Esempio n. 1
0
def test_make_residual():
    """Test make_residual"""
    fitsfile = 'tests/test_files/1904-66_SIN.fits'
    catalog = 'tests/test_files/1904_comp.fits'
    residual = 'tests/temp/residual.fits'
    masked = 'tests/temp/masked.fits'
    # default operation
    ar.make_residual(fitsfile=fitsfile,
                     catalog=catalog,
                     rfile=residual,
                     mfile=masked,
                     mask=False)
    if not os.path.exists(masked):
        raise AssertionError("Mask file not written")
    os.remove(masked)

    # with masking
    ar.make_residual(fitsfile=fitsfile,
                     catalog=catalog,
                     rfile=residual,
                     mfile=masked,
                     mask=True)
    if not os.path.exists(masked):
        raise AssertionError("Mask file not written")
    os.remove(masked)
Esempio n. 2
0
def test_make_masked_model():
    """Test make_model when a mask is being used"""
    filename = 'tests/test_files/1904_comp.fits'
    sources = ar.load_sources(filename)
    hdulist = fits.open('tests/test_files/1904-66_SIN.fits')
    wcs_helper = wcs_helpers.WCSHelper.from_header(header=hdulist[0].header)

    # test mask with sigma
    model = ar.make_model(sources=sources,
                          shape=hdulist[0].data.shape,
                          wcshelper=wcs_helper,
                          mask=True)

    finite = np.where(np.isfinite(model))
    if np.all(model == 0.):
        raise AssertionError("Model is empty")
    if not np.any(np.isnan(model)):
        raise AssertionError("Model is not masked")
    if not np.all(model[finite] == 0.):
        raise AssertionError("Model has values that are not zero or nan")

    # test mask with frac
    model = ar.make_model(sources=sources,
                          shape=hdulist[0].data.shape,
                          wcshelper=wcs_helper,
                          mask=True,
                          frac=0.1)

    finite = np.where(np.isfinite(model))
    if np.all(model == 0.):
        raise AssertionError("Model is empty")
    if not np.any(np.isnan(model)):
        raise AssertionError("Model is not masked")
    if not np.all(model[finite] == 0.):
        raise AssertionError("Model has values that are not zero or nan")
Esempio n. 3
0
def test_make_model():
    """Test make_modell"""
    filename = 'tests/test_files/1904_comp.fits'
    sources = ar.load_sources(filename)
    hdulist = fits.open('tests/test_files/1904-66_SIN.fits')
    wcs_helper = wcs_helpers.WCSHelper.from_header(header=hdulist[0].header)
    # regular run
    model = ar.make_model(sources=sources, shape=hdulist[0].data.shape,
                          wcshelper=wcs_helper)
    if np.all(model == 0.):
        raise AssertionError("Model is empty")

    # model with *all* sources outside region
    # shape (100,2) means we only sometimes reject a source based on it's x-coord
    model = ar.make_model(sources=sources, shape=(100, 2),
                          wcshelper=wcs_helper)
    if not np.all(model == 0.):
        raise AssertionError("Model is *not* empty")

    # test mask with sigma
    model = ar.make_model(sources=sources, shape=hdulist[0].data.shape,
                          wcshelper=wcs_helper, mask=True)
    if np.all(model == 0.):
        raise AssertionError("Model is empty")
    if not np.any(np.isnan(model)):
        raise AssertionError("Model is not masked")

    # test mask with frac
    model = ar.make_model(sources=sources, shape=hdulist[0].data.shape,
                          wcshelper=wcs_helper, mask=True, frac=0.1)
    if np.all(model == 0.):
        raise AssertionError("Model is empty")
    if not np.any(np.isnan(model)):
        raise AssertionError("Model is not masked")
Esempio n. 4
0
def test_load_sources():
    """Test load_sources"""
    filename = 'tests/test_files/1904_comp.fits'
    cat = ar.load_sources(filename)
    if cat is None:
        raise AssertionError("load_sources failed")
    return
Esempio n. 5
0
def test_load_sources():
    """Test load_sources"""
    filename = 'tests/test_files/1904_comp.fits'
    cat = ar.load_sources(filename)
    if cat is None:
        raise AssertionError("load_sources_failed")
    return
Esempio n. 6
0
def test_make_residual():
    """Test make_residual"""
    fitsfile = 'tests/test_files/1904-66_SIN.fits'
    catalog = 'tests/test_files/1904_comp.fits'
    residual = 'tests/temp/residual.fits'
    masked = 'tests/temp/masked.fits'
    # default operation
    ar.make_residual(fitsfile=fitsfile, catalog=catalog,
                     rfile=residual, mfile=masked, mask=False)
    if not os.path.exists(masked):
        raise AssertionError("Mask file not written")
    os.remove(masked)

    # with masking
    ar.make_residual(fitsfile=fitsfile, catalog=catalog,
                     rfile=residual, mfile=masked, mask=True)
    if not os.path.exists(masked):
        raise AssertionError("Mask file not written")
    os.remove(masked)
Esempio n. 7
0
def test_make_model():
    """Test make_model"""
    filename = 'tests/test_files/1904_comp.fits'
    sources = ar.load_sources(filename)
    hdulist = fits.open('tests/test_files/1904-66_SIN.fits')
    wcs_helper = wcs_helpers.WCSHelper.from_header(header=hdulist[0].header)
    # regular run
    model = ar.make_model(sources=sources,
                          shape=hdulist[0].data.shape,
                          wcshelper=wcs_helper)
    if np.all(model == 0.):
        raise AssertionError("Model is empty")

    # model with *all* sources outside region
    # shape (100,2) means we only sometimes reject a source based on it's x-coord
    model = ar.make_model(sources=sources,
                          shape=(100, 2),
                          wcshelper=wcs_helper)
    if not np.all(model == 0.):
        raise AssertionError("Model is *not* empty")
Esempio n. 8
0
def test_load_sources_missing_columns():
    filename = 'tests/test_files/1904_comp.fits'
    table = catalogs.load_table(filename)
    table.rename_column('ra', 'RAJ2000')
    table.write('dlme.fits')
    cat = ar.load_sources('dlme.fits')
    if os.path.exists('dlme.fits'):
        os.remove('dlme.fits')

    if cat is not None:
        raise AssertionError("Missing columns should be caught, but weren't")
    return
Esempio n. 9
0
def test_load_soruces_renamed_columns():
    """Test load_sources with renamed columns"""
    filename = 'tests/test_files/1904_comp_renamed_cols.fits'
    colnames = {
        'ra_col': 'RAJ2000',
        'dec_col': 'DEJ2000',
        'peak_col': 'S',
        'a_col': 'bmaj',
        'b_col': 'bmin',
        'pa_col': 'bpa'
    }
    cat = ar.load_sources(filename, **colnames)
    if cat is None:
        raise AssertionError("load_sources failed with renamed columns")
    return
Esempio n. 10
0
    src.island = 102
    src.peak_flux = 80 * noise
    cat.append(src)

    return cat


if __name__ == "__main__":
    # configure logging
    logging.basicConfig(format="%(module)s:%(levelname)s %(message)s")
    log = logging.getLogger("Aegean")
    logging_level = logging.DEBUG  # if options.debug else logging.INFO
    log.setLevel(logging_level)

    image, wcs = make_noise_image()
    header = wcs.to_header()
    header['BMAJ'] = psf[0] / 3600
    header['BMIN'] = psf[1] / 3600
    header['BPA'] = psf[2]
    hdu = fits.HDUList(hdus=[fits.PrimaryHDU(header=header, data=image)])
    header = hdu[0].header

    cat = make_catalogue()
    wcshelper = WCSHelper.from_header(header)
    hdu[0].data += AeRes.make_model(cat, image.shape, wcshelper)

    hdu.writeto('synthetic_test.fits', overwrite=True)

    psf_hdu = make_psf_map(hdu)
    psf_hdu.writeto('synthetic_test_psf.fits', overwrite=True)