Esempio n. 1
0
    def run(self):
        #Only need to execute one of the following lines:
        #spi = SPI(bus, device) #/dev/spidev<bus>.<device>
        spi = SPI(0, 0)  #/dev/spidev1.0
        spi.msh = 2000000  # SPI clock set to 2000 kHz
        spi.bpw = 8  # bits/word
        spi.threewire = False
        spi.lsbfirst = False
        spi.mode = 1
        spi.cshigh = False  # chip select (active low)
        spi.open(0, 0)
        print("spi... msh=" + str(spi.msh))

        gchannel = 0
        buf0 = (7 << 3) | ((gchannel & 0x0f) >> 1)  #(7<<3) for auto-2 mode
        buf1 = (gchannel & 0x01) << 7
        buf1 = buf1 | 0x40  #select 5v i/p range

        while (self.running):
            ret = spi.xfer2([buf0, buf1])
            print("0x%x 0x%x" % (ret[0], ret[1]))

            chanl = (ret[0] & 0xf0) >> 4
            adcval = ((ret[0] & 0x0f) << 4) + ((ret[1] & 0xf0) >> 4)
            print(" -> chanl=%d adcval=0x%x" % (chanl, adcval))

            time.sleep(1)
Esempio n. 2
0
def ini_levels():

    check_ok = 0
    update_data = 0x39

    # spi.set_clock_hz(1000000)
    # spi.set_mode(0)
    # spi.set_bit_order(SPI.MSBFIRST)
    SPI_PORT = 0
    SPI_DEVICE = 0
    # SPI setup

    spi = SPI(0, 0)  #/dev/spidev1.0
    spi.msh = 100000  # SPI clock set to 100 kHz
    spi.bpw = 8  # bits/word
    spi.threewire = False
    spi.lsbfirst = False
    spi.mode = 0
    spi.cshigh = False  # ADS1248 chip select (active low)
    # spi.open(0,0)
    spi.open(SPI_PORT, SPI_DEVICE)

    print "SPI port ", SPI_PORT, "  ", SPI_DEVICE, " open"
Esempio n. 3
0
class NRF24:
    MAX_CHANNEL = 127
    MAX_PAYLOAD_SIZE = 32

    # PA Levels
    PA_MIN = 0x00
    PA_LOW = 0x01
    PA_HIGH = 0x02
    PA_MAX = 0x03
    PA_ERROR = 0x04

    # Bit rates
    BR_1MBPS = 0
    BR_2MBPS = 1
    BR_250KBPS = 2

    # CRC
    CRC_DISABLED = 0x0
    CRC_8 = 0x02
    CRC_16 = 0x04
    CRC_ENABLED = 0x08

    EN_CRC = 0x08
    CRCO = 0x04

    # Registers
    CONFIG = 0x00
    EN_AA = 0x01
    EN_RXADDR = 0x02
    SETUP_AW = 0x03
    SETUP_RETR = 0x04
    RF_CH = 0x05
    RF_SETUP = 0x06
    STATUS = 0x07
    OBSERVE_TX = 0x08
    RPD = 0x09
    RX_ADDR_P0 = 0x0A
    RX_ADDR_P1 = 0x0B
    RX_ADDR_P2 = 0x0C
    RX_ADDR_P3 = 0x0D
    RX_ADDR_P4 = 0x0E
    RX_ADDR_P5 = 0x0F
    TX_ADDR = 0x10
    RX_PW_P0 = 0x11
    RX_PW_P1 = 0x12
    RX_PW_P2 = 0x13
    RX_PW_P3 = 0x14
    RX_PW_P4 = 0x15
    RX_PW_P5 = 0x16
    FIFO_STATUS = 0x17
    DYNPD = 0x1C
    FEATURE = 0x1D

    # Bit Mnemonics */
    MASK_RX_DR = 0x40
    MASK_TX_DS = 0x20
    MASK_MAX_RT = 0x10

    PWR_UP = 0x02
    PRIM_RX = 0x01
    PLL_LOCK = 0x10
    RX_DR = 0x40
    TX_DS = 0x20
    MAX_RT = 0x10
    TX_FULL = 0x01

    EN_DPL = 0x04
    EN_ACK_PAY = 0x02
    EN_DYN_ACK = 0x01

    # Shift counts
    ARD = 4
    ARC = 0
    PLOS_CNT = 4
    ARC_CNT = 0
    RX_P_NO = 1

    TX_REUSE = 6
    FIFO_FULL = 5
    TX_EMPTY = 4
    RX_FULL = 1
    RX_EMPTY = 0

    DPL_P5 = 5
    DPL_P4 = 4
    DPL_P3 = 3
    DPL_P2 = 2
    DPL_P1 = 1
    DPL_P0 = 0

    #Masks
    RX_P_NO_MASK = 0x0E

    # Instruction Mnemonics
    R_REGISTER = 0x00
    W_REGISTER = 0x20
    REGISTER_MASK = 0x1F
    ACTIVATE = 0x50
    R_RX_PL_WID = 0x60
    R_RX_PAYLOAD = 0x61
    W_TX_PAYLOAD = 0xA0
    W_ACK_PAYLOAD = 0xA8
    FLUSH_TX = 0xE1
    FLUSH_RX = 0xE2
    REUSE_TX_PL = 0xE3
    NOP = 0xFF

    # Non-P omissions
    LNA_HCURR = 0x01
    LNA_ON = 1
    LNA_OFF = 0

    # P model bit Mnemonics
    RF_DR_LOW = 0x20
    RF_DR_HIGH = 0x08
    RF_PWR_LOW = 0x02
    RF_PWR_HIGH = 0x04

    datarate_e_str_P = ["1MBPS", "2MBPS", "250KBPS"]
    model_e_str_P = ["nRF24L01", "nRF24l01+"]
    crclength_e_str_P = ["Disabled", "", "8 bits", "", "16 bits"]
    pa_dbm_e_str_P = ["PA_MIN", "PA_LOW", "PA_HIGH", "PA_MAX"]

    @staticmethod
    def print_single_status_line(name, value):
        print("{0:<16}= {1}".format(name, value))

    @staticmethod
    def _to_8b_list(data):
        """Convert an arbitray iteratable or single int to a list of ints
            where each int is smaller than 256."""
        if isinstance(data, str):
            data = [ord(x) for x in data]
        elif isinstance(data, (int, long)):
            data = [data]
        else:
            data = [int(x) for x in data]

        #for byte in data:
        #    if byte < 0 or byte > 255:
        #        raise RuntimeError("Value %d is larger than 8 bits" % byte)
        return data

    def __init__(self, major=None, minor=None, ce_pin=None, irq_pin=None):
        self.ce_pin = "P9_15"
        self.irq_pin = "P9_16"
        self.channel = 76
        self.data_rate = NRF24.BR_1MBPS
        self.data_rate_bits = 1000
        self.p_variant = False  # False for RF24L01 and true for RF24L01P
        self.payload_size = 5  # *< Fixed size of payloads
        self.ack_payload_available = False  # *< Whether there is an ack payload waiting
        self.dynamic_payloads_enabled = False  # *< Whether dynamic payloads are enabled.
        self.ack_payload_length = 5  # *< Dynamic size of pending ack payload.
        self.pipe0_reading_address = None  # *< Last address set on pipe 0 for reading.
        self.spidev = None
        self.last_error = 0
        self.crc_length = 0
        self.auto_ack = 0x3F
        self.address_length = 5

        # If all parameters are available, lets start the radio!
        if major is not None and minor is not None and irq_pin is not None:
            self.begin(major, minor, ce_pin, irq_pin)

    def begin(self, major, minor, ce_pin, irq_pin):
        # Initialize SPI bus

        if ADAFRUID_BBIO_SPI:
            self.spidev = SPI(major, minor)
            self.spidev.bpw = 8
            try:
                self.spidev.msh = 10000000  # Maximum supported by NRF24L01+
            except IOError:
                pass  # Hardware does not support this speed
        else:
            self.spidev = spidev.SpiDev()
            self.spidev.open(major, minor)

            self.spidev.bits_per_word = 8

            try:
                self.spidev.max_speed_hz = 10000000  # Maximum supported by NRF24L01+
            except IOError:
                pass  # Hardware does not support this speed

        self.spidev.cshigh = False
        self.spidev.mode = 0
        self.spidev.loop = False
        self.spidev.lsbfirst = False
        self.spidev.threewire = False

        self.ce_pin = ce_pin
        self.irq_pin = irq_pin

        if self.ce_pin is not None:
            GPIO.setup(self.ce_pin, GPIO.OUT)

        GPIO.setup(self.irq_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

        time.sleep(5 / 1000000.0)

        # Reset radio configuration
        self.reset()

        # Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
        # WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
        # sizes must never be used. See documentation for a more complete explanation.
        self.setRetries(int('0101', 2), 15)

        # Restore our default PA level
        self.setPALevel(NRF24.PA_MAX)

        # Determine if this is a p or non-p RF24 module and then
        # reset our data rate back to default value. This works
        # because a non-P variant won't allow the data rate to
        # be set to 250Kbps.
        if self.setDataRate(NRF24.BR_250KBPS):
            self.p_variant = True

        # Then set the data rate to the slowest (and most reliable) speed supported by all
        # hardware.
        self.setDataRate(NRF24.BR_1MBPS)

        # Initialize CRC and request 2-byte (16bit) CRC
        self.setCRCLength(NRF24.CRC_16)

        # Disable dynamic payloads, to match dynamic_payloads_enabled setting
        self.write_register(NRF24.DYNPD, 0)

        # Reset current status
        # Notice reset and flush is the last thing we do
        self.write_register(NRF24.STATUS,
                            NRF24.RX_DR | NRF24.TX_DS | NRF24.MAX_RT)

        # Set up default configuration.  Callers can always change it later.
        # This channel should be universally safe and not bleed over into adjacent
        # spectrum.
        self.setChannel(self.channel)

        self.setRetries(15, 15)

        # Flush buffers
        self.flush_rx()
        self.flush_tx()
        self.clear_irq_flags()

    def end(self):
        if self.spidev:
            self.spidev.close()
            self.spidev = None

    def startListening(self):
        self.write_register(
            NRF24.CONFIG,
            self.read_register(NRF24.CONFIG) | NRF24.PWR_UP | NRF24.PRIM_RX)
        self.write_register(NRF24.STATUS,
                            NRF24.RX_DR | NRF24.TX_DS | NRF24.MAX_RT)

        self.flush_tx()
        self.flush_rx()
        self.clear_irq_flags()

        # Restore the pipe0 address, if exists
        if self.pipe0_reading_address:
            self.write_register(self.RX_ADDR_P0, self.pipe0_reading_address)

        # Go!
        self.ce(1)

    def ce(self, level, pulse=0):
        # CE Pin is optional
        if self.ce_pin is not None:
            GPIO.output(self.ce_pin, level)
            if pulse > 0:
                time.sleep(pulse)
                GPIO.output(self.ce_pin, 1 - level)

    def irqWait(self, timeout=30000):
        # TODO: A race condition may occur here. => wait for level?
        if GPIO.input(
                self.irq_pin) == 0:  # Pin is already down. Packet is waiting?
            return True

        try:
            return GPIO.wait_for_edge(self.irq_pin, GPIO.FALLING, timeout) == 1
        except TypeError:  # Timeout parameter not supported
            return GPIO.wait_for_edge(self.irq_pin, GPIO.FALLING) == 1
        except AttributeError:
            raise RuntimeError("GPIO lib does not support wait_for_edge()")

    def read_register(self, reg, length=1):
        buf = [NRF24.R_REGISTER | (NRF24.REGISTER_MASK & reg)]
        buf += [NRF24.NOP] * max(1, length)

        resp = self.spidev.xfer2(buf)
        if length == 1:
            return resp[1]

        return resp[1:]

    def write_register(self, reg, value):
        """ Write register value """
        buf = [NRF24.W_REGISTER | (NRF24.REGISTER_MASK & reg)]
        buf += self._to_8b_list(value)
        self.spidev.xfer2(buf)

    def write_payload(self, buf):
        """ Writes data to the payload register, automatically padding it
            to match the required length. Returns the number of bytes
            actually written. """

        buf = self._to_8b_list(buf)
        if self.dynamic_payloads_enabled:
            if len(buf) > self.MAX_PAYLOAD_SIZE:
                raise RuntimeError("Dynamic payload is larger than the " +
                                   "maximum size.")
            blank_len = 0
        else:
            if len(buf) > self.payload_size:
                raise RuntimeError("Payload is larger than the fixed payload" +
                                   "size (%d vs. %d bytes)" %
                                   (len(buf), self.payload_size))
            blank_len = self.payload_size - len(buf)

        txbuffer = [NRF24.W_TX_PAYLOAD] + buf + ([0x00] * blank_len)
        self.spidev.xfer2(txbuffer)
        return len(txbuffer) - 1

    def read_payload(self, buf, buf_len=-1):
        """ Reads data from the payload register and sets the
            DR bit of the STATUS register. """

        if buf_len < 0:
            buf_len = self.payload_size

        if not self.dynamic_payloads_enabled:
            data_len = min(self.payload_size, buf_len)
            blank_len = self.payload_size - data_len
        else:
            data_len = self.getDynamicPayloadSize()
            blank_len = 0

        txbuffer = [NRF24.R_RX_PAYLOAD
                    ] + [NRF24.NOP] * (blank_len + data_len + 1)

        payload = self.spidev.xfer2(txbuffer)
        del buf[:]
        buf += payload[1:data_len + 1]

        self.write_register(NRF24.STATUS, NRF24.RX_DR)

        return data_len

    def flush_rx(self):
        return self.spidev.xfer2([NRF24.FLUSH_RX])[0]

    def flush_tx(self):
        return self.spidev.xfer2([NRF24.FLUSH_TX])[0]

    def get_status(self):
        return self.spidev.xfer2([NRF24.NOP])[0]

    def print_status(self, status):
        status_str = "0x{0:02x} RX_DR={1:x} TX_DS={2:x} MAX_RT={3:x} RX_P_NO={4:x} TX_FULL={5:x}".format(
            status, 1 if status & NRF24.RX_DR else 0,
            1 if status & NRF24.TX_DS else 0,
            1 if status & NRF24.MAX_RT else 0,
            ((status >> NRF24.RX_P_NO) & int("111", 2)),
            1 if status & NRF24.TX_FULL else 0)

        self.print_single_status_line("STATUS", status_str)

    def print_observe_tx(self, value):
        tx_str = "OBSERVE_TX=0x{0:02x}: POLS_CNT={2:x} ARC_CNT={2:x}\r\n".format(
            value, (value >> NRF24.PLOS_CNT) & int("1111", 2),
            (value >> NRF24.ARC_CNT) & int("1111", 2))
        self.print_single_status_line("OBSERVE_TX", tx_str)

    def print_byte_register(self, name, reg, qty=1):
        registers = [
            "0x{:0>2x}".format(self.read_register(reg + r))
            for r in range(0, qty)
        ]
        self.print_single_status_line(name, " ".join(registers))

    def print_address_register(self, name, reg, qty=1):
        address_registers = [
            "0x{0:>02x}{1:>02x}{2:>02x}{3:>02x}{4:>02x}".format(
                *self.read_register(reg + r, 5)) for r in range(qty)
        ]

        self.print_single_status_line(name, " ".join(address_registers))

    def setChannel(self, channel):
        if channel < 0 or channel > self.MAX_CHANNEL:
            raise RuntimeError("Channel number out of range")
        self.channel = channel
        self.write_register(NRF24.RF_CH, channel)

    def getChannel(self):
        return self.read_register(NRF24.RF_CH)

    def setPayloadSize(self, size):
        self.payload_size = min(max(size, 1), NRF24.MAX_PAYLOAD_SIZE)

    def getPayloadSize(self):
        return self.payload_size

    def printDetails(self):
        self.print_status(self.get_status())
        self.print_address_register("RX_ADDR_P0-1", NRF24.RX_ADDR_P0, 2)
        self.print_byte_register("RX_ADDR_P2-5", NRF24.RX_ADDR_P2, 4)
        self.print_address_register("TX_ADDR", NRF24.TX_ADDR)

        self.print_byte_register("RX_PW_P0-6", NRF24.RX_PW_P0, 6)
        self.print_byte_register("EN_AA", NRF24.EN_AA)
        self.print_byte_register("EN_RXADDR", NRF24.EN_RXADDR)
        self.print_byte_register("RF_CH", NRF24.RF_CH)
        self.print_byte_register("RF_SETUP", NRF24.RF_SETUP)
        self.print_byte_register("SETUP_AW", NRF24.SETUP_AW)
        self.print_byte_register("OBSERVE_TX", NRF24.OBSERVE_TX)
        self.print_byte_register("CONFIG", NRF24.CONFIG)
        self.print_byte_register("FIFO_STATUS", NRF24.FIFO_STATUS)
        self.print_byte_register("DYNPD", NRF24.DYNPD)
        self.print_byte_register("FEATURE", NRF24.FEATURE)

        self.print_single_status_line(
            "Data Rate", NRF24.datarate_e_str_P[self.getDataRate()])
        self.print_single_status_line("Model",
                                      NRF24.model_e_str_P[self.isPVariant()])
        self.print_single_status_line(
            "CRC Length", NRF24.crclength_e_str_P[self.getCRCLength()])
        self.print_single_status_line("PA Power",
                                      NRF24.pa_dbm_e_str_P[self.getPALevel()])

    def stopListening(self):
        self.ce(0)
        self.flush_tx()
        self.flush_rx()
        self.clear_irq_flags()

        # Enable TX
        self.write_register(NRF24.CONFIG,
                            (self.read_register(NRF24.CONFIG) | NRF24.PWR_UP)
                            & ~NRF24.PRIM_RX)

        # Enable pipe 0 for auto-ack
        self.write_register(NRF24.EN_RXADDR,
                            self.read_register(NRF24.EN_RXADDR) | 1)

    def powerDown(self):
        self.write_register(NRF24.CONFIG,
                            self.read_register(NRF24.CONFIG) & ~NRF24.PWR_UP)

    def powerUp(self):
        self.write_register(NRF24.CONFIG,
                            self.read_register(NRF24.CONFIG) | NRF24.PWR_UP)
        time.sleep(150e-6)

    def write(self, buf):
        self.last_error = None
        length = self.write_payload(buf)
        self.ce(1)

        sent_at = monotonic()
        packet_time = (
            (1 + length + self.crc_length + self.address_length) * 8 +
            9) / (self.data_rate_bits * 1000.)

        if self.auto_ack != 0:
            packet_time *= 2

        if self.retries != 0 and self.auto_ack != 0:
            timeout = sent_at + (packet_time + self.delay) * self.retries
        else:
            timeout = sent_at + packet_time * 2  # 2 is empiric

        #while NRF24.TX_DS &  self.get_status() == 0:
        #    pass

        #print monotonic() - sent_at
        #print packet_time

        while monotonic() < timeout:
            time.sleep(packet_time)
            status = self.get_status()
            if status & NRF24.TX_DS:
                self.ce(0)
                return True

            if status & NRF24.MAX_RT:
                self.last_error = 'MAX_RT'
                self.ce(0)
                break

        self.ce(0)
        if self.last_error is None:
            self.last_error = 'TIMEOUT'

        self.flush_tx()  # Avoid leaving the payload in tx fifo
        return False

    def startFastWrite(self, buf):
        """
            Do not wait for CE HIGH->LOW
        """
        # Send the payload
        self.write_payload(buf)

        self.ce(1)

    def startWrite(self, buf):
        # Send the payload
        self.write_payload(buf)

        # Allons!
        self.ce(1, 10e-6)

    def getDynamicPayloadSize(self):
        return self.spidev.xfer2([NRF24.R_RX_PL_WID, NRF24.NOP])[1]

    def available(self, pipe_num=None, irq_wait=False, irq_timeout=30000):
        status = self.get_status()
        result = False

        # Sometimes the radio specifies that there is data in one pipe but
        # doesn't set the RX flag...
        if status & NRF24.RX_DR or (status & NRF24.RX_P_NO_MASK !=
                                    NRF24.RX_P_NO_MASK):
            result = True
        else:
            if irq_wait:  # Will use IRQ wait
                if self.irqWait(irq_timeout):  # Do we have a packet?
                    status = self.get_status()  # Seems like we do!
                    if status & NRF24.RX_DR or (status & NRF24.RX_P_NO_MASK !=
                                                NRF24.RX_P_NO_MASK):
                        result = True

        if result and pipe_num is not None:
            del pipe_num[:]
            pipe_num.append((status & NRF24.RX_P_NO_MASK) >> NRF24.RX_P_NO)

        # Handle ack payload receipt
        if status & NRF24.TX_DS:
            self.write_register(NRF24.STATUS, NRF24.TX_DS)

        return result

    def read(self, buf, buf_len=-1):
        # Fetch the payload
        self.read_payload(buf, buf_len)

        # was this the last of the data available?
        return self.read_register(NRF24.FIFO_STATUS & NRF24.RX_EMPTY)

    def clear_irq_flags(self):
        self.write_register(NRF24.STATUS,
                            NRF24.RX_DR | NRF24.TX_DS | NRF24.MAX_RT)

    def whatHappened(self):
        # Read the status & reset the status in one easy call
        # Or is that such a good idea?
        self.write_register(NRF24.STATUS,
                            NRF24.RX_DR | NRF24.TX_DS | NRF24.MAX_RT)

        status = self.get_status()
        self.clear_irq_flags()

        # Report to the user what happened
        tx_ok = status & NRF24.TX_DS
        tx_fail = status & NRF24.MAX_RT
        rx_ready = status & NRF24.RX_DR
        return {'tx_ok': tx_ok, "tx_fail": tx_fail, "rx_ready": rx_ready}

    def openWritingPipe(self, value):
        # Note that the NRF24L01(+)
        # expects it LSB first.

        self.write_register(NRF24.RX_ADDR_P0, value)
        self.write_register(NRF24.TX_ADDR, value)
        if not self.dynamic_payloads_enabled:
            self.write_register(NRF24.RX_PW_P0, self.payload_size)

    def openReadingPipe(self, pipe, address):
        # If this is pipe 0, cache the address.  This is needed because
        # openWritingPipe() will overwrite the pipe 0 address, so
        # startListening() will have to restore it.
        if pipe >= 6:
            raise RuntimeError("Invalid pipe number")
        if (pipe >= 2 and len(address) > 1) or len(address) > 5:
            raise RuntimeError("Invalid adress length")

        if pipe == 0:
            self.pipe0_reading_address = address

        self.write_register(NRF24.RX_ADDR_P0 + pipe, address)
        if not self.dynamic_payloads_enabled:
            self.write_register(NRF24.RX_PW_P0 + pipe, self.payload_size)

        # Note it would be more efficient to set all of the bits for all open
        # pipes at once.  However, I thought it would make the calling code
        # more simple to do it this way.
        self.write_register(NRF24.EN_RXADDR,
                            self.read_register(NRF24.EN_RXADDR) | (1 << pipe))

    def closeReadingPipe(self, pipe):
        self.write_register(NRF24.EN_RXADDR,
                            self.read_register(NRF24.EN_RXADDR) & ~(1 << pipe))

    def toggle_features(self):
        buf = [NRF24.ACTIVATE, 0x73]
        self.spidev.xfer2(buf)

    def enableDynamicPayloads(self):
        # Enable dynamic payload throughout the system
        self.write_register(NRF24.FEATURE,
                            self.read_register(NRF24.FEATURE) | NRF24.EN_DPL)

        # If it didn't work, the features are not enabled
        if not self.read_register(NRF24.FEATURE):
            # So enable them and try again
            self.toggle_features()
            self.write_register(
                NRF24.FEATURE,
                self.read_register(NRF24.FEATURE) | NRF24.EN_DPL)

        # Enable dynamic payload on all pipes

        # Not sure the use case of only having dynamic payload on certain
        # pipes, so the library does not support it.
        self.write_register(NRF24.DYNPD,
                            self.read_register(NRF24.DYNPD) | 0b00111111)

        self.dynamic_payloads_enabled = True

    def enableAckPayload(self):
        # enable ack payload and dynamic payload features
        self.write_register(
            NRF24.FEATURE,
            self.read_register(NRF24.FEATURE) | NRF24.EN_ACK_PAY
            | NRF24.EN_DPL)

        # If it didn't work, the features are not enabled
        if not self.read_register(NRF24.FEATURE):
            # So enable them and try again
            self.toggle_features()
            self.write_register(
                NRF24.FEATURE,
                self.read_register(NRF24.FEATURE) | NRF24.EN_ACK_PAY
                | NRF24.EN_DPL)

        # Enable dynamic payload on pipes 0 & 1
        self.write_register(
            NRF24.DYNPD,
            self.read_register(NRF24.DYNPD) | NRF24.DPL_P1 | NRF24.DPL_P0)

    def writeAckPayload(self, pipe, buf, buf_len):
        txbuffer = [NRF24.W_ACK_PAYLOAD | (pipe & 0x7)]

        max_payload_size = 32
        data_len = min(buf_len, max_payload_size)
        txbuffer.extend(buf[0:data_len])

        self.spidev.xfer2(txbuffer)

    def isAckPayloadAvailable(self):
        result = self.ack_payload_available
        self.ack_payload_available = False
        return result

    def isPVariant(self):
        return self.p_variant

    def setAutoAck(self, enable):
        if enable:
            self.write_register(NRF24.EN_AA, 0x3F)
            self.auto_ack = 0x3f
            if self.crc_length == 0:
                self.setCRCLength(
                    NRF24.CRC_8
                )  # Enhanced Shockburst requires at least 1 byte CRC
        else:
            self.auto_ack = 0
            self.write_register(NRF24.EN_AA, 0)

    def setAutoAckPipe(self, pipe, enable):
        if pipe <= 6:
            en_aa = self.read_register(NRF24.EN_AA)
            if enable:
                self.setCRCLength(
                    NRF24.CRC_8
                )  # Enhanced Shockburst requires at least 1 byte CRC
                en_aa |= 1 << pipe
                self.auto_ack |= 1 << pipe
            else:
                en_aa &= ~1 << pipe
                self.auto_ack &= ~1 << pipe

            self.write_register(NRF24.EN_AA, en_aa)

    def setAddressWidth(self, width):
        if width >= 2 and width <= 5:
            self.write_register(NRF24.SETUP_AW, width - 2)
            self.address_width = width

    def testCarrier(self):
        return self.read_register(NRF24.RPD) & 1

    def setPALevel(self, level):
        setup = self.read_register(NRF24.RF_SETUP)
        setup &= ~(NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH)

        if level == NRF24.PA_MAX:
            setup |= NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH
        elif level == NRF24.PA_HIGH:
            setup |= NRF24.RF_PWR_HIGH
        elif level == NRF24.PA_LOW:
            setup |= NRF24.RF_PWR_LOW
        elif level == NRF24.PA_MIN:
            pass
        elif level == NRF24.PA_ERROR:
            # On error, go to maximum PA
            setup |= NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH

        self.write_register(NRF24.RF_SETUP, setup)

    def getPALevel(self):
        power = self.read_register(
            NRF24.RF_SETUP) & (NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH)
        if power == (NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH):
            return NRF24.PA_MAX
        elif power == NRF24.RF_PWR_HIGH:
            return NRF24.PA_HIGH
        elif power == NRF24.RF_PWR_LOW:
            return NRF24.PA_LOW
        else:
            return NRF24.PA_MIN

    def setDataRate(self, speed):
        setup = self.read_register(NRF24.RF_SETUP)
        setup &= ~(NRF24.RF_DR_LOW | NRF24.RF_DR_HIGH)

        if speed == NRF24.BR_250KBPS:
            # Must set the RF_DR_LOW to 1 RF_DR_HIGH (used to be RF_DR) is already 0
            # Making it '10'.
            self.data_rate_bits = 250
            self.data_rate = NRF24.BR_250KBPS
            setup |= NRF24.RF_DR_LOW
        elif speed == NRF24.BR_2MBPS:
            # Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
            # Making it '01'
            self.data_rate_bits = 2000
            self.data_rate = NRF24.BR_2MBPS
            setup |= NRF24.RF_DR_HIGH
        else:
            # 1Mbs
            self.data_rate_bits = 1000
            self.data_rate = NRF24.BR_1MBPS

        self.write_register(NRF24.RF_SETUP, setup)

        # Verify our result
        return self.read_register(NRF24.RF_SETUP) == setup

    def getDataRate(self):
        dr = self.read_register(
            NRF24.RF_SETUP) & (NRF24.RF_DR_LOW | NRF24.RF_DR_HIGH)
        # Order matters in our case below
        if dr == NRF24.RF_DR_LOW:
            # '10' = 250KBPS
            return NRF24.BR_250KBPS
        elif dr == NRF24.RF_DR_HIGH:
            # '01' = 2MBPS
            return NRF24.BR_2MBPS
        else:
            # '00' = 1MBPS
            return NRF24.BR_1MBPS

    def setCRCLength(self, length):
        config = self.read_register(
            NRF24.CONFIG) & ~(NRF24.EN_CRC | NRF24.CRCO)

        if length == NRF24.CRC_DISABLED:
            self.crc_length = 0
        elif length == NRF24.CRC_8:
            config |= NRF24.EN_CRC
            config &= ~NRF24.CRCO
            self.crc_length = 1
        else:
            config |= NRF24.EN_CRC
            config |= NRF24.CRCO
            self.crc_length = 2

        self.write_register(NRF24.CONFIG, config)

    def getCRCLength(self):
        result = NRF24.CRC_DISABLED
        config = self.read_register(NRF24.CONFIG) & (NRF24.CRCO | NRF24.EN_CRC)

        if config & NRF24.EN_CRC:
            if config & NRF24.CRCO:
                result = NRF24.CRC_16
            else:
                result = NRF24.CRC_8

        return result

    def disableCRC(self):
        disable = self.read_register(NRF24.CONFIG) & ~NRF24.EN_CRC
        self.write_register(NRF24.CONFIG, disable)

    def setRetries(self, delay, count):
        self.write_register(NRF24.SETUP_RETR, (delay & 0xf) << NRF24.ARD |
                            (count & 0xf) << NRF24.ARC)
        self.delay = delay * 0.000250
        self.retries = count
        self.max_timeout = (self.payload_size / float(self.data_rate_bits) +
                            self.delay) * self.retries
        self.timeout = (self.payload_size / float(self.data_rate_bits) +
                        self.delay)

    def getRetries(self):
        return self.read_register(NRF24.SETUP_RETR)

    def getMaxTimeout(self):
        return self.max_timeout

    def getTimeout(self):
        return self.timeout

    def reset(self):
        """ Make sure the NRF is in the same state as after power up
            to avoid problems resulting from left over configuration
            from other programs."""
        self.ce(0)
        reset_values = {
            0: 0x08,
            1: 0x3F,
            2: 0x02,
            3: 0x03,
            4: 0x03,
            5: 0x02,
            6: 0x06,
            0x0a: [0xe7, 0xe7, 0xe7, 0xe7, 0xe7],
            0x0b: [0xc2, 0xc2, 0xc2, 0xc2, 0xc2],
            0x0c: 0xc3,
            0x0d: 0xc4,
            0x0e: 0xc5,
            0x0f: 0xc6,
            0x10: [0xe7, 0xe7, 0xe7, 0xe7, 0xe7],
            0x11: 0,
            0x12: 0,
            0x13: 0,
            0x14: 0,
            0x15: 0,
            0x16: 0,
            0x1c: 0,
            0x1d: 0
        }
        for reg, value in reset_values.items():
            self.write_register(reg, value)

        self.flush_rx()
        self.flush_tx()
Esempio n. 4
0
class NRF24:
    # Some limits
    MAX_CHANNEL = 127
    MAX_PAYLOAD_SIZE = 32

    # PA Levels
    PA_MIN = 0x00
    PA_LOW = 0x01
    PA_HIGH = 0x02
    PA_MAX = 0x03
    PA_ERROR = 0x04

    # Bit rates
    BR_1MBPS = 0
    BR_2MBPS = 1
    BR_250KBPS = 2

    # CRC
    CRC_DISABLED = 0
    CRC_8 = 1
    CRC_16 = 2

    # Registers
    CONFIG = 0x00
    EN_AA = 0x01
    EN_RXADDR = 0x02
    SETUP_AW = 0x03
    SETUP_RETR = 0x04
    RF_CH = 0x05
    RF_SETUP = 0x06
    STATUS = 0x07
    OBSERVE_TX = 0x08
    RPD = 0x09  # CD on Non-P version
    RX_ADDR_P0 = 0x0A
    RX_ADDR_P1 = 0x0B
    RX_ADDR_P2 = 0x0C
    RX_ADDR_P3 = 0x0D
    RX_ADDR_P4 = 0x0E
    RX_ADDR_P5 = 0x0F
    TX_ADDR = 0x10
    RX_PW_P0 = 0x11
    RX_PW_P1 = 0x12
    RX_PW_P2 = 0x13
    RX_PW_P3 = 0x14
    RX_PW_P4 = 0x15
    RX_PW_P5 = 0x16
    FIFO_STATUS = 0x17
    DYNPD = 0x1C
    FEATURE = 0x1D

    # Bit Mask Mnemonics - CONFIG register
    MASK_RX_DR = 0x40
    MASK_TX_DS = 0x20
    MASK_MAX_RT = 0x10
    EN_CRC = 0x08
    CRCO = 0x04
    PWR_UP = 0x02
    PRIM_RX = 0x01
    
    # Bit Mask Mnemonics - STATUS register
    RX_DR = 0x40
    TX_DS = 0x20
    MAX_RT = 0x10
    TX_FULL = 0x01
    RX_P_NO_MASK = 0x0E # isolate pipe number

    # Bit Mask Mnemonics - FIFO_STATUS register
    TX_REUSE = 0x40
    TXFIFO_FULL = 0x20
    TXFIFO_EMPTY = 0x10
    RXFIFO_FULL = 0x02
    RXFIFO_EMPTY = 0x01

    # Bit Mask Mnemonics - DYNPD register
    DPL_P5 = 0x20
    DPL_P4 = 0x10
    DPL_P3 = 0x08
    DPL_P2 = 0x04
    DPL_P1 = 0x02
    DPL_P0 = 0x01
    
    # Bit Mask Mnemonics - FEATURE register
    EN_DPL = 0x04
    EN_ACK_PAY = 0x02
    EN_DYN_ACK = 0x01

    # Shift counts
    ARD = 4
    ARC = 0
    PLOS_CNT = 4
    ARC_CNT = 0
    RX_P_NO = 1

    # Instruction Mnemonics
    R_REGISTER = 0x00
    W_REGISTER = 0x20
    REGISTER_MASK = 0x1F
    ACTIVATE = 0x50
    R_RX_PL_WID = 0x60
    R_RX_PAYLOAD = 0x61
    W_TX_PAYLOAD = 0xA0
    W_ACK_PAYLOAD = 0xA8
    FLUSH_TX = 0xE1
    FLUSH_RX = 0xE2
    REUSE_TX_PL = 0xE3
    NOP = 0xFF

    # Non-P omissions
    LNA_HCURR = 0x01
    LNA_ON = 1
    LNA_OFF = 0

    # P model Mask Mnemonics
    RF_DR_LOW = 0x20
    RF_DR_HIGH = 0x08
    RF_PWR_LOW = 0x02
    RF_PWR_HIGH = 0x04

    datarate_e_str_P = ["1MBPS", "2MBPS", "250KBPS"]
    model_e_str_P = ["nRF24L01", "nRF24l01+"]
    crclength_e_str_P = ["Disabled", "8 bits", "16 bits"]
    pa_dbm_e_str_P = ["PA_MIN", "PA_LOW", "PA_HIGH", "PA_MAX"]

    @staticmethod
    def print_single_status_line(name, value):
        """Prints name = value"""
        print("{0:<16}= {1}".format(name, value))

    @staticmethod
    def _to_8b_list(data):
        """Convert an arbitray iteratable or single int to a list of ints
            where each int is smaller than 256."""
        if isinstance(data, str):
            data = [ord(x) & 0xFF for x in data]
        elif isinstance(data, (int, long)):
            data = [data & 0xFF]
        else:
            data = [int(x) & 0xFF for x in data]
        return data

    def __init__(self, major=None, minor=None, ce_pin=None, irq_pin=None):
        """Construtor.
        
            major and minor selects SPI port,
            ce_pin is optional GPIO pin number for CE signal
            irq_pin is optional GPIO pin number for IRQ signal"""
        # defaults and miscelaneous initialization
        self.payload_size = 32  # *< Fixed size of payloads
        self.ack_payload_available = False  # *< Whether there is an ack payload waiting
        self.dynamic_payloads_enabled = False  # *< Whether dynamic payloads are enabled.
        self.ack_payload_length = 5  # *< Dynamic size of pending ack payload.
        self.pipe0_reading_address = None  # *< Last address set on pipe 0 for reading.
        self.spidev = None
        self.last_error = 0
        self.auto_ack = 0
        self.address_length = 5

        # If all parameters are available, lets start the radio!
        if major is not None and minor is not None and irq_pin is not None:
            self.begin(major, minor, ce_pin, irq_pin)

    def begin(self, major, minor, ce_pin, irq_pin):
        """Radio initialization, must be called before anything else.
        
            major and minor selects SPI port,
            ce_pin is GPIO pin number for CE signal
            irq_pin is optional GPIO pin number for IRQ signal"""
        # Initialize SPI bus
        if ADAFRUID_BBIO_SPI:
            self.spidev = SPI(major, minor)
            self.spidev.bpw = 8
            try:
                self.spidev.msh = 10000000  # Maximum supported by NRF24L01+
            except IOError:
                pass  # Hardware does not support this speed
        else:
            self.spidev = spidev.SpiDev()
            self.spidev.open(major, minor)
            self.spidev.bits_per_word = 8
            try:
                self.spidev.max_speed_hz = 10000000  # Maximum supported by NRF24L01+
            except IOError:
                pass  # Hardware does not support this speed

        self.spidev.cshigh = False
        self.spidev.mode = 0
        self.spidev.loop = False
        self.spidev.lsbfirst = False
        self.spidev.threewire = False

        # Save pin numbers
        self.ce_pin = ce_pin
        self.irq_pin = irq_pin

        # If CE pin is not used, CE signal must be always high
        if self.ce_pin is not None:
            GPIO.setup(self.ce_pin, GPIO.OUT)
        
        # IRQ pin is optional
        if self.irq_pin is not None:
            GPIO.setup(self.irq_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

        time.sleep(5 / 1000000.0)

        # Reset radio registers
        self.reset()

        # Restore our default PA level
        self.setPALevel(NRF24.PA_MAX)

        # Determine if this is a p or non-p RF24 module and then
        # reset our data rate back to default value. This works
        # because a non-P variant won't allow the data rate to
        # be set to 250Kbps.
        self.p_variant = False  # False for RF24L01 and true for RF24L01P
        if self.setDataRate(NRF24.BR_250KBPS):
            self.p_variant = True

        # Then set the data rate to the slowest (and most reliable) speed supported by all
        # hardware.
        self.setDataRate(NRF24.BR_1MBPS)

        # Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
        # WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
        # sizes must never be used. See documentation for a more complete explanation.
        # This must be done after setDataRate()
        self.setRetries(int('0101', 2), 15)
        # Line bellow will set maximum (4ms) delay
        #self.setRetries(15, 15)

        # Initialize CRC and request 2-byte (16bit) CRC
        self.setCRCLength(NRF24.CRC_16)

        # Disable dynamic payloads, to match dynamic_payloads_enabled setting
        self.write_register(NRF24.DYNPD, 0)

        # Set up default configuration.  Callers can always change it later.
        # This channel should be universally safe and not bleed over into adjacent
        # spectrum.
        self.channel = 76
        self.setChannel(self.channel)

        # Powers up the radio, this can take up to 4.5ms
        # when CE is low radio will be in standby and will initiate
        # reception or transmission very shortly after CE is raised
        # If CE pin is not used, will Power up only on startListening and stopListening
        if self.ce_pin is not None:
            self.powerUp()

        # Reset current status
        # Notice reset and flush is the last thing we do
        self.write_register(NRF24.STATUS, NRF24.RX_DR | NRF24.TX_DS | NRF24.MAX_RT)

        # Flush buffers
        self.flush_rx()
        self.flush_tx()
        self.clear_irq_flags()

    def end(self):
        """ End use of the radio """
        self.ce(0)
        if self.spidev:
            self.powerDown()
            self.spidev.close()
            self.spidev = None

    def startListening(self):
        """ Set radio for reception
        
            Use openReadingPipe to set up reception pipes before listening """
        self.write_register(NRF24.CONFIG, self.read_register(NRF24.CONFIG) | NRF24.PWR_UP | NRF24.PRIM_RX)
        self.flush_tx()
        self.flush_rx()
        self.clear_irq_flags()

        # Restore the pipe0 address, if exists
        if self.pipe0_reading_address:
            self.write_register(self.RX_ADDR_P0, self.pipe0_reading_address)

        # Go!
        self.ce(1)

        # wait for the radio to come up
        if self.ce_pin is None:
            time.sleep(45 / 10000.0) # 4.5 ms
        else:
            time.sleep(130 / 1000000.0) # 130us

    def ce(self, level, pulse=0):
        """ Controls CE pin """
        # CE Pin is optional (but highly recommended)
        if self.ce_pin is not None:
            GPIO.output(self.ce_pin, level)
            if pulse > 0:
                time.sleep(pulse)
                GPIO.output(self.ce_pin, 1 - level)

    def irqWait(self, timeout=30000):
        """ Wait for IRQ pin LOW, timeout in miliseconds """
        if self.irq_pin is None:
            return True
        # TODO: A race condition may occur here. => wait for level?
        if GPIO.input(self.irq_pin) == 0:  # Pin is already down. Packet is waiting?
            return True

        try:
            return GPIO.wait_for_edge(self.irq_pin, GPIO.FALLING, timeout) == 1
        except TypeError:  # Timeout parameter not supported
            return GPIO.wait_for_edge(self.irq_pin, GPIO.FALLING) == 1
        except AttributeError:
            raise RuntimeError("GPIO lib does not support wait_for_edge()")

    def read_register(self, reg, length=1):
        """ Read one or more registers """
        buf = [NRF24.R_REGISTER | (NRF24.REGISTER_MASK & reg)]
        buf += [NRF24.NOP] * max(1, length)

        resp = self.spidev.xfer2(buf)
        if length == 1:
            return resp[1]

        return resp[1:]

    def write_register(self, reg, value):
        """ Write register value """
        buf = [NRF24.W_REGISTER | (NRF24.REGISTER_MASK & reg)]
        buf += self._to_8b_list(value)
        self.spidev.xfer2(buf)

    def write_payload(self, buf):
        """ Writes data to the payload register, automatically padding it
            to match the required length. Returns the number of bytes
            actually written. """
        buf = self._to_8b_list(buf)
        if self.dynamic_payloads_enabled:
            if len(buf) > self.MAX_PAYLOAD_SIZE:
                raise RuntimeError("Dynamic payload is larger than the " +
                                   "maximum size.")
            blank_len = 0
        else:
            if len(buf) > self.payload_size:
                raise RuntimeError("Payload is larger than the fixed payload" +
                                   "size (%d vs. %d bytes)" % (len(buf), self.payload_size))
            blank_len = self.payload_size - len(buf)

        txbuffer = [NRF24.W_TX_PAYLOAD] + buf + ([0x00] * blank_len)
        self.spidev.xfer2(txbuffer)
        return len(txbuffer) - 1

    def read_payload(self, buf, buf_len=-1):
        """ Reads data from the payload register and clears the
            DR bit of the STATUS register. """
        if buf_len < 0:
            buf_len = self.payload_size

        if not self.dynamic_payloads_enabled:
            data_len = min(self.payload_size, buf_len)
            blank_len = self.payload_size - data_len
        else:
            data_len = self.getDynamicPayloadSize()
            blank_len = 0

        txbuffer = [NRF24.R_RX_PAYLOAD] + [NRF24.NOP] * (blank_len + data_len)

        payload = self.spidev.xfer2(txbuffer)
        del buf[:]
        buf += payload[1:data_len + 1]

        self.write_register(NRF24.STATUS, NRF24.RX_DR)

        return data_len

    def flush_rx(self):
        """ Flush RX buffer, return status """
        return self.spidev.xfer2([NRF24.FLUSH_RX])[0]

    def flush_tx(self):
        """ Flush TX buffer, return status """
        return self.spidev.xfer2([NRF24.FLUSH_TX])[0]

    def get_status(self):
        """ Read status register """
        return self.spidev.xfer2([NRF24.NOP])[0]

    def print_status(self, status):
        """ Print decoded status """
        status_str = "0x{0:02x} RX_DR={1:x} TX_DS={2:x} MAX_RT={3:x} RX_P_NO={4:x} TX_FULL={5:x}".format(
            status,
            1 if status & NRF24.RX_DR else 0,
            1 if status & NRF24.TX_DS else 0,
            1 if status & NRF24.MAX_RT else 0,
            ((status >> NRF24.RX_P_NO) & int("111", 2)),
            1 if status & NRF24.TX_FULL else 0)

        self.print_single_status_line("STATUS", status_str)

    def print_observe_tx(self, value):
        """ Print decoded observe_tx register:
        
            lost packets (accumulated) and retransmited packets (last tx) """
        tx_str = "OBSERVE_TX=0x{0:02x}: POLS_CNT={2:x} ARC_CNT={2:x}\r\n".format(
            value,
            (value >> NRF24.PLOS_CNT) & int("1111", 2),
            (value >> NRF24.ARC_CNT) & int("1111", 2))
        self.print_single_status_line("OBSERVE_TX", tx_str)

    def print_byte_register(self, name, reg, qty=1):
        """ Print byte registers """
        registers = ["0x{:0>2x}".format(self.read_register(reg+r)) for r in range(0, qty)]
        self.print_single_status_line(name, " ".join(registers))

    def print_address_register(self, name, reg, qty=1):
        """ Print address register (LSB to MSB) """
        address_registers = ["0x{0:>02x}{1:>02x}{2:>02x}{3:>02x}{4:>02x}".format(
            *self.read_register(reg+r, 5))
            for r in range(qty)]

        self.print_single_status_line(name, " ".join(address_registers))

    def setChannel(self, channel):
        """ Set radio channel (0 to MAX_CHANNEL) """
        if channel < 0 or channel > self.MAX_CHANNEL:
            raise RuntimeError("Channel number out of range")
        self.channel = channel
        self.write_register(NRF24.RF_CH, channel)

    def getChannel(self):
        """ Read channel register """
        return self.read_register(NRF24.RF_CH)

    def setPayloadSize(self, size):
        """ Set payload size """
        self.payload_size = min(max(size, 1), NRF24.MAX_PAYLOAD_SIZE)

    def getPayloadSize(self):
        """ Get payload size """
        return self.payload_size

    def printDetails(self):
        """ Prints register values and other information """
        self.print_status(self.get_status())
        self.print_address_register("RX_ADDR_P0-1", NRF24.RX_ADDR_P0, 2)
        self.print_byte_register("RX_ADDR_P2-5", NRF24.RX_ADDR_P2, 4)
        self.print_address_register("TX_ADDR", NRF24.TX_ADDR)

        self.print_byte_register("RX_PW_P0-6", NRF24.RX_PW_P0, 6)
        self.print_byte_register("EN_AA", NRF24.EN_AA)
        self.print_byte_register("EN_RXADDR", NRF24.EN_RXADDR)
        self.print_byte_register("RF_CH", NRF24.RF_CH)
        self.print_byte_register("RF_SETUP", NRF24.RF_SETUP)
        self.print_byte_register("SETUP_AW", NRF24.SETUP_AW)
        self.print_byte_register("OBSERVE_TX", NRF24.OBSERVE_TX)
        self.print_byte_register("CONFIG", NRF24.CONFIG)
        self.print_byte_register("FIFO_STATUS", NRF24.FIFO_STATUS)
        self.print_byte_register("DYNPD", NRF24.DYNPD)
        self.print_byte_register("FEATURE", NRF24.FEATURE)

        self.print_single_status_line("Data Rate", NRF24.datarate_e_str_P[self.getDataRate()])
        self.print_single_status_line("Model", NRF24.model_e_str_P[self.isPVariant()])
        self.print_single_status_line("CRC Length", NRF24.crclength_e_str_P[self.getCRCLength()])
        self.print_single_status_line("PA Power", NRF24.pa_dbm_e_str_P[self.getPALevel()])

    def stopListening(self):
        """ Stop listenning and set up transmission """
        self.ce(0)
        self.flush_tx()
        self.flush_rx()
        self.clear_irq_flags()

        # Enable TX
        self.write_register(NRF24.CONFIG,
                            (self.read_register(NRF24.CONFIG) | NRF24.PWR_UP) & ~NRF24.PRIM_RX)

        # Enable pipe 0 for auto-ack
        self.write_register(NRF24.EN_RXADDR, self.read_register(NRF24.EN_RXADDR) | 1)

        # wait for the radio to come up
        if self.ce_pin is None:
            time.sleep(45 / 10000.0) # 4.5 ms
        else:
            time.sleep(130 / 1000000.0) # 130us

    def powerDown(self):
        """ Power down radio """
        self.write_register(NRF24.CONFIG, self.read_register(NRF24.CONFIG) & ~ NRF24.PWR_UP)

    def powerUp(self):
        """ Power up radio """
        self.write_register(NRF24.CONFIG, self.read_register(NRF24.CONFIG) | NRF24.PWR_UP)
        time.sleep(4.5e-3)

    def write(self, buf):
        """ Sends buf and wait for end of transmission and acknowledgement
        
            call stopListenning and openWritingPipe before sending
            buf can be a single int or a container of char or int """
        self.last_error = None
        length = self.write_payload(buf)
        self.ce(1)

        sent_at = monotonic()
        packet_time = ((1 + length + self.crc_length + self.address_length) * 8 + 9)/(self.data_rate_bits * 1000.)

        if self.auto_ack != 0:
            packet_time *= 2

        if self.retries != 0 and self.auto_ack != 0:
            timeout = sent_at + (packet_time + self.delay)*self.retries
        else:
            timeout = sent_at + packet_time * 2  # 2 is empiric

        while monotonic() < timeout:
            time.sleep(packet_time)
            status = self.get_status()
            if status & NRF24.TX_DS:
                self.ce(0)
                return True

            if status & NRF24.MAX_RT:
                self.last_error = 'MAX_RT'
                self.ce(0)
                break

        self.ce(0)
        if self.last_error is None:
            self.last_error = 'TIMEOUT'

        self.flush_tx()  # Avoid leaving the payload in tx fifo
        return False

    def startFastWrite(self, buf):
        """ Starts sending of buf but do not wait for end of transmission. CE is left high."""
        self.write_payload(buf)
        self.ce(1)

    def startWrite(self, buf):
        """ Starts sending of buf but do not wait for end of transmission. CE is pulsed."""
        self.write_payload(buf)
        self.ce(1, 10e-6) # Pulse CE to start tranmission

    def getDynamicPayloadSize(self):
        """ Reads the size of received payload when using dynamic payloads """
        return self.spidev.xfer2([NRF24.R_RX_PL_WID, NRF24.NOP])[1]

    def available(self, pipe_num=None, irq_wait=False, irq_timeout=30000):
        """ Tests if there is a reception available
            
            pipe_num should be None or a list. If not None, it will receive information 
            on pipes with available data.
            
            if irq_wait is True, will wait for IRQ line to change from HIGH to LOW
            irq_timeout is the timeout for this wait, in miliseconds """
        status = self.get_status()
        result = False

        # Sometimes the radio specifies that there is data in one pipe but
        # doesn't set the RX flag...
        if status & NRF24.RX_DR or (status & NRF24.RX_P_NO_MASK != NRF24.RX_P_NO_MASK):
            result = True
        else:
            if irq_wait:  # Will use IRQ wait
                if self.irqWait(irq_timeout):  # Do we have a packet?
                    status = self.get_status()  # Seems like we do!
                    if status & NRF24.RX_DR or (status & NRF24.RX_P_NO_MASK != NRF24.RX_P_NO_MASK):
                        result = True

        if pipe_num is not None:
            del pipe_num[:]
            if result:
                pipe_num.append((status & NRF24.RX_P_NO_MASK) >> NRF24.RX_P_NO)

        # Handle ack payload receipt
        if status & NRF24.TX_DS:
            self.write_register(NRF24.STATUS, NRF24.TX_DS)

        return result

    def read(self, buf, buf_len=-1):
        """ Read payload from received packet. Returns != 0 if there are more packets in the FIFO. """
        # Fetch the payload
        self.read_payload(buf, buf_len)

        # was this the last of the data available?
        return self.read_register(NRF24.FIFO_STATUS) & NRF24.RXFIFO_EMPTY

    def clear_irq_flags(self):
        """ Clear flags in status register. """
        self.write_register(NRF24.STATUS, NRF24.RX_DR | NRF24.TX_DS | NRF24.MAX_RT)

    def whatHappened(self):
        """ Read the status & reset the status in one easy call
        
            Returns a dictionary informing tx_ok, tx_fail and rx_ready
            """
        status = self.spidev.xfer2(NRF24.STATUS, NRF24.RX_DR | NRF24.TX_DS | NRF24.MAX_RT)[0]

        # Report to the user what happened
        tx_ok = status & NRF24.TX_DS
        tx_fail = status & NRF24.MAX_RT
        rx_ready = status & NRF24.RX_DR
        return {'tx_ok': tx_ok, "tx_fail": tx_fail, "rx_ready": rx_ready}

    def openWritingPipe(self, address):
        """ Sets tx address 
            
            address is the address in transmited packet (2 to 5 bytes), LSB to MSB
            """
        self.write_register(NRF24.RX_ADDR_P0, address)
        self.write_register(NRF24.TX_ADDR, address)
        if not self.dynamic_payloads_enabled:
            self.write_register(NRF24.RX_PW_P0, self.payload_size)

    def openReadingPipe(self, pipe, address):
        """ Sets rx address for a pipe and enables it for recieving
            
            pipe should be 0 to 5
            address is the address
                for pipe 0 or 1, 2 to 5 bytes LSB to MSB
                for pipes 2 to 5, 1 byte (LSB, MSB cames from pipe 1)
            """
        if pipe >= 6:
            raise RuntimeError("Invalid pipe number")
        if (pipe >= 2 and len(address) > 1) or len(address) > 5:
            raise RuntimeError("Invalid adress length")

        # If this is pipe 0, cache the address.  This is needed because
        # openWritingPipe() will overwrite the pipe 0 address, so
        # startListening() will have to restore it.
        if pipe == 0:
            self.pipe0_reading_address = address

        self.write_register(NRF24.RX_ADDR_P0 + pipe, address)
        if not self.dynamic_payloads_enabled:
            self.write_register(NRF24.RX_PW_P0 + pipe, self.payload_size)

        # Note it would be more efficient to set all of the bits for all open
        # pipes at once.  However, I thought it would make the calling code
        # more simple to do it this way.
        self.write_register(NRF24.EN_RXADDR,
                            self.read_register(NRF24.EN_RXADDR) | (1 << pipe))

    def closeReadingPipe(self, pipe):
        """ Disabe a receiving pipe """
        self.write_register(NRF24.EN_RXADDR,
                            self.read_register(NRF24.EN_RXADDR) & ~(1 << pipe))

    def toggle_features(self):
        """ Enable DUNPD and FEATURE registers on non P variant """
        buf = [NRF24.ACTIVATE, 0x73]
        self.spidev.xfer2(buf)

    def enableDynamicPayloads(self):
        """ Enables dynamic size payloads """
        # First try writing to the features
        self.write_register(NRF24.FEATURE, self.read_register(NRF24.FEATURE) | NRF24.EN_DPL)

        # If it didn't work, the features are not enabled
        if not self.read_register(NRF24.FEATURE):
            # So enable them and try again
            self.toggle_features()
            self.write_register(NRF24.FEATURE, self.read_register(NRF24.FEATURE) | NRF24.EN_DPL)

        # Enable dynamic payload on all pipes
        # Not sure the use case of only having dynamic payload on certain
        # pipes, so the library does not support it.
        self.write_register(NRF24.DYNPD, self.read_register(NRF24.DYNPD) | 0b00111111)

        self.dynamic_payloads_enabled = True

    def enableAckPayload(self):
        """ Enable ack payload and dynamic payload features """
        # First try writing to the features
        self.write_register(NRF24.FEATURE,
                            self.read_register(NRF24.FEATURE) | NRF24.EN_ACK_PAY | NRF24.EN_DPL)

        # If it didn't work, the features are not enabled
        if not self.read_register(NRF24.FEATURE):
            # So enable them and try again
            self.toggle_features()
            self.write_register(NRF24.FEATURE,
                                self.read_register(NRF24.FEATURE) | NRF24.EN_ACK_PAY | NRF24.EN_DPL)

        # Enable dynamic payload on pipes 0 & 1
        self.write_register(NRF24.DYNPD, self.read_register(NRF24.DYNPD) | NRF24.DPL_P1 | NRF24.DPL_P0)

    def writeAckPayload(self, pipe, buf, buf_len):
        """ Write payload for acknowledgement """
        txbuffer = [NRF24.W_ACK_PAYLOAD | (pipe & 0x7)]

        max_payload_size = 32
        data_len = min(buf_len, max_payload_size)
        txbuffer.extend(buf[0:data_len])

        self.spidev.xfer2(txbuffer)

    def isAckPayloadAvailable(self):
        """ Check if there is a payload in a acknowledgement.

            Note: this will clear the ack payload flag. """
        result = self.ack_payload_available
        self.ack_payload_available = False
        return result

    def isPVariant(self):
        """ Returns true if nRF24L01+, False if nRF24L01 """
        return self.p_variant

    def setAutoAck(self, enable):
        """ Enable or disable auto acknoledge for all pipes """
        if enable:
            self.write_register(NRF24.EN_AA, 0x3F)
            self.auto_ack = 0x3f
            if self.self.getCRCLength() == NFR24.CRC_DISABLED:
                self.setCRCLength(NRF24.CRC_8)  # Enhanced Shockburst requires at least 1 byte CRC
        else:
            self.auto_ack = 0
            self.write_register(NRF24.EN_AA, 0)

    def setAutoAckPipe(self, pipe, enable):
        """ Enable or disable auto acknoledge for an specific pipe """
        if pipe <= 6:
            en_aa = self.read_register(NRF24.EN_AA)
            if enable:
                if self.self.getCRCLength() == NFR24.CRC_DISABLED:
                    self.setCRCLength(NRF24.CRC_8)  # Enhanced Shockburst requires at least 1 byte CRC
                en_aa |= 1 << pipe
                self.auto_ack |= 1 << pipe
            else:
                en_aa &= ~1 << pipe
                self.auto_ack &= ~1 << pipe

            self.write_register(NRF24.EN_AA, en_aa)

    def setAddressWidth(self, width):
        """ Set address width (2 to 5 bytes) """
        if width >= 2 and width <= 5:
            self.write_register(NRF24.SETUP_AW, width - 2)
            self.address_width = width

    def testCarrier(self):
        """ Tests if there is a radio signal at current channel. """
        return self.read_register(NRF24.RPD) & 1

    def setPALevel(self, level):
        """ Set transmission level """
        setup = self.read_register(NRF24.RF_SETUP)
        setup &= ~(NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH)

        if level == NRF24.PA_MAX:
            setup |= NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH
        elif level == NRF24.PA_HIGH:
            setup |= NRF24.RF_PWR_HIGH
        elif level == NRF24.PA_LOW:
            setup |= NRF24.RF_PWR_LOW
        elif level == NRF24.PA_MIN:
            pass
        elif level == NRF24.PA_ERROR:
            # On error, go to maximum PA
            setup |= NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH

        self.write_register(NRF24.RF_SETUP, setup)

    def getPALevel(self):
        """ Inform current transmission level """
        power = self.read_register(NRF24.RF_SETUP) & (NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH)
        if power == (NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH):
            return NRF24.PA_MAX
        elif power == NRF24.RF_PWR_HIGH:
            return NRF24.PA_HIGH
        elif power == NRF24.RF_PWR_LOW:
            return NRF24.PA_LOW
        else:
            return NRF24.PA_MIN

    def setDataRate(self, speed):
        """ Set data rate. returns True if success. """
        setup = self.read_register(NRF24.RF_SETUP)
        setup &= ~(NRF24.RF_DR_LOW | NRF24.RF_DR_HIGH)

        if speed == NRF24.BR_250KBPS:
            # Must set the RF_DR_LOW to 1 RF_DR_HIGH (used to be RF_DR) is already 0
            # Making it '10'.
            self.data_rate_bits = 250
            self.data_rate = NRF24.BR_250KBPS
            setup |= NRF24.RF_DR_LOW
        elif speed == NRF24.BR_2MBPS:
            # Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
            # Making it '01'
            self.data_rate_bits = 2000
            self.data_rate = NRF24.BR_2MBPS
            setup |= NRF24.RF_DR_HIGH
        else:
            # 1Mbs
            self.data_rate_bits = 1000
            self.data_rate = NRF24.BR_1MBPS

        self.write_register(NRF24.RF_SETUP, setup)

        # Verify our result
        return self.read_register(NRF24.RF_SETUP) == setup

    def getDataRate(self):
        """ Inform current data rate """
        dr = self.read_register(NRF24.RF_SETUP) & (NRF24.RF_DR_LOW | NRF24.RF_DR_HIGH)
        # Order matters in our case below
        if dr == NRF24.RF_DR_LOW:
            # '10' = 250KBPS
            return NRF24.BR_250KBPS
        elif dr == NRF24.RF_DR_HIGH:
            # '01' = 2MBPS
            return NRF24.BR_2MBPS
        else:
            # '00' = 1MBPS
            return NRF24.BR_1MBPS

    def setCRCLength(self, length):
        """ Set CRC length 
        
            length = CRC_DISABLED, CRC_8 or CRC_16 """
        config = self.read_register(NRF24.CONFIG) & ~(NRF24.EN_CRC | NRF24.CRCO)

        if length == NRF24.CRC_DISABLED:
            self.crc_length = 0
        elif length == NRF24.CRC_8:
            config |= NRF24.EN_CRC
            self.crc_length = 1
        else:
            config |= NRF24.EN_CRC
            config |= NRF24.CRCO
            self.crc_length = 2

        self.write_register(NRF24.CONFIG, config)

    def getCRCLength(self):
        """ Get CRC length 
        
            returns CRC_DISABLED, CRC_8 or CRC_16 """
        result = NRF24.CRC_DISABLED
        config = self.read_register(NRF24.CONFIG) & (NRF24.CRCO | NRF24.EN_CRC)

        if config & NRF24.EN_CRC:
            if config & NRF24.CRCO:
                result = NRF24.CRC_16
            else:
                result = NRF24.CRC_8

        return result

    def disableCRC(self):
        """ Disable CRC """
        disable = self.read_register(NRF24.CONFIG) & ~NRF24.EN_CRC
        self.write_register(NRF24.CONFIG, disable)

    def setRetries(self, delay, count):
        """ Set timeout and number of retries
        
            delay (timeout) 0-15 as per datasheet
            count 0-15 max number of retries (0=disable retries)"""
        self.write_register(NRF24.SETUP_RETR, (delay & 0xf) << NRF24.ARD | (count & 0xf) << NRF24.ARC)
        self.delay = delay * 0.000250
        self.retries = count
        self.max_timeout = (self.payload_size / float(self.data_rate_bits) + self.delay) * self.retries
        self.timeout = (self.payload_size / float(self.data_rate_bits) + self.delay)

    def getRetries(self):
        """ Return current retry configuration. """
        return self.read_register(NRF24.SETUP_RETR)

    def getMaxTimeout(self):
        """ Return current maximum timeout (no ack after all retries). """
        return self.max_timeout

    def getTimeout(self):
        """ Return current timeout for one transmission. """
        return self.timeout

    def reset(self):
        """ Make sure the NRF is in the same state as after power up
            to avoid problems resulting from left over configuration
            from other programs."""
        self.ce(0)
        reset_values = {0: 0x08, 1: 0x3F, 2: 0x03, 3: 0x03, 4: 0x03, 5: 0x02, 6: 0x0e,
                        0x0a: [0xe7, 0xe7, 0xe7, 0xe7, 0xe7],
                        0x0b: [0xc2, 0xc2, 0xc2, 0xc2, 0xc2],
                        0x0c: 0xc3, 0x0d: 0xc4, 0x0e: 0xc5, 0x0f: 0xc6,
                        0x10: [0xe7, 0xe7, 0xe7, 0xe7, 0xe7],
                        0x11: 0, 0x12: 0, 0x13: 0, 0x14: 0, 0x15: 0, 0x16: 0,
                        0x1c: 0, 0x1d: 0}
        for reg, value in reset_values.items():
            self.write_register(reg, value)

        self.flush_rx()
        self.flush_tx()
Esempio n. 5
0
import time

pause = 0.1

chipSelect = "P9_12"
GPIO.setup(chipSelect, GPIO.OUT)
GPIO.output(chipSelect, GPIO.HIGH)

sclk = "P9_11"
GPIO.setup(sclk, GPIO.IN)

spi = SPI(0, 0)
spi.mode = 0

spi.msh = 500000
spi.open(0, 0)

# global count
# count = 0;
#
# def callback_function_print(input_pin):
#   count = count + 1
#   print "Input on pin", input_pin
#
# GPIO.add_event_detect(sclk, GPIO.BOTH, callback=callback_function_print)


def spi_write(num):
    print "Writing " + num + "..."
    GPIO.output(chipSelect, GPIO.LOW)
    print str(spi.xfer2([int(num)]))
Esempio n. 6
0
#OM SPI TE ENABLEN
#config-pin P9.20 spi
#en da me alle pins

from Adafruit_BBIO.SPI import SPI

import Adafruit_BBIO.GPIO as GPIO
import time

spi = SPI(0, 0)  #4 busses, this is bus 0
spi.msh = 10000  #Frequency
spi.bpw = 8  #bits per word
spi.cshigh = False  #true means you select the chip, depends on the chip, here low means active, normally Low for IMU
spi.threewire = False  #if it is true, you just read, otherwise you also send commands
spi.lsbfirst = False  #Least significant bit first (left)
spi.open(0, 0)  #open

#GPIO.setup("P8_11",GPIO.OUT)
#GPIO.output("P8_11",GPIO.HIGH)

try:
    while True:
        res = spi.xfer2([0xFFFF, 0xFFFF])  #deliver two bytes

        res1 = spi.readbytes(2)  #Read 2 bytes
        angle = (res1[0] << 8) | res1[1]  #merge leftbyte and rightbyte
        angle1 = angle & 0x3FFF  #move the first two bits
        angle2 = float(angle1) / 16363 * 360
        print("data is")
        print(angle2)
        time.sleep(.25)
Esempio n. 7
0
class Brightbar:

    #[brightness, blue, green, red]
    pixel_buffer = [POWER, 0, 0, 0] * LEDS_PER_PANEL * NUM_PANELS
    start_clock = None
    animation_time = 20000

    def __init__(self):
        self.init_spi()
        #animation = GifAnimation('gifs/extracted/trippy_39_30x30')
        #animation = SparkleAnimation(None, SparkleAnimation.SPEED_SLOW, [POWER,255,255,255], 1000)
        #animation = SparkleAnimation(None, 2000, [POWER,255,255,255], 1000)
        #animation = LinesAnimation(None, 3000, [POWER,255,255,255], 0)
        animation = RainAnimation(None, .1, [POWER, 0.0, 200.0, 0.0])
        self.animations = [
            SparkleAnimation(None, 2000, [POWER, 255, 255, 255], 1000),
            LinesAnimation(None, 3000, [POWER, 255, 255, 255], 0),
            RainAnimation(None, .1, [POWER, 0.0, 200.0, 0.0])
        ]
        self.render_thread = None

    def init_spi(self):
        logging.debug("Initializing spi...")
        self.spi = SPI(0, 0)  #/dev/spidev1.0

        #   SPI Mode 	Clock Polarity (CPOL/CKP) 	Clock Phase (CPHA) 	Clock Edge (CKE/NCPHA)
        #   0 	        0 	                        0 	                1
        #   1 	        0 	                        1 	                0
        #   2 	        1 	                        0 	                1
        #   3 	        1 	                        1 	                0
        self.spi.mode = 0
        self.spi.msh = SPI_CLOCK_RATE  #this is clock speed setting
        self.spi.open(0, 0)

    def debug_frame(self, data):
        for y in range(PANEL_Y):
            line = str(y) + ": "
            for x in range(PANEL_X):
                offset = (y * PANEL_X + x) * 4
                line += "|" + str(data[offset]) + "," + str(
                    data[offset + 1]) + "," + str(
                        data[offset + 2]) + "," + str(data[offset + 3])
            print line

    #render a full frame
    def render(self):
        #logging.debug("buffer size: " + str(len(self.pixel_buffer)) + " start render: " + str(time.time()))
        start_time = time.time()
        #logging.debug(" start render: " + str(start_time))
        #make a copy of the buffer to work on in case we need to switch the order of bytes
        #data = self.pixel_buffer[:]
        offset = 0
        #the panels run in a snake S shape, so every other line needs to have bytes reversed
        if REVERSE_ALTERNATE_LINES:
            for i in range(0, PANEL_Y):
                if (i % 2) == 0:
                    continue
                offset = i * PANEL_X * 4
                line_length = PANEL_X * 4
                line = data[offset:offset + line_length]
                reversed_line = [0] * line_length
                j = line_length - 4  #start one color from the end, and go backwards through the line
                while j >= 0:
                    reversed_line[line_length - j - 4] = line[j]
                    reversed_line[line_length - j - 3] = line[j + 1]
                    reversed_line[line_length - j - 2] = line[j + 2]
                    reversed_line[line_length - j - 1] = line[j + 3]
                    j = j - 4

                data[offset:offset + PANEL_X * 4] = reversed_line

        #self.write_apa102(data)
        #logging.debug("length of buffer: " + str(len(self.pixel_buffer)))
        #logging.debug(self.pixel_buffer)
        self.write_apa102(self.pixel_buffer)
        end_time = time.time()
        #logging.debug("end render: " + str(end_time) + " elapsed: " + str(end_time - start_time))
        #import pdb
        #pdb.set_trace()

    def write_apa102(self, data):
        #start frame, 32 bits of zero
        self.spi.writebytes([0] * 4)

        #write RGB data
        #chunk the data out in 1024 byte blocks
        for i in range(0, len(data), 1024):
            length = len(data)
            if ((i + 1024) > length):
                #end = length - (i+1024 - length)
                chunk = data[i:]
            else:
                #end = i + 1024
                chunk = data[i:i + 1024]
            self.spi.writebytes(chunk)

        #write footer. This is total numnber of LEDS / 2 bits of 1's
        num_dwords = LEDS_PER_PANEL * NUM_PANELS / 32
        for i in range(num_dwords):
            self.spi.writebytes(
                [0xff, 0x00, 0x00, 0x00]
            )  #the datasheet calls for 1's here, but internet says 0s work better? the fast LED lib does both?

    def clear(self):
        self.pixel_buffer = [POWER, 0, 0, 0] * LEDS_PER_PANEL * NUM_PANELS

    def calculate_fps(self):
        now = time.time()
        delta = now - self.start_clock
        frame_time = delta / self.frame_count
        self.fps = 1 / frame_time
        logging.debug("elapsed seconds: " + str(delta) + " frame count: " +
                      str(self.frame_count) + " current fps: " + str(self.fps))

    def animate(self):

        if self.start_clock == None:
            self.frame_count = 0
            self.start_clock = time.time()

        elapsed_time = time.time() - self.start_clock
        num_animations = int(round(elapsed_time /
                                   (self.animation_time / 1000)))
        current_animation = int(num_animations) % len(self.animations)
        #logging.debug("elapsed time: " + str(elapsed_time) + " num animations:" + str(num_animations) + " current animation:" + str(current_animation))

        animation = self.animations[current_animation]

        frame = animation.get_next_frame()

        if frame == None:
            time.sleep(.001)
            return

        self.frame_count = self.frame_count + 1

        if self.frame_count % 100 == 0:
            self.calculate_fps()

        line_length = animation.width * 4

        for y in range(animation.height):
            frame_offset = y * line_length
            line = frame[frame_offset:frame_offset + line_length]
            buffer_offset = ((
                (int(animation.destination_y_offset) + y) * PANEL_X) +
                             int(animation.destination_x_offset)) * 4
            self.pixel_buffer[buffer_offset:buffer_offset + line_length] = line

    def render_loop(self):
        try:
            while 1:
                brightbar.animate()
                brightbar.render()
        except:
            print_exception(*sys.exc_info())

    def start(self):
        if STARTUP_SEQUENCE:
            startup_sequence(self)
        if self.render_thread == None:
            self.render_thread = threading.Thread(name="RenderThread",
                                                  target=self.render_loop)
        self.render_thread.start()

    def stop(self):
        self.render_thread.stop()
Esempio n. 8
0
class Enrf24():
    __bus = None
    __device = None

    __rf_status = 0
    __rf_addr_width = 5
    __lastirq = None
    __readpending = 0
    __lastTXfailed = False
    __txbuf_len = 0
    __txbuf = []

    # Internal IRQ handling
    __ENRF24_IRQ_TX = 0x20
    __ENRF24_IRQ_RX = 0x40
    __ENRF24_IRQ_TXFAILED = 0x10
    __ENRF24_IRQ_MASK = 0x70

    __ENRF24_CFGMASK_IRQ = 0

    def __init__(self, bus, device, cePin, csnPin, irqPin):
        self.__bus = bus
        self.__device = device
        self.cePin = cePin
        self.csnPin = csnPin
        self.irqPin = irqPin
        self.spi = SPI(self.__bus, self.__device)
        self.spi.msh = 10000
        self.spi.bpw = 8  # bits/word
        self.spi.threewire = False
        self.spi.lsbfirst = False
        self.spi.mode = 0
        self.spi.cshigh = False
        self.spi.open(0, 0)
        self.last_payload = ""

    def begin(self, datarate=1000000, channel=0):  # Specify bitrate & channel
        GPIO.setup(self.cePin, GPIO.OUT)
        GPIO.output(self.cePin, GPIO.LOW)
        GPIO.setup(self.csnPin, GPIO.OUT)
        GPIO.output(self.csnPin, GPIO.HIGH)
        GPIO.setup(self.irqPin,
                   GPIO.IN)  # No pullups; the transceiver provides this!
        self.spi.writebytes([0x00
                             ])  # Strawman transfer, fixes USCI issue on G2553
        #self.spi.writebytes([0xCF, 0x00])

        # Is the transceiver present/alive?
        if (not self.__isAlive()):
            return False  # Nothing more to do here...

        # Wait 100ms for module to initialize
        time.sleep(0.1)

        # Init certain registers
        self.__writeReg(RF24_CONFIG,
                        0x00)  # Deep power-down, everything disabled
        self.__writeReg(RF24_EN_AA, 0x03)
        self.__writeReg(RF24_EN_RXADDR, 0x03)
        self.__writeReg(RF24_RF_SETUP, 0x00)
        self.__writeReg(RF24_STATUS, self.__ENRF24_IRQ_MASK)  # Clear all IRQs
        self.__writeReg(RF24_DYNPD, 0x03)
        self.__writeReg(RF24_FEATURE,
                        RF24_EN_DPL)  # Dynamic payloads enabled by default

        # Set all parameters
        if (channel > 125):
            channel = 125

        self.deepsleep()
        self.__issueCmd(RF24_FLUSH_TX)
        self.__issueCmd(RF24_FLUSH_RX)
        self.__readpending = 0
        self.__irq_clear(self.__ENRF24_IRQ_MASK)
        self.setChannel(channel)
        self.setSpeed(datarate)
        self.setTXpower()
        self.setAutoAckParams()
        self.setAddressLength(self.__rf_addr_width)
        self.setCRC(True)  # Default = CRC on, 8-bit
        return True

    def end(self):  # Shut it off, clear the library's state
        self.__txbuf_len = 0
        self.__rf_status = 0
        self.__rf_addr_width = 5

        if (not self.__isAlive()):
            return

        self.deepsleep()
        self.__issueCmd(RF24_FLUSH_TX)
        self.__issueCmd(RF24_FLUSH_RX)
        self.readpending = 0
        self.__irq_clear(self.__ENRF24_IRQ_MASK)
        GPIO.output(self.cePin, GPIO.LOW)
        GPIO.output(self.csnPin, GPIO.HIGH)

    # I/O
    def available(
            self,
            checkIrq=False):  # Check if incoming data is ready to be read
        #print(checkIrq and GPIO.input(self.irqPin) and self.__readpending == 0)
        if (checkIrq and GPIO.input(self.irqPin) and self.__readpending == 0):
            return False
        self.__maintenanceHook()
        if ((not self.__readReg(RF24_FIFO_STATUS)) & RF24_RX_EMPTY):
            return True

        if (self.__readpending):
            return True

        return False

    def read(self, maxlen=32):  # Read contents of RX buffer up to
        buf = None
        plwidth = 0
        res = ""

        self.__maintenanceHook()
        self.__readpending = 0
        if ((self.__readReg(RF24_FIFO_STATUS) & RF24_RX_EMPTY) or maxlen < 1):
            return 0

        plwidth = self.__readCmdPayload(RF24_R_RX_PL_WID, plwidth, 1, 1)[0]
        buf = self.__readCmdPayload(RF24_R_RX_PAYLOAD, buf, plwidth, maxlen)
        if (self.__irq_derivereason() and self.__ENRF24_IRQ_RX):
            self.__irq_clear(self.__ENRF24_IRQ_RX)

        for i in buf:
            res += chr(i)

        self.last_payload = res
        return res  # 'maxlen' bytes, return final length.
        # 'inbuf' should be maxlen+1 since a
        # null '\0' is tacked onto the end.

    def getMessage(self):
        return self.last_payload

    def write(self, data):
        if (self.__txbuf_len == 32
            ):  # If we're trying to stuff an already-full buffer...
            self.flush()  # Blocking OTA TX

        txbuf = []
        data = list(data)
        for i in data:
            txbuf.append(ord(i))
        self.__txbuf = txbuf
        self.__txbuf_len = len(txbuf)

        return 1

    def flush(self):  # Force transmission of TX ring buffer contents
        reg = None
        addrbuf = []
        enaa = False
        origrx = False

        if (self.__txbuf_len == 0):
            return  # Zero-length buffer?  Nothing to send!

        reg = self.__readReg(RF24_FIFO_STATUS)
        if (
                reg & BITS["BIT5"]
        ):  # RF24_TX_FULL #define is BIT0, which is not the correct bit for FIFO_STATUS.
            # Seen this before with a user whose CE pin was messed up.
            self.__issueCmd(RF24_FLUSH_TX)
            self.__txbuf_len = 0
            return  # Should never happen, but nonetheless a precaution to take.

        self.__maintenanceHook()

        if (reg & RF24_TX_REUSE):
            # If somehow TX_REUSE is enabled, we need to flush the TX queue before loading our new payload.
            self.__issueCmd(RF24_FLUSH_TX)

        if (self.__readReg(RF24_EN_AA) & 0x01
                and (self.__readReg(RF24_RF_SETUP) & 0x28) != 0x20):
            # AutoACK enabled, must write TX addr to RX pipe#0
            # Note that 250Kbps doesn't support auto-ack, so we check RF24_RF_SETUP to verify that.
            enaa = True
            self.__readTXaddr(addrbuf)
            self.__writeRXaddrP0(addrbuf)

        reg = self.__readReg(RF24_CONFIG)
        if (not (reg & RF24_PWR_UP)):
            #digitalWrite(_cePin, HIGH);  // Workaround for SI24R1 knockoff chips
            self.__writeReg(
                RF24_CONFIG, self.__ENRF24_CFGMASK_IRQ
                | self.__ENRF24_CFGMASK_CRC(reg) | RF24_PWR_UP)
            time.sleep(.05)  # 5ms delay required for nRF24 oscillator start-up
            #digitalWrite(_cePin, LOW);

        if (reg & RF24_PRIM_RX):
            origrx = True
            GPIO.output(self.cePin, GPIO.LOW)
            self.__writeReg(
                RF24_CONFIG, self.__ENRF24_CFGMASK_IRQ
                | self.__ENRF24_CFGMASK_CRC(reg) | RF24_PWR_UP)

        self.__txbuf = self.__issueCmdPayload(RF24_W_TX_PAYLOAD, self.__txbuf)
        GPIO.output(self.cePin, GPIO.HIGH)
        time.sleep(0.1)
        GPIO.output(self.cePin, GPIO.LOW)

        self.__txbuf_len = 0  # Reset TX ring buffer

        while (GPIO.input(self.irqPin)):  # Wait until IRQ fires
            pass

        # IRQ fired
        self.__maintenanceHook()  # Handle/clear IRQ

        # Purge Pipe#0 address (set to module's power-up default)
        if (enaa):
            addrbuf = [0xE7, 0xE7, 0xE7, 0xE7, 0xE7]
            self.__writeRXaddrP0(addrbuf)

        # If we were in RX mode before writing, return back to RX mode.
        if (origrx):
            self.enableRX()

    def purge(
            self):  # Ignore TX ring buffer contents, return ring pointer to 0.
        self.__txbuf_len = 0

    # Power-state related stuff-
    def radioState(
        self
    ):  # Evaluate current state of the transceiver (see ENRF24_STATE_* defines)
        if not self.__isAlive():
            return ENRF24_STATE_NOTPRESENT

        counter = 15
        reg = self.__readReg(RF24_CONFIG)
        if reg == 0:
            while reg == 0 and counter < 15:
                reg = self.__readReg(RF24_CONFIG)
                counter += 1

        if (not (reg & RF24_PWR_UP)):
            return ENRF24_STATE_DEEPSLEEP

        # At this point it's either Standby-I, II or PRX.
        if (reg & RF24_PRIM_RX):
            if (GPIO.input(self.cePin)):
                return ENRF24_STATE_PRX
            # PRIM_RX=1 but CE=0 is a form of idle state.
            return ENRF24_STATE_IDLE

        # Check if TX queue is empty, if so it's idle, if not it's PTX.
        if (self.__readReg(RF24_FIFO_STATUS) & RF24_TX_EMPTY):
            return ENRF24_STATE_IDLE
        return ENRF24_STATE_PTX

    def printRadioState(self):
        status = self.radioState()
        sys.stdout.write("Enrf24 radio transceiver status: ")
        if status == ENRF24_STATE_NOTPRESENT:
            print("NO TRANSCEIVER PRESENT")

        elif status == ENRF24_STATE_DEEPSLEEP:
            print("DEEP SLEEP <1uA power consumption")

        elif status == ENRF24_STATE_IDLE:
            print("IDLE module powered up w/ oscillators running")

        elif status == ENRF24_STATE_PTX:
            print("Actively Transmitting")

        elif status == ENRF24_STATE_PRX:
            print("Receive Mode")

        else:
            print("UNKNOWN STATUS CODE")

    def printStatus(self):
        status = self.__readReg(RF24_STATUS)
        data_ready = str(hex(status & 0x40))
        data_sent = str(hex(status & 0x20))
        max_tx_retries = str(hex(status & 0x10))

        if status & 0x0E == 0x0E:
            rx_pipe_no = "RX FIFO Empty"
        elif status & 0x02 == 0x02:
            rx_pipe_no = 1
        elif status & 0x04 == 0x04:
            rx_pipe_no = 2
        elif status & 0x06 == 0x06:
            rx_pipe_no = 3
        elif status & 0x08 == 0x08:
            rx_pipe_no = 4
        elif status & 0x0A == 0x0A:
            rx_pipe_no = 5
        elif ~status & 0x0E:
            rx_pipe_no = 0
        else:
            rx_pipe_no = "Error"

        rx_pipe_no = str(rx_pipe_no)
        tx_fifo_full = str(status & 0x01)

        status = str(hex(status))

        sys.stdout.write("STATUS=")
        sys.stdout.write(status)
        sys.stdout.write("\tRX_DR=")
        sys.stdout.write(data_ready)
        sys.stdout.write(" TX_DS=")
        sys.stdout.write(data_sent)
        sys.stdout.write(" MAX_RT=")
        sys.stdout.write(max_tx_retries)
        sys.stdout.write(" RX_P_NO=")
        sys.stdout.write(rx_pipe_no)
        sys.stdout.write(" TX_FULL=")
        print(tx_fifo_full)
        print("")

    def printDetails(self):
        self.printStatus()

        buf = []
        sys.stdout.write("RX_ADDR_P0=")
        buf = self.__readRegMultiLSB(RF24_RX_ADDR_P0, buf,
                                     self.__rf_addr_width)
        for i in buf:
            sys.stdout.write(hex(i) + " ")
        print("")
        sys.stdout.write("RX_ADDR_P1=")
        buf = self.__readRegMultiLSB(RF24_RX_ADDR_P1, buf,
                                     self.__rf_addr_width)
        for i in buf:
            sys.stdout.write(hex(i) + " ")
        print("")
        sys.stdout.write("RX_ADDR_P2=")
        buf = self.__readRegMultiLSB(RF24_RX_ADDR_P2, buf,
                                     self.__rf_addr_width)
        for i in buf:
            sys.stdout.write(hex(i) + " ")
        print("")
        sys.stdout.write("RX_ADDR_P3=")
        buf = self.__readRegMultiLSB(RF24_RX_ADDR_P3, buf,
                                     self.__rf_addr_width)
        for i in buf:
            sys.stdout.write(hex(i) + " ")
        print("")
        sys.stdout.write("RX_ADDR_P4=")
        buf = self.__readRegMultiLSB(RF24_RX_ADDR_P4, buf,
                                     self.__rf_addr_width)
        for i in buf:
            sys.stdout.write(hex(i) + " ")
        print("")
        sys.stdout.write("RX_ADDR_P5=")
        buf = self.__readRegMultiLSB(RF24_RX_ADDR_P5, buf,
                                     self.__rf_addr_width)
        for i in buf:
            sys.stdout.write(hex(i) + " ")
        print("")
        print("")

        sys.stdout.write("TX_ADDR=")
        buf = self.__readRegMultiLSB(RF24_TX_ADDR, buf, self.__rf_addr_width)
        for i in buf:
            sys.stdout.write(hex(i) + " ")
        print("")
        print("")

        sys.stdout.write("RX_PW_P0=")
        print(hex(self.__readReg(RF24_RX_PW_P0)))

        sys.stdout.write("RX_PW_P1=")
        print(hex(self.__readReg(RF24_RX_PW_P1)))

        sys.stdout.write("RX_PW_P2=")
        print(hex(self.__readReg(RF24_RX_PW_P2)))

        sys.stdout.write("RX_PW_P3=")
        print(hex(self.__readReg(RF24_RX_PW_P3)))

        sys.stdout.write("RX_PW_P4=")
        print(hex(self.__readReg(RF24_RX_PW_P4)))

        sys.stdout.write("RX_PW_P5=")
        print(hex(self.__readReg(RF24_RX_PW_P5)))
        print("")

        sys.stdout.write("EN_AA=")
        print(bin(self.__readReg(RF24_EN_AA)))

        sys.stdout.write("EN_RXADDR=")
        print(bin(self.__readReg(RF24_EN_RXADDR)))

        sys.stdout.write("RF_CH=")
        print(hex(self.__readReg(RF24_RF_CH)))

        sys.stdout.write("RF_SETUP=")
        print(bin(self.__readReg(RF24_RF_SETUP)))

        sys.stdout.write("CONFIG=")
        print(bin(self.__readReg(RF24_CONFIG)))

        sys.stdout.write("DYNPD=")
        print(bin(self.__readReg(RF24_DYNPD)))

        sys.stdout.write("FEATURE=")
        print(bin(self.__readReg(RF24_FEATURE)))
        print("")

        sys.stdout.write("Data Rate=")
        print(self.getSpeed())

        sys.stdout.write("CRC Length=")
        print(self.getCRC())

        sys.stdout.write("PA Power=")
        print(self.getTXpower())

    def deepsleep(self):  # Enter POWERDOWN mode, ~0.9uA power consumption
        reg = self.__readReg(RF24_CONFIG)
        if (reg & (RF24_PWR_UP | RF24_PRIM_RX)):
            self.__writeReg(
                RF24_CONFIG,
                self.__ENRF24_CFGMASK_IRQ | self.__ENRF24_CFGMASK_CRC(reg))

        GPIO.output(self.cePin, GPIO.LOW)

    def enableRX(self):  # Enter PRX mode (~14mA)
        reg = self.__readReg(RF24_CONFIG)
        self.__writeReg(
            RF24_CONFIG, self.__ENRF24_CFGMASK_IRQ
            | self.__ENRF24_CFGMASK_CRC(reg) | RF24_PWR_UP | RF24_PRIM_RX)
        self.__writeReg(RF24_RX_PW_P0, 0x20)
        self.__writeReg(RF24_RX_PW_P1, 0x20)
        GPIO.output(self.cePin, GPIO.HIGH)

        if (
                not (reg & RF24_PWR_UP)
        ):  # Powering up from deep-sleep requires 5ms oscillator start delay
            time.sleep(0.05)

    def disableRX(self):  # Disable PRX mode (PRIM_RX bit in CONFIG register)
        # Note this won't necessarily push the transceiver into deep sleep, but rather
        # an idle standby mode where its internal oscillators are ready & running but
        # the RF transceiver PLL is disabled.  ~26uA power consumption.
        GPIO.output(self.cePin, GPIO.LOW)

        reg = self.__readReg(RF24_CONFIG)
        if (
                reg & RF24_PWR_UP
        ):  # Keep us in standby-I if we're coming from RX mode, otherwise stay
            # in deep-sleep if we call this while already in PWR_UP=0 mode.

            self.__writeReg(
                RF24_CONFIG, self.__ENRF24_CFGMASK_IRQ
                | self.__ENRF24_CFGMASK_CRC(reg) | RF24_PWR_UP)
        else:
            self.__writeReg(
                RF24_CONFIG,
                self.__ENRF24_CFGMASK_IRQ | self.__ENRF24_CFGMASK_CRC(reg))

    # Custom tweaks to RF parameters, packet parameters
    def autoAck(self,
                onoff=True
                ):  # Enable/disable auto-acknowledgements (enabled by default)
        reg = self.__readReg(RF24_EN_AA)
        if (onoff):
            if (not (reg & 0x01) or not (reg & 0x02)):
                self.__writeReg(RF24_EN_AA, 0x03)

        else:
            if (reg & 0x03):
                self.__writeReg(RF24_EN_AA, 0x00)

    def setChannel(self, channel):
        if (channel > 125):
            channel = 125
        self.__writeReg(RF24_RF_CH, channel)

    def setTXpower(
            self,
            dBm=0
    ):  # Only a few values supported by this (0, -6, -12, -18 dBm)
        reg = self.__readReg(
            RF24_RF_SETUP) & 0xF8  # preserve RF speed settings
        pwr = 0x06
        if (dBm >= 7):
            pwr = 0x07
        if (dBm < 0):
            pwr = 0x04
        if (dBm < -6):
            pwr = 0x02
        if (dBm < -12):
            pwr = 0x00
        self.__writeReg(RF24_RF_SETUP, reg | pwr)

    def setSpeed(self, rfspeed):  # Set 250000, 1000000, 2000000 speeds.
        reg = self.__readReg(
            RF24_RF_SETUP) & 0xD7  # preserve RF power settings
        spd = 0x01
        if (rfspeed < 2000000):
            spd = 0x00
        if (rfspeed < 1000000):
            spd = 0x04
        self.__writeReg(RF24_RF_SETUP, reg | (spd << 3))

    def setCRC(self,
               onoff,
               crc16bit=False):  # Enable/disable CRC usage inside nRF24's
        # hardware packet engine, specify 8 or
        # 16-bit CRC.
        crcbits = 0

        reg = self.__readReg(
            RF24_CONFIG) & 0xF3  # preserve IRQ mask, PWR_UP/PRIM_RX settings
        if (onoff):
            crcbits |= RF24_EN_CRC
        if (crc16bit):
            crcbits |= RF24_CRCO
        self.__writeReg(RF24_CONFIG, (reg | crcbits))

    # Set AutoACK retry count, timeout params (0-15, 250-4000 respectively)
    def setAutoAckParams(self, autoretry_count=15, autoretry_timeout=2000):
        setup_retr = 0

        setup_retr = autoretry_count & 0x0F
        autoretry_timeout -= 250
        setup_retr |= ((autoretry_timeout / 250) & 0x0F) << 4
        self.__writeReg(RF24_SETUP_RETR, setup_retr)

    # Protocol addressing -- receive, transmit addresses
    def setAddressLength(self,
                         len):  # Valid parameters = 3, 4 or 5.  Defaults to 5.
        if (len < 3):
            len = 3
        if (len > 5):
            len = 5

        self.__writeReg(RF24_SETUP_AW, len - 2)
        self.__rf_addr_width = len

    def setRXaddress(self, rxaddr):  # 3-5 byte RX address loaded into pipe#1
        self.__writeRegMultiLSB(RF24_RX_ADDR_P1, rxaddr)

    def setTXaddress(
            self, txaddr):  # 3-5 byte TX address loaded into TXaddr register
        self.__writeRegMultiLSB(RF24_TX_ADDR, txaddr)

    # Miscellaneous feature
    def rfSignalDetected(
        self
    ):  # Read RPD register to determine if transceiver has presently detected an RF signal
        # of -64dBm or greater.  Only works in PRX (enableRX()) mode.
        rpd = self.__readReg(RF24_RPD)
        return rpd

    # Query current parameters
    def getChannel(self):
        return self.__readReg(RF24_RF_CH)

    def getSpeed(self):
        reg = self.__readReg(RF24_RF_SETUP) & 0x28

        if (reg == 0x00):
            return 1000000
        elif (reg == 0x08):
            return 2000000
        elif (reg == 0x20):
            return 250000
        else:
            return 0

    def getTXpower(self):
        reg = self.__readReg(RF24_RF_SETUP) & 0x07

        if (reg & 0x01):
            return 7  # SI24R1-only +7dBm mode
        elif (reg == 0x02):
            return -12
        elif (reg == 0x04):
            return -6
        elif (reg == 0x06):
            return 0
        else:
            return -18

    def getAddressLength(self):
        return self.__rf_addr_width

    def getRXaddress(self):
        buf = []
        buf = self.__readRegMultiLSB(RF24_RX_ADDR_P1, buf,
                                     self.__rf_addr_width)
        return buf

    def getTXaddress(self):
        buf = []
        buf = self.__readRegMultiLSB(RF24_TX_ADDR, buf, rf_addr_width)
        return buf

    def getAutoAck(self):
        reg = self.__readReg(RF24_EN_AA)

        if (reg):
            return True
        else:
            return False

    def getCRC(self):
        reg = self.__readReg(RF24_CONFIG) & 0x0C

        if (reg == 0x08):
            return 8
        elif (reg == 0x0C):
            return 16
        else:
            return 0

    def __readReg(self, addr):
        GPIO.output(self.csnPin, GPIO.LOW)
        result = self.spi.xfer2([(RF24_R_REGISTER | addr), RF24_NOP])
        self.__rf_status = result[0]
        GPIO.output(self.csnPin, GPIO.HIGH)
        return result[1]

    def __readRegMultiLSB(self, addr, buf, length):
        txbuf = [(RF24_R_REGISTER | addr)]
        for i in range(length):
            txbuf.append(RF24_NOP)
        GPIO.output(self.csnPin, GPIO.LOW)
        buf = self.spi.xfer2(txbuf)
        self.__rf_status = buf[0]
        status = []
        for i in range(1, len(buf) + 1):
            status.append(buf[-i])
        status.pop()
        GPIO.output(self.csnPin, GPIO.HIGH)
        return status

    def __writeReg(self, addr, val):
        GPIO.output(self.csnPin, GPIO.LOW)
        res = self.spi.xfer2([(RF24_W_REGISTER | addr), val])
        GPIO.output(self.csnPin, GPIO.HIGH)

    def __writeRegMultiLSB(self, addr, buf):
        txbuf = [(RF24_W_REGISTER | addr)]
        for i in range(1, len(buf) + 1):
            txbuf.append(buf[-i])
        GPIO.output(self.csnPin, GPIO.LOW)
        status = self.spi.xfer2(txbuf)
        GPIO.output(self.csnPin, GPIO.HIGH)

    def __issueCmd(self, cmd):
        GPIO.output(self.csnPin, GPIO.LOW)
        self.spi.writebytes([cmd])
        GPIO.output(self.csnPin, GPIO.HIGH)

    def __readCmdPayload(self, cmd, buf, length, maxlen):
        GPIO.output(self.csnPin, GPIO.LOW)
        messg = []
        txbuf = [cmd]
        for i in range(maxlen):
            txbuf.append(RF24_NOP)
        buf = self.spi.xfer2(
            txbuf)  # Beyond maxlen bytes, just discard the remaining data.
        self.__rf_status = buf[0]
        for i in range(1, length + 1):
            messg.append(buf[i])
        GPIO.output(self.csnPin, GPIO.HIGH)
        return messg

    def __issueCmdPayload(self, cmd, buf):
        payload = []
        payload.append(cmd)
        for i in buf:
            payload.append(i)
        GPIO.output(self.csnPin, GPIO.LOW)
        res = self.spi.xfer2(payload)
        GPIO.output(self.csnPin, GPIO.HIGH)

    def __irq_getreason(self):
        self.__lastirq = self.__readReg(RF24_STATUS) & self.__ENRF24_IRQ_MASK

    def __irq_derivereason(
            self
    ):  # Get IRQ status from rf_status w/o querying module over SPI.
        self.__lastirq = self.__rf_status & self.__ENRF24_IRQ_MASK

    def __irq_clear(self, irq):
        self.__writeReg(RF24_STATUS, (irq & self.__ENRF24_IRQ_MASK))

    def __isAlive(self):
        self.spi.writebytes([0x00])
        aw = self.__readReg(RF24_SETUP_AW)
        return ((aw & 0xFC) == 0x00 and (aw & 0x03) != 0x00)

    def __readTXaddr(self, buf):
        self.__readRegMultiLSB(RF24_TX_ADDR, buf, self.__rf_addr_width)

    def __writeRXaddrP0(self, buf):
        self.__writeRegMultiLSB(RF24_RX_ADDR_P0, buf)

    def __maintenanceHook(
        self
    ):  # Handles IRQs and purges RX queue when erroneous contents exist.
        i = 0

        self.__irq_getreason()

        if (self.__lastirq & self.__ENRF24_IRQ_TXFAILED):
            self.__lastTXfailed = True
            self.__issueCmd(RF24_FLUSH_TX)
            self.__irq_clear(self.__ENRF24_IRQ_TXFAILED)

        if (self.__lastirq & self.__ENRF24_IRQ_TX):
            self.__lastTXfailed = False
            self.__irq_clear(self.__ENRF24_IRQ_TX)

        if (self.__lastirq & self.__ENRF24_IRQ_RX):
            if ((not self.__readReg(RF24_FIFO_STATUS))
                    & RF24_RX_FULL):  # Don't feel it's necessary
                # to be notified of new
                # incoming packets if the RX
                # queue is full.
                self.__irq_clear(self.__ENRF24_IRQ_RX)

        # Check if RX payload is 0-byte or >32byte (erroneous conditions)
        # Also check if data was received on pipe#0, which we are ignoring.
        # The reason for this is pipe#0 is needed for receiving AutoACK acknowledgements,
        # its address gets reset to the module's default and we do not care about data
        # coming in to that address...

            i = self.__readCmdPayload(RF24_R_RX_PL_WID, i, 1, 1)[0]

            if (i == 0 or i > 32 or ((self.__rf_status & 0x0E) >> 1) == 0):
                # Zero-width RX payload is an error that happens a lot
                # with non-AutoAck, and must be cleared with FLUSH_RX.
                # Erroneous >32byte packets are a similar phenomenon.
                self.__issueCmd(RF24_FLUSH_RX)
                self.__irq_clear(self.__ENRF24_IRQ_RX)
                self.__readpending = 0
            else:
                self.__readpending = 1

            # Actual scavenging of RX queues is performed by user-directed use of read().

    def __ENRF24_CFGMASK_CRC(self, a):
        return (a & (RF24_EN_CRC | RF24_CRCO))
Esempio n. 9
0
class NRF24:
    MAX_CHANNEL = 127
    MAX_PAYLOAD_SIZE = 32

    # PA Levels
    PA_MIN = 0x00
    PA_LOW = 0x01
    PA_HIGH = 0x02
    PA_MAX = 0x03
    PA_ERROR = 0x04

    # Bit rates
    BR_1MBPS = 0
    BR_2MBPS = 1
    BR_250KBPS = 2

    # CRC
    CRC_DISABLED = 0x0
    CRC_8 = 0x02
    CRC_16 = 0x04
    CRC_ENABLED = 0x08

    EN_CRC = 0x08
    CRCO = 0x04

    # Registers
    CONFIG = 0x00
    EN_AA = 0x01
    EN_RXADDR = 0x02
    SETUP_AW = 0x03
    SETUP_RETR = 0x04
    RF_CH = 0x05
    RF_SETUP = 0x06
    STATUS = 0x07
    OBSERVE_TX = 0x08
    RPD = 0x09
    RX_ADDR_P0 = 0x0A
    RX_ADDR_P1 = 0x0B
    RX_ADDR_P2 = 0x0C
    RX_ADDR_P3 = 0x0D
    RX_ADDR_P4 = 0x0E
    RX_ADDR_P5 = 0x0F
    TX_ADDR = 0x10
    RX_PW_P0 = 0x11
    RX_PW_P1 = 0x12
    RX_PW_P2 = 0x13
    RX_PW_P3 = 0x14
    RX_PW_P4 = 0x15
    RX_PW_P5 = 0x16
    FIFO_STATUS = 0x17
    DYNPD = 0x1C
    FEATURE = 0x1D

    # Bit Mnemonics */
    MASK_RX_DR = 0x40
    MASK_TX_DS = 0x20
    MASK_MAX_RT = 0x10

    PWR_UP = 0x02
    PRIM_RX = 0x01
    PLL_LOCK = 0x10
    RX_DR = 0x40
    TX_DS = 0x20
    MAX_RT = 0x10
    TX_FULL = 0x01

    EN_DPL = 0x04
    EN_ACK_PAY = 0x02
    EN_DYN_ACK = 0x01

    # Shift counts
    ARD = 4
    ARC = 0
    PLOS_CNT = 4
    ARC_CNT = 0
    RX_P_NO = 1

    TX_REUSE = 6
    FIFO_FULL = 5
    TX_EMPTY = 4
    RX_FULL = 1
    RX_EMPTY = 0

    DPL_P5 = 5
    DPL_P4 = 4
    DPL_P3 = 3
    DPL_P2 = 2
    DPL_P1 = 1
    DPL_P0 = 0

    #Masks
    RX_P_NO_MASK = 0x0E

    # Instruction Mnemonics
    R_REGISTER = 0x00
    W_REGISTER = 0x20
    REGISTER_MASK = 0x1F
    ACTIVATE = 0x50
    R_RX_PL_WID = 0x60
    R_RX_PAYLOAD = 0x61
    W_TX_PAYLOAD = 0xA0
    W_ACK_PAYLOAD = 0xA8
    FLUSH_TX = 0xE1
    FLUSH_RX = 0xE2
    REUSE_TX_PL = 0xE3
    NOP = 0xFF

    # Non-P omissions
    LNA_HCURR = 0x01
    LNA_ON = 1
    LNA_OFF = 0

    # P model bit Mnemonics
    RF_DR_LOW = 0x20
    RF_DR_HIGH = 0x08
    RF_PWR_LOW = 0x02
    RF_PWR_HIGH = 0x04

    datarate_e_str_P = ["1MBPS", "2MBPS", "250KBPS"]
    model_e_str_P = ["nRF24L01", "nRF24l01+"]
    crclength_e_str_P = ["Disabled", "", "8 bits", "", "16 bits"]
    pa_dbm_e_str_P = ["PA_MIN", "PA_LOW", "PA_HIGH", "PA_MAX"]

    @staticmethod
    def print_single_status_line(name, value):
        print("{0:<16}= {1}".format(name, value))

    @staticmethod
    def _to_8b_list(data):
        """Convert an arbitray iteratable or single int to a list of ints
            where each int is smaller than 256."""
        if isinstance(data, str):
            data = [ord(x) for x in data]
        elif isinstance(data, (int, long)):
            data = [data]
        else:
            data = [int(x) for x in data]

        #for byte in data:
        #    if byte < 0 or byte > 255:
        #        raise RuntimeError("Value %d is larger than 8 bits" % byte)
        return data

    def __init__(self, major=None, minor=None, ce_pin=None, irq_pin=None):
        self.ce_pin = "P9_15"
        self.irq_pin = "P9_16"
        self.channel = 76
        self.data_rate = NRF24.BR_1MBPS
        self.data_rate_bits = 1000
        self.p_variant = False  # False for RF24L01 and true for RF24L01P
        self.payload_size = 5  # *< Fixed size of payloads
        self.ack_payload_available = False  # *< Whether there is an ack payload waiting
        self.dynamic_payloads_enabled = False  # *< Whether dynamic payloads are enabled.
        self.ack_payload_length = 5  # *< Dynamic size of pending ack payload.
        self.pipe0_reading_address = None  # *< Last address set on pipe 0 for reading.
        self.spidev = None
        self.last_error = 0
        self.crc_length = 0
        self.auto_ack = 0x3F
        self.address_length = 5

        # If all parameters are available, lets start the radio!
        if major is not None and minor is not None and irq_pin is not None:
            self.begin(major, minor, ce_pin, irq_pin)

    def begin(self, major, minor, ce_pin, irq_pin):
        # Initialize SPI bus

        if ADAFRUID_BBIO_SPI:
            self.spidev = SPI(major, minor)
            self.spidev.bpw = 8
            try:
                self.spidev.msh = 10000000  # Maximum supported by NRF24L01+
            except IOError:
                pass  # Hardware does not support this speed
        else:
            self.spidev = spidev.SpiDev()
            self.spidev.open(major, minor)

            self.spidev.bits_per_word = 8

            try:
                self.spidev.max_speed_hz = 10000000  # Maximum supported by NRF24L01+
            except IOError:
                pass  # Hardware does not support this speed

        self.spidev.cshigh = False
        self.spidev.mode = 0
        self.spidev.loop = False
        self.spidev.lsbfirst = False
        self.spidev.threewire = False

        self.ce_pin = ce_pin
        self.irq_pin = irq_pin

        if self.ce_pin is not None:
            GPIO.setup(self.ce_pin, GPIO.OUT)

        GPIO.setup(self.irq_pin, GPIO.IN, pull_up_down=GPIO.PUD_UP)

        time.sleep(5 / 1000000.0)

        # Reset radio configuration
        self.reset()

        # Set 1500uS (minimum for 32B payload in ESB@250KBPS) timeouts, to make testing a little easier
        # WARNING: If this is ever lowered, either 250KBS mode with AA is broken or maximum packet
        # sizes must never be used. See documentation for a more complete explanation.
        self.setRetries(int('0101', 2), 15)

        # Restore our default PA level
        self.setPALevel(NRF24.PA_MAX)

        # Determine if this is a p or non-p RF24 module and then
        # reset our data rate back to default value. This works
        # because a non-P variant won't allow the data rate to
        # be set to 250Kbps.
        if self.setDataRate(NRF24.BR_250KBPS):
            self.p_variant = True

        # Then set the data rate to the slowest (and most reliable) speed supported by all
        # hardware.
        self.setDataRate(NRF24.BR_1MBPS)

        # Initialize CRC and request 2-byte (16bit) CRC
        self.setCRCLength(NRF24.CRC_16)

        # Disable dynamic payloads, to match dynamic_payloads_enabled setting
        self.write_register(NRF24.DYNPD, 0)

        # Reset current status
        # Notice reset and flush is the last thing we do
        self.write_register(NRF24.STATUS, NRF24.RX_DR | NRF24.TX_DS | NRF24.MAX_RT)

        # Set up default configuration.  Callers can always change it later.
        # This channel should be universally safe and not bleed over into adjacent
        # spectrum.
        self.setChannel(self.channel)

        self.setRetries(15, 15)

        # Flush buffers
        self.flush_rx()
        self.flush_tx()
        self.clear_irq_flags()

    def end(self):
        if self.spidev:
            self.spidev.close()
            self.spidev = None

    def startListening(self):
        self.write_register(NRF24.CONFIG, self.read_register(NRF24.CONFIG) | NRF24.PWR_UP | NRF24.PRIM_RX)
        self.write_register(NRF24.STATUS, NRF24.RX_DR | NRF24.TX_DS | NRF24.MAX_RT)

        self.flush_tx()
        self.flush_rx()
        self.clear_irq_flags()

        # Restore the pipe0 address, if exists
        if self.pipe0_reading_address:
            self.write_register(self.RX_ADDR_P0, self.pipe0_reading_address)

        # Go!
        self.ce(1)

    def ce(self, level, pulse=0):
        # CE Pin is optional
        if self.ce_pin is not None:
            GPIO.output(self.ce_pin, level)
            if pulse > 0:
                time.sleep(pulse)
                GPIO.output(self.ce_pin, 1 - level)

    def irqWait(self, timeout=30000):
        # TODO: A race condition may occur here. => wait for level?
        if GPIO.input(self.irq_pin) == 0:  # Pin is already down. Packet is waiting?
            return True

        try:
            return GPIO.wait_for_edge(self.irq_pin, GPIO.FALLING, timeout) == 1
        except TypeError:  # Timeout parameter not supported
            return GPIO.wait_for_edge(self.irq_pin, GPIO.FALLING) == 1
        except AttributeError:
            raise RuntimeError("GPIO lib does not support wait_for_edge()")

    def read_register(self, reg, length=1):
        buf = [NRF24.R_REGISTER | (NRF24.REGISTER_MASK & reg)]
        buf += [NRF24.NOP] * max(1, length)

        resp = self.spidev.xfer2(buf)
        if length == 1:
            return resp[1]

        return resp[1:]

    def write_register(self, reg, value):
        """ Write register value """
        buf = [NRF24.W_REGISTER | (NRF24.REGISTER_MASK & reg)]
        buf += self._to_8b_list(value)
        self.spidev.xfer2(buf)

    def write_payload(self, buf):
        """ Writes data to the payload register, automatically padding it
            to match the required length. Returns the number of bytes
            actually written. """

        buf = self._to_8b_list(buf)
        if self.dynamic_payloads_enabled:
            if len(buf) > self.MAX_PAYLOAD_SIZE:
                raise RuntimeError("Dynamic payload is larger than the " +
                                   "maximum size.")
            blank_len = 0
        else:
            if len(buf) > self.payload_size:
                raise RuntimeError("Payload is larger than the fixed payload" +
                                   "size (%d vs. %d bytes)" % (len(buf), self.payload_size))
            blank_len = self.payload_size - len(buf)

        txbuffer = [NRF24.W_TX_PAYLOAD] + buf + ([0x00] * blank_len)
        self.spidev.xfer2(txbuffer)
        return len(txbuffer) - 1

    def read_payload(self, buf, buf_len=-1):
        """ Reads data from the payload register and sets the
            DR bit of the STATUS register. """

        if buf_len < 0:
            buf_len = self.payload_size

        if not self.dynamic_payloads_enabled:
            data_len = min(self.payload_size, buf_len)
            blank_len = self.payload_size - data_len
        else:
            data_len = self.getDynamicPayloadSize()
            blank_len = 0

        txbuffer = [NRF24.R_RX_PAYLOAD] + [NRF24.NOP] * (blank_len + data_len + 1)

        payload = self.spidev.xfer2(txbuffer)
        del buf[:]
        buf += payload[1:data_len + 1]

        self.write_register(NRF24.STATUS, NRF24.RX_DR)

        return data_len

    def flush_rx(self):
        return self.spidev.xfer2([NRF24.FLUSH_RX])[0]

    def flush_tx(self):
        return self.spidev.xfer2([NRF24.FLUSH_TX])[0]

    def get_status(self):
        return self.spidev.xfer2([NRF24.NOP])[0]

    def get_status_str(self, status):
        status_str = "STATUS\t = 0x{0:02x} RX_DR={1:x} TX_DS={2:x} MAX_RT={3:x} RX_P_NO={4:x} TX_FULL={5:x}".format(
            status,
            1 if status & NRF24.RX_DR else 0,
            1 if status & NRF24.TX_DS else 0,
            1 if status & NRF24.MAX_RT else 0,
            ((status >> NRF24.RX_P_NO) & int("111", 2)),
            1 if status & NRF24.TX_FULL else 0)
        return status_str

        
    def print_status(self, status):
        print self.get_status_str(status)
        
    def get_observe_tx_str(self, value):
        tx_str = "OBSERVE_TX=0x{0:02x}: POLS_CNT={2:x} ARC_CNT={2:x}\r\n".format(
            value,
            (value >> NRF24.PLOS_CNT) & int("1111",2),
            (value >> NRF24.ARC_CNT)  & int("1111",2)
            )
        return tx_str

    def print_observe_tx(self, value):
        print self.get_observe_tx_str(value)

    def get_byte_register_str(self, name, reg, qty=1):
        extra_tab = '\t' if len(name) < 8 else 0
        byte_str= "%s\t%c =" % (name, extra_tab)
        while qty > 0:
            byte_str+= " 0x%02x" % (self.read_register(reg))
            qty -= 1
            reg += 1
        return byte_str
        

    def print_byte_register(self, name, reg, qty=1):
        print self.get_address_register_str(name, reg, qty)

    def get_address_register_str(self, name, reg, qty=1):
        extra_tab = '\t' if len(name) < 8 else 0
        addr_str = "%s\t%c =" % (name, extra_tab)

        while qty > 0:
            qty -= 1
            buf = reversed(self.read_register(reg, 5))
            reg += 1
            addr_str+=" 0x"
            for i in buf:
                addr_str+="%02x" % i
        return addr_str
    
    def print_address_register(self, name, reg, qty=1):
        print self.get_address_register_str(name, reg, qty)

        self.print_single_status_line(name, " ".join(address_registers))

    def setChannel(self, channel):
        if channel < 0 or channel > self.MAX_CHANNEL:
            raise RuntimeError("Channel number out of range")
        self.channel = channel
        self.write_register(NRF24.RF_CH, channel)

    def getChannel(self):
        return self.read_register(NRF24.RF_CH)

    def setPayloadSize(self, size):
        self.payload_size = min(max(size, 1), NRF24.MAX_PAYLOAD_SIZE)

    def getPayloadSize(self):
        return self.payload_size

    def getDetails(self):
        return  "\n".join([self.get_status_str(self.get_status()),
            self.get_address_register_str("RX_ADDR_P0-1", NRF24.RX_ADDR_P0, 2),
            self.get_byte_register_str("RX_ADDR_P2-5", NRF24.RX_ADDR_P2, 4),
            self.get_address_register_str("TX_ADDR", NRF24.TX_ADDR),
            self.get_byte_register_str("RX_PW_P0-6", NRF24.RX_PW_P0, 6),
            self.get_byte_register_str("EN_AA", NRF24.EN_AA),
            self.get_byte_register_str("EN_RXADDR", NRF24.EN_RXADDR),
            self.get_byte_register_str("RF_CH", NRF24.RF_CH),
            self.get_byte_register_str("RF_SETUP", NRF24.RF_SETUP),
            self.get_byte_register_str("CONFIG", NRF24.CONFIG),
            self.get_byte_register_str("DYNPD/FEATURE", NRF24.DYNPD, 2),
            "Data Rate\t = %s" % NRF24.datarate_e_str_P[self.getDataRate()],
            "Model\t\t = %s" % NRF24.model_e_str_P[self.isPVariant()],
            "CRC Length\t = %s" % NRF24.crclength_e_str_P[self.getCRCLength()],
            "PA Power\t = %s" % NRF24.pa_dbm_e_str_P[self.getPALevel()]])


    def printDetails(self):
        print self.getDetails()

    def stopListening(self):
        self.ce(0)
        self.flush_tx()
        self.flush_rx()
        self.clear_irq_flags()

        # Enable TX
        self.write_register(NRF24.CONFIG,
                            (self.read_register(NRF24.CONFIG) | NRF24.PWR_UP) & ~NRF24.PRIM_RX)

        # Enable pipe 0 for auto-ack
        self.write_register(NRF24.EN_RXADDR, self.read_register(NRF24.EN_RXADDR) | 1)

    def powerDown(self):
        self.write_register(NRF24.CONFIG, self.read_register(NRF24.CONFIG) & ~ NRF24.PWR_UP)

    def powerUp(self):
        self.write_register(NRF24.CONFIG, self.read_register(NRF24.CONFIG) | NRF24.PWR_UP)
        time.sleep(150e-6)

    def write(self, buf):
        self.last_error = None
        length = self.write_payload(buf)
        self.ce(1)

        sent_at = monotonic()
        packet_time = ((1 + length + self.crc_length + self.address_length) * 8 + 9)/(self.data_rate_bits * 1000.)

        if self.auto_ack != 0:
            packet_time *= 2

        if self.retries != 0 and self.auto_ack != 0:
            timeout = sent_at + (packet_time + self.delay)*self.retries
        else:
            timeout = sent_at + packet_time * 2  # 2 is empiric

        #while NRF24.TX_DS &  self.get_status() == 0:
        #    pass

        #print monotonic() - sent_at
        #print packet_time

        while monotonic() < timeout:
            time.sleep(packet_time)
            status = self.get_status()
            if status & NRF24.TX_DS:
                self.ce(0)
                return True

            if status & NRF24.MAX_RT:
                self.last_error = 'MAX_RT'
                self.ce(0)
                break

        self.ce(0)
        if self.last_error is None:
            self.last_error = 'TIMEOUT'

        self.flush_tx()  # Avoid leaving the payload in tx fifo
        return False

    def startFastWrite(self, buf):
        """
            Do not wait for CE HIGH->LOW
        """
        # Send the payload
        self.write_payload(buf)

        self.ce(1)

    def startWrite(self, buf):
        # Send the payload
        self.write_payload(buf)

        # Allons!
        self.ce(1, 10e-6)

    def getDynamicPayloadSize(self):
        return self.spidev.xfer2([NRF24.R_RX_PL_WID, NRF24.NOP])[1]

    def available(self, pipe_num=None, irq_wait=False, irq_timeout=30000):
        status = self.get_status()
        result = False

        # Sometimes the radio specifies that there is data in one pipe but
        # doesn't set the RX flag...
        if status & NRF24.RX_DR or (status & NRF24.RX_P_NO_MASK != NRF24.RX_P_NO_MASK):
            result = True
        else:
            if irq_wait:  # Will use IRQ wait
                if self.irqWait(irq_timeout):  # Do we have a packet?
                    status = self.get_status()  # Seems like we do!
                    if status & NRF24.RX_DR or (status & NRF24.RX_P_NO_MASK != NRF24.RX_P_NO_MASK):
                        result = True
        # read status once again see Note on page 52 or 56 in product specification 1.0
        # Note: The 3 bit pipe information in the STATUS register is updated during the IRQ pin high to low
        #transition. The pipe information is unreliable if the STATUS register is read during an IRQ pin
        #high to low transition.
        status = self.get_status()
        del pipe_num[:]
        if result and pipe_num is not None:
            pipe_num.append((status & NRF24.RX_P_NO_MASK) >> NRF24.RX_P_NO)

        # Handle ack payload receipt
        if status & NRF24.TX_DS:
            self.write_register(NRF24.STATUS, NRF24.TX_DS)

        return result

    def read(self, buf, buf_len=-1):
        # Fetch the payload
        self.read_payload(buf, buf_len)

        # was this the last of the data available?
        return self.read_register(NRF24.FIFO_STATUS & NRF24.RX_EMPTY)

    def clear_irq_flags(self):
        self.write_register(NRF24.STATUS, NRF24.RX_DR | NRF24.TX_DS | NRF24.MAX_RT)

    def whatHappened(self):
        # Read the status & reset the status in one easy call
        # Or is that such a good idea?
        self.write_register(NRF24.STATUS, NRF24.RX_DR | NRF24.TX_DS | NRF24.MAX_RT)

        status = self.get_status()
        self.clear_irq_flags()

        # Report to the user what happened
        tx_ok = status & NRF24.TX_DS
        tx_fail = status & NRF24.MAX_RT
        rx_ready = status & NRF24.RX_DR
        return {'tx_ok': tx_ok, "tx_fail": tx_fail, "rx_ready": rx_ready}

    def openWritingPipe(self, value):
        # Note that the NRF24L01(+)
        # expects it LSB first.

        self.write_register(NRF24.RX_ADDR_P0, value)
        self.write_register(NRF24.TX_ADDR, value)
        if not self.dynamic_payloads_enabled:
            self.write_register(NRF24.RX_PW_P0, self.payload_size)

    def openReadingPipe(self, pipe, address):
        # If this is pipe 0, cache the address.  This is needed because
        # openWritingPipe() will overwrite the pipe 0 address, so
        # startListening() will have to restore it.
        if pipe >= 6:
            raise RuntimeError("Invalid pipe number")
        if (pipe >= 2 and len(address) > 1) or len(address) > 5:
            raise RuntimeError("Invalid adress length")

        if pipe == 0:
            self.pipe0_reading_address = address

        self.write_register(NRF24.RX_ADDR_P0 + pipe, address)
        if not self.dynamic_payloads_enabled:
            self.write_register(NRF24.RX_PW_P0 + pipe, self.payload_size)

        # Note it would be more efficient to set all of the bits for all open
        # pipes at once.  However, I thought it would make the calling code
        # more simple to do it this way.
        self.write_register(NRF24.EN_RXADDR,
                            self.read_register(NRF24.EN_RXADDR) | (1 << pipe))

    def closeReadingPipe(self, pipe):
        self.write_register(NRF24.EN_RXADDR,
                            self.read_register(NRF24.EN_RXADDR) & ~(1 << pipe))

    def toggle_features(self):
        buf = [NRF24.ACTIVATE, 0x73]
        self.spidev.xfer2(buf)

    def enableDynamicPayloads(self):
        # Enable dynamic payload throughout the system
        self.write_register(NRF24.FEATURE, self.read_register(NRF24.FEATURE) | NRF24.EN_DPL)

        # If it didn't work, the features are not enabled
        if not self.read_register(NRF24.FEATURE):
            # So enable them and try again
            self.toggle_features()
            self.write_register(NRF24.FEATURE, self.read_register(NRF24.FEATURE) | NRF24.EN_DPL)

        # Enable dynamic payload on all pipes

        # Not sure the use case of only having dynamic payload on certain
        # pipes, so the library does not support it.
        self.write_register(NRF24.DYNPD, self.read_register(NRF24.DYNPD) | 0b00111111)

        self.dynamic_payloads_enabled = True

    def enableAckPayload(self):
        # enable ack payload and dynamic payload features
        self.write_register(NRF24.FEATURE,
                            self.read_register(NRF24.FEATURE) | NRF24.EN_ACK_PAY | NRF24.EN_DPL)

        # If it didn't work, the features are not enabled
        if not self.read_register(NRF24.FEATURE):
            # So enable them and try again
            self.toggle_features()
            self.write_register(NRF24.FEATURE,
                                self.read_register(NRF24.FEATURE) | NRF24.EN_ACK_PAY | NRF24.EN_DPL)

        # Enable dynamic payload on pipes 0 & 1
        self.write_register(NRF24.DYNPD, self.read_register(NRF24.DYNPD) | NRF24.DPL_P1 | NRF24.DPL_P0)

    def writeAckPayload(self, pipe, buf, buf_len):
        txbuffer = [NRF24.W_ACK_PAYLOAD | (pipe & 0x7)]

        max_payload_size = 32
        data_len = min(buf_len, max_payload_size)
        txbuffer.extend(buf[0:data_len])

        self.spidev.xfer2(txbuffer)

    def isAckPayloadAvailable(self):
        result = self.ack_payload_available
        self.ack_payload_available = False
        return result

    def isPVariant(self):
        return self.p_variant

    def setAutoAck(self, enable):
        if enable:
            self.write_register(NRF24.EN_AA, 0x3F)
            self.auto_ack = 0x3f
            if self.crc_length == 0:
                self.setCRCLength(NRF24.CRC_8)  # Enhanced Shockburst requires at least 1 byte CRC
        else:
            self.auto_ack = 0
            self.write_register(NRF24.EN_AA, 0)

    def setAutoAckPipe(self, pipe, enable):
        if pipe <= 6:
            en_aa = self.read_register(NRF24.EN_AA)
            if enable:
                self.setCRCLength(NRF24.CRC_8)  # Enhanced Shockburst requires at least 1 byte CRC
                en_aa |= 1 << pipe
                self.auto_ack |= 1 << pipe
            else:
                en_aa &= ~1 << pipe
                self.auto_ack &= ~1 << pipe

            self.write_register(NRF24.EN_AA, en_aa)

    def setAddressWidth(self, width):
        if width >= 2 and width <= 5:
            self.write_register(NRF24.SETUP_AW, width - 2)
            self.address_width = width

    def testCarrier(self):
        return self.read_register(NRF24.RPD) & 1

    def setPALevel(self, level):
        setup = self.read_register(NRF24.RF_SETUP)
        setup &= ~(NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH)

        if level == NRF24.PA_MAX:
            setup |= NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH
        elif level == NRF24.PA_HIGH:
            setup |= NRF24.RF_PWR_HIGH
        elif level == NRF24.PA_LOW:
            setup |= NRF24.RF_PWR_LOW
        elif level == NRF24.PA_MIN:
            pass
        elif level == NRF24.PA_ERROR:
            # On error, go to maximum PA
            setup |= NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH

        self.write_register(NRF24.RF_SETUP, setup)

    def getPALevel(self):
        power = self.read_register(NRF24.RF_SETUP) & (NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH)
        if power == (NRF24.RF_PWR_LOW | NRF24.RF_PWR_HIGH):
            return NRF24.PA_MAX
        elif power == NRF24.RF_PWR_HIGH:
            return NRF24.PA_HIGH
        elif power == NRF24.RF_PWR_LOW:
            return NRF24.PA_LOW
        else:
            return NRF24.PA_MIN

    def setDataRate(self, speed):
        setup = self.read_register(NRF24.RF_SETUP)
        setup &= ~(NRF24.RF_DR_LOW | NRF24.RF_DR_HIGH)

        if speed == NRF24.BR_250KBPS:
            # Must set the RF_DR_LOW to 1 RF_DR_HIGH (used to be RF_DR) is already 0
            # Making it '10'.
            self.data_rate_bits = 250
            self.data_rate = NRF24.BR_250KBPS
            setup |= NRF24.RF_DR_LOW
        elif speed == NRF24.BR_2MBPS:
            # Set 2Mbs, RF_DR (RF_DR_HIGH) is set 1
            # Making it '01'
            self.data_rate_bits = 2000
            self.data_rate = NRF24.BR_2MBPS
            setup |= NRF24.RF_DR_HIGH
        else:
            # 1Mbs
            self.data_rate_bits = 1000
            self.data_rate = NRF24.BR_1MBPS

        self.write_register(NRF24.RF_SETUP, setup)

        # Verify our result
        return self.read_register(NRF24.RF_SETUP) == setup

    def getDataRate(self):
        dr = self.read_register(NRF24.RF_SETUP) & (NRF24.RF_DR_LOW | NRF24.RF_DR_HIGH)
        # Order matters in our case below
        if dr == NRF24.RF_DR_LOW:
            # '10' = 250KBPS
            return NRF24.BR_250KBPS
        elif dr == NRF24.RF_DR_HIGH:
            # '01' = 2MBPS
            return NRF24.BR_2MBPS
        else:
            # '00' = 1MBPS
            return NRF24.BR_1MBPS

    def setCRCLength(self, length):
        config = self.read_register(NRF24.CONFIG) & ~(NRF24.EN_CRC | NRF24.CRCO)

        if length == NRF24.CRC_DISABLED:
            self.crc_length = 0
        elif length == NRF24.CRC_8:
            config |= NRF24.EN_CRC
            config &= ~NRF24.CRCO
            self.crc_length = 1
        else:
            config |= NRF24.EN_CRC
            config |= NRF24.CRCO
            self.crc_length = 2

        self.write_register(NRF24.CONFIG, config)

    def getCRCLength(self):
        result = NRF24.CRC_DISABLED
        config = self.read_register(NRF24.CONFIG) & (NRF24.CRCO | NRF24.EN_CRC)

        if config & NRF24.EN_CRC:
            if config & NRF24.CRCO:
                result = NRF24.CRC_16
            else:
                result = NRF24.CRC_8

        return result

    def disableCRC(self):
        disable = self.read_register(NRF24.CONFIG) & ~NRF24.EN_CRC
        self.write_register(NRF24.CONFIG, disable)

    def setRetries(self, delay, count):
        self.write_register(NRF24.SETUP_RETR, (delay & 0xf) << NRF24.ARD | (count & 0xf) << NRF24.ARC)
        self.delay = delay * 0.000250
        self.retries = count
        self.max_timeout = (self.payload_size / float(self.data_rate_bits) + self.delay) * self.retries
        self.timeout = (self.payload_size / float(self.data_rate_bits) + self.delay)

    def getRetries(self):
        return self.read_register(NRF24.SETUP_RETR)

    def getMaxTimeout(self):
        return self.max_timeout

    def getTimeout(self):
        return self.timeout

    def reset(self):
        """ Make sure the NRF is in the same state as after power up
            to avoid problems resulting from left over configuration
            from other programs."""
        self.ce(0)
        reset_values = {0: 0x08, 1: 0x3F, 2: 0x02, 3: 0x03, 4: 0x03, 5: 0x02, 6: 0x06,
                        0x0a: [0xe7, 0xe7, 0xe7, 0xe7, 0xe7],
                        0x0b: [0xc2, 0xc2, 0xc2, 0xc2, 0xc2],
                        0x0c: 0xc3, 0x0d: 0xc4, 0x0e: 0xc5, 0x0f: 0xc6,
                        0x10: [0xe7, 0xe7, 0xe7, 0xe7, 0xe7],
                        0x11: 0, 0x12: 0, 0x13: 0, 0x14: 0, 0x15: 0, 0x16: 0,
                        0x1c: 0, 0x1d: 0}
        for reg, value in reset_values.items():
            self.write_register(reg, value)

        self.flush_rx()
        self.flush_tx()
from Adafruit_BBIO.SPI import SPI

spi = SPI(0,0)
spi.open(0,0)
#spi.msh = 100000
spi.bpw = 8
#spi.mode = b00
try:
#while True:
        # set CS bit high, choose first channel to read from

        #channel = 0;
        #adc = spi.xfer([1,8,0])
        #data = ((adc[1]&3) << 8) + adc[2]

        channelSelect = 0xC0
        channelSelect |= 0x18
        channelSelect <<= 3
        fsr = spi.xfer2([channelSelect, 0x00, 0x00])
        #result = spi.readbytes(2)
        #result2 = spi.readbytes(1)

        resultFinal = 0x0000
        resultFinal = 0x0300 & (resultFinal | (fsr[1] << 8 ))
        resultFinal |= ( ( 0x00FF  & fsr[2]) )
        #print (8 + channel ) << 4
        #print resultFinal

	###################################
	####################################
	resultFinal = 1 #temp
Esempio n. 11
0
class LED_LPD8806(object):
    # Constructor
    def __init__(self):
        self.spi = SPI(
            0, 0
        )  #/dev/spidev1.0  (be sure to run Python with su if 'no permission'
        self.spi.msh = 1000000  #SPI clock set to 1MHz (slowed from 10MHz for better stability across setups)
        self.spi.bpw = 8  # bits per word
        self.spi.threewire = False  # not half-duplex
        self.spi.lsbfirst = False  # we want MSB first
        self.spi.mode = 0  # options are modes 0 through 3
        self.spi.cshigh = False  # we want chip select to be active low
        self.spi.open(0, 0)  # make it so
        time.sleep(0.05)

    def setup(self, led_pixels, debug=False):
        if (debug):
            print "Initializing LED strip"
        global pixels
        pixels = [[0x80 for x in range(3)] for y in range(led_pixels)]
        for i in range(led_pixels):
            pixels[i] = [0x00, 0x00, 0x00]

    # Define LED functions:
    # --------------------

    # Update pixel display with a given delay time between pixel updates:
    def writestrip(self, delay):
        if (delay < 0):
            delay = 0
        for i in range(len(pixels)):
            self.spi.writebytes([0x00, 0x00, 0x00])  #prepare write
        for i in range(len(pixels)):
            self.spi.writebytes(pixels[i])  #write colors to pixels
            time.sleep(delay)

    # Turn off all LEDs:
    def clearstrip(self):
        global pixels
        for i in range(len(pixels)):
            self.spi.writebytes([0x00, 0x00, 0x00])  #prepare write
        for i in range(len(pixels)):
            pixels[i] = [0x80, 0x80, 0x80]
        self.writestrip(0)

    # Set an individual pixel to a specific color (to display later):
    def setpixelcolor(self, n, g, r, b):
        global pixels
        if (n >= len(pixels)):
            return
        if (n < 0):
            return
        if (g > 0xFF):
            g = 0xFF
        if (g < 0x80):
            g = 0x80
        if (r > 0xFF):
            r = 0xFF
        if (r < 0x80):
            r = 0x80
        if (b > 0xFF):
            b = 0xFF
        if (b < 0x80):
            b = 0x80
        pixels[n] = [g, r, b]

    # Update display with warmer colors (more red light) by a specified amount with a delay between pixels
    def warmstrip(self, warmth, delay):
        global pixels
        if (delay < 0):
            delay = 0
        for n in range(len(pixels)):
            if ((pixels[n][1] + warmth) < 0x80):
                pixels[n][1] = 0x80
            elif ((pixels[n][2] + warmth) > 0xFF):
                pixels[n][1] = 0xFF
            else:
                pixels[n][1] = pixels[n][1] + warmth
        self.writestrip(delay)

    # Update display with cooler colors (more blue) by a specified amount with a delay between each pixel
    def coolstrip(self, coolfactor, delay):
        global pixels
        if (delay < 0):
            delay = 0
        for n in range(len(pixels)):
            if ((pixels[n][2] + coolfactor) < 0x80):
                pixels[n][2] = 0x80
            elif ((pixels[n][2] + coolfactor) > 0xFF):
                pixels[n][2] = 0xFF
            else:
                pixels[n][2] = pixels[n][2] + coolfactor

        self.writestrip(delay)

    # Update display with greener colors by a specified amount with a set delay between each pixel
    def greenstrip(self, lushness, delay):
        global pixels
        if (delay < 0):
            delay = 0
        for n in range(len(pixels)):
            if ((pixels[n][0] + lushness) < 0x80):
                pixels[n][0] = 0x80
            else:
                pixels[n][0] = pixels[n][0] + lushness
        self.writestrip(delay)

    # Update display with brighter (whiter) light by specified amount with a set delay between pixel updates
    def brightenstrip(self, brightness, delay):
        global pixels
        if (delay < 0):
            delay = 0
        for n in range(len(pixels)):
            if ((pixels[n][0] + brightness) < 0x80):
                pixels[n][0] = 0x80
            elif ((pixels[n][0] + brightness) > 0xFF):
                pixels[n][0] = 0xFF
            else:
                pixels[n][0] = pixels[n][0] + brightness
            if ((pixels[n][1] + brightness) < 0x80):
                pixels[n][1] = 0x80
            elif ((pixels[n][1] + brightness) > 0xFF):
                pixels[n][1] = 0xFF
            else:
                pixels[n][1] = pixels[n][1] + brightness
            if ((pixels[n][2] + brightness) < 0x80):
                pixels[n][2] = 0x80
            elif ((pixels[n][2] + brightness) > 0xFF):
                pixels[n][2] = 0xFF
            else:
                pixels[n][2] = pixels[n][2] + brightness
        self.writestrip(delay)

    # Darken display (less light) by specified amount with a set delay between pixel updates
    def dimstrip(self, dimness, delay):
        global pixels
        if (delay < 0):
            delay = 0
        for n in range(len(pixels)):
            if ((pixels[n][0] - dimness) < 0x80):
                pixels[n][0] = 0x80
            elif ((pixels[n][0] - dimness) > 0xFF):
                pixels[n][0] = 0xFF
            else:
                pixels[n][0] = pixels[n][0] - dimness
            if ((pixels[n][1] - dimness) < 0x80):
                pixels[n][1] = 0x80
            elif ((pixels[n][1] - dimness) > 0xFF):
                pixels[n][1] = 0xFF
            else:
                pixels[n][1] = pixels[n][1] - dimness
            if ((pixels[n][2] - dimness) < 0x80):
                pixels[n][2] = 0x80
            elif ((pixels[n][2] - dimness) > 0xFF):
                pixels[n][2] = 0xFF
            else:
                pixels[n][2] = pixels[n][2] - dimness
        self.writestrip(delay)
Esempio n. 12
0
class LED_LPD8806(object):
  # Constructor
  def __init__(self):
	self.spi = SPI(0,0) #/dev/spidev1.0  (be sure to run Python with su if 'no permission'
	self.spi.msh=1000000 #SPI clock set to 1MHz (slowed from 10MHz for better stability across setups)
	self.spi.bpw = 8 # bits per word
	self.spi.threewire = False # not half-duplex
	self.spi.lsbfirst = False # we want MSB first
	self.spi.mode = 0 # options are modes 0 through 3
	self.spi.cshigh = False # we want chip select to be active low
	self.spi.open(0,0) # make it so
	time.sleep(0.05)

  def setup(self, led_pixels, debug=False):
	if (debug):
		print "Initializing LED strip"
	global pixels
	pixels = [[0x80 for x in range(3)] for y in range(led_pixels)]
	for i in range(led_pixels):
	        pixels[i]=[0x00, 0x00, 0x00]

  # Define LED functions:
  # --------------------

  # Update pixel display with a given delay time between pixel updates:
  def writestrip(self, delay):
	if (delay < 0):
		delay = 0
	for i in range(len(pixels)):
		self.spi.writebytes([0x00, 0x00, 0x00]) #prepare write
	for i in range(len(pixels)):
		self.spi.writebytes(pixels[i]) #write colors to pixels
		time.sleep(delay)

  # Turn off all LEDs:
  def clearstrip(self):
	global pixels
	for i in range(len(pixels)):
		self.spi.writebytes([0x00, 0x00, 0x00]) #prepare write
	for i in range(len(pixels)):
		pixels[i] = [0x80, 0x80, 0x80]
	self.writestrip(0)


  # Set an individual pixel to a specific color (to display later):
  def setpixelcolor(self, n, g, r, b):
	global pixels
	if (n >= len(pixels)):
		return
	if (n < 0):
		return
	if (g > 0xFF):
		g = 0xFF
	if (g < 0x80):
		g = 0x80
	if (r > 0xFF):
		r = 0xFF
	if (r < 0x80):
		r = 0x80
	if (b > 0xFF):
		b = 0xFF
	if (b < 0x80):
		b = 0x80
	pixels[n] = [g, r, b]

  # Update display with warmer colors (more red light) by a specified amount with a delay between pixels
  def warmstrip(self, warmth, delay):
	global pixels
	if (delay < 0):
		delay = 0
	for n in range(len(pixels)):
                if((pixels[n][1] + warmth) < 0x80):
                        pixels[n][1] = 0x80
                elif((pixels[n][2] + warmth) > 0xFF):
                        pixels[n][1] = 0xFF
                else:
			pixels[n][1] = pixels[n][1]+warmth
	self.writestrip(delay)

  # Update display with cooler colors (more blue) by a specified amount with a delay between each pixel
  def coolstrip(self, coolfactor, delay):
	global pixels
	if (delay < 0):
		delay = 0
	for n in range(len(pixels)):
                if((pixels[n][2] + coolfactor) < 0x80):
                        pixels[n][2] = 0x80
                elif((pixels[n][2] + coolfactor) > 0xFF):
                        pixels[n][2] = 0xFF
                else:
                        pixels[n][2] = pixels[n][2]+coolfactor

	self.writestrip(delay)

  # Update display with greener colors by a specified amount with a set delay between each pixel
  def greenstrip(self, lushness, delay):
	global pixels
	if (delay < 0):
		delay = 0
	for n in range(len(pixels)):
                if((pixels[n][0] + lushness) < 0x80):
                        pixels[n][0] = 0x80
                else:
                        pixels[n][0] = pixels[n][0]+lushness
	self.writestrip(delay)

  # Update display with brighter (whiter) light by specified amount with a set delay between pixel updates
  def brightenstrip(self, brightness, delay):
	global pixels
	if (delay < 0):
		delay = 0
        for n in range(len(pixels)):
                if((pixels[n][0] + brightness) < 0x80):
                        pixels[n][0] = 0x80
		elif((pixels[n][0] + brightness) > 0xFF):
			pixels[n][0] = 0xFF
                else:
                        pixels[n][0] = pixels[n][0]+brightness
                if((pixels[n][1] + brightness) < 0x80):
                        pixels[n][1] = 0x80
                elif((pixels[n][1] + brightness) > 0xFF):
                        pixels[n][1] = 0xFF
                else:
                        pixels[n][1] = pixels[n][1]+brightness
                if((pixels[n][2] + brightness) < 0x80):
                        pixels[n][2] = 0x80
                elif((pixels[n][2] + brightness) > 0xFF):
                        pixels[n][2] = 0xFF
                else:
                        pixels[n][2] = pixels[n][2]+brightness
	self.writestrip(delay)

  # Darken display (less light) by specified amount with a set delay between pixel updates
  def dimstrip(self, dimness, delay):
	global pixels
	if (delay < 0):
		delay = 0
	for n in range(len(pixels)):
		if((pixels[n][0] - dimness) < 0x80):
			pixels[n][0] = 0x80
                elif((pixels[n][0] - dimness) > 0xFF):
                        pixels[n][0] = 0xFF
		else:
			pixels[n][0] = pixels[n][0]-dimness
		if((pixels[n][1] - dimness) < 0x80):
			pixels[n][1] = 0x80
		elif((pixels[n][1] - dimness) > 0xFF):
			pixels[n][1] = 0xFF
		else:
			pixels[n][1] = pixels[n][1]-dimness
		if((pixels[n][2] - dimness) < 0x80):
			pixels[n][2] = 0x80
		elif((pixels[n][2] - dimness) > 0xFF):
			pixels[n][2] = 0xFF
		else:
			pixels[n][2] = pixels[n][2]-dimness
	self.writestrip(delay)
from Adafruit_BBIO.SPI import SPI 

spi = SPI(1,0) 
spi.mode=2 

spi.msh=200000 
spi.open(1,0) 

print spi.readbytes(4)
#print spi.xfer2([32, 11, 110, 22, 220]) 
spi.close()