ion)),
                        color=colorArray[colorIdx])
            pyplot.scatter(Xs, Ys, color=colorArray[colorIdx])
            pyplot.axvline(minV, linestyle=':', color=colorArray[colorIdx])
            colorIdx += 1
            if colorIdx == len(colorArray): colorIdx = 0
        ax = pyplot.gca()
        ax.set_xlabel(r'$V_{{turb}} km/s$')
        ax.set_ylabel('Normalized [X/H] variance')
        ax.set_ylim((0., min(5.0, max(ymaxes))))
        pyplot.legend(fontsize=8)
        pyplot.savefig(k.ParmPlotDir + 'Vturb/' + starParms[0] + fileTag +
                       '.png')
        pyplot.close()