Esempio n. 1
0
def mp__update_params(args, q_i_buf, q_o_buf, q_i_eva, q_o_eva):  # update network parameters using replay buffer
    class_agent = args.rl_agent
    max_memo = args.max_memo
    net_dim = args.net_dim
    max_step = args.max_step
    max_total_step = args.max_total_step
    batch_size = args.batch_size
    repeat_times = args.repeat_times
    del args

    state_dim, action_dim = q_o_buf.get()  # q_o_buf 1.
    agent = class_agent(state_dim, action_dim, net_dim)

    from copy import deepcopy
    act_cpu = deepcopy(agent.act).to(torch.device("cpu"))
    act_cpu.eval()
    [setattr(param, 'requires_grad', False) for param in act_cpu.parameters()]
    q_i_buf.put(act_cpu)  # q_i_buf 1.
    # q_i_buf.put(act_cpu)  # q_i_buf 2. # warning
    q_i_eva.put(act_cpu)  # q_i_eva 1.

    buffer = BufferArrayGPU(max_memo, state_dim, action_dim)  # experiment replay buffer

    '''initial_exploration'''
    buffer_array, reward_list, step_list = q_o_buf.get()  # q_o_buf 2.
    reward_avg = np.average(reward_list)
    step_sum = sum(step_list)
    buffer.extend_memo(buffer_array)

    q_i_eva.put((act_cpu, reward_avg, step_sum, 0, 0))  # q_i_eva 1.

    total_step = step_sum
    is_training = True
    while is_training:
        buffer_array, reward_list, step_list = q_o_buf.get()  # q_o_buf n.
        reward_avg = np.average(reward_list)
        step_sum = sum(step_list)
        total_step += step_sum
        buffer.extend_memo(buffer_array)

        buffer.init_before_sample()
        loss_a_avg, loss_c_avg = agent.update_parameters(buffer, max_step, batch_size, repeat_times)

        act_cpu.load_state_dict(agent.act.state_dict())
        q_i_buf.put(act_cpu)  # q_i_buf n.
        q_i_eva.put((act_cpu, reward_avg, step_sum, loss_a_avg, loss_c_avg))  # q_i_eva n.

        if q_o_eva.qsize() > 0:
            is_solved = q_o_eva.get()  # q_o_eva n.
            if is_solved:
                is_training = False
        if total_step > max_total_step:
            is_training = False

    q_i_buf.put('stop')
    q_i_eva.put('stop')
    while q_i_buf.qsize() > 0 or q_i_eva.qsize() > 0:
        time.sleep(1)
    time.sleep(4)
    print('; quit: params')
Esempio n. 2
0
def mp__update_params(args, q_i_buf, q_o_buf, q_i_eva, q_o_eva):  # update network parameters using replay buffer
    class_agent = args.class_agent
    max_memo = args.max_memo
    net_dim = args.net_dim
    max_epoch = args.max_epoch
    max_step = args.max_step
    batch_size = args.batch_size
    repeat_times = args.repeat_times
    args.init_for_training()
    del args

    state_dim, action_dim = q_o_buf.get()  # q_o_buf 1.
    agent = class_agent(state_dim, action_dim, net_dim)

    from copy import deepcopy
    act_cpu = deepcopy(agent.act).to(torch.device("cpu"))
    act_cpu.eval()
    [setattr(param, 'requires_grad', False) for param in act_cpu.parameters()]
    q_i_buf.put(act_cpu)  # q_i_buf 1.
    # q_i_buf.put(act_cpu)  # q_i_buf 2. # warning
    q_i_eva.put(act_cpu)  # q_i_eva 1.

    buffer = BufferArrayGPU(max_memo, state_dim, action_dim)  # experiment replay buffer

    '''initial_exploration'''
    buffer_array, reward_list, step_list = q_o_buf.get()  # q_o_buf 2.
    reward_avg = np.average(reward_list)
    step_sum = sum(step_list)
    buffer.extend_memo(buffer_array)

    q_i_eva.put((act_cpu, reward_avg, step_sum, 0, 0))  # q_i_eva 1.

    for epoch in range(max_epoch):  # epoch is episode
        buffer_array, reward_list, step_list = q_o_buf.get()  # q_o_buf n.
        reward_avg = np.average(reward_list)
        step_sum = sum(step_list)
        buffer.extend_memo(buffer_array)

        buffer.init_before_sample()
        loss_a_avg, loss_c_avg = agent.update_parameters(buffer, max_step, batch_size, repeat_times)

        act_cpu.load_state_dict(agent.act.state_dict())
        q_i_buf.put(act_cpu)  # q_i_buf n.
        q_i_eva.put((act_cpu, reward_avg, step_sum, loss_a_avg, loss_c_avg))  # q_i_eva n.

        if q_o_eva.qsize() > 0:
            is_solved = q_o_eva.get()  # q_o_eva n.
            if is_solved:
                break
Esempio n. 3
0
def mp__update_params(args, q_i_buf, q_o_buf, q_i_eva, q_o_eva):  # update network parameters using replay buffer
    class_agent = args.rl_agent
    max_memo = args.max_memo
    net_dim = args.net_dim
    max_step = args.max_step
    max_total_step = args.break_step
    batch_size = args.batch_size
    repeat_times = args.repeat_times
    cwd = args.cwd
    env_name = args.env_name
    if_stop = args.if_break_early
    del args

    state_dim, action_dim = q_o_buf.get()  # q_o_buf 1.
    agent = class_agent(state_dim, action_dim, net_dim)

    from copy import deepcopy
    act_cpu = deepcopy(agent.act).to(torch.device("cpu"))
    act_cpu.eval()
    [setattr(param, 'requires_grad', False) for param in act_cpu.parameters()]
    q_i_buf.put(act_cpu)  # q_i_buf 1.
    q_i_eva.put(act_cpu)  # q_i_eva 1.

    buffer = BufferArrayGPU(max_memo, state_dim, action_dim)  # experiment replay buffer

    '''initial_exploration'''
    buffer_array, reward_list, step_list = q_o_buf.get()  # q_o_buf 2.
    reward_avg = np.average(reward_list)
    step_sum = sum(step_list)
    buffer.extend_memo(buffer_array)

    '''pre training and hard update before training loop'''
    buffer.init_before_sample()
    agent.update_parameters(buffer, max_step, batch_size, repeat_times)
    agent.act_target.load_state_dict(agent.act.state_dict())

    q_i_eva.put((act_cpu, reward_avg, step_sum, 0, 0))  # q_i_eva 1.

    total_step = step_sum
    if_train = True
    if_solve = False
    while if_train:
        buffer_array, reward_list, step_list = q_o_buf.get()  # q_o_buf n.
        reward_avg = np.average(reward_list)
        step_sum = sum(step_list)
        total_step += step_sum
        buffer.extend_memo(buffer_array)

        buffer.init_before_sample()
        loss_a_avg, loss_c_avg = agent.update_parameters(buffer, max_step, batch_size, repeat_times)

        act_cpu.load_state_dict(agent.act.state_dict())
        q_i_buf.put(act_cpu)  # q_i_buf n.
        q_i_eva.put((act_cpu, reward_avg, step_sum, loss_a_avg, loss_c_avg))  # q_i_eva n.

        if q_o_eva.qsize() > 0:
            if_solve = q_o_eva.get()  # q_o_eva n.
        '''break loop rules'''
        if_train = not ((if_stop and if_solve)
                        or total_step > max_total_step
                        or os.path.exists(f'{cwd}/stop'))

    env, state_dim, action_dim, target_reward, if_discrete = build_gym_env(env_name, if_print=False)
    buffer.print_state_norm(env.neg_state_avg, env.div_state_std)

    q_i_buf.put('stop')
    q_i_eva.put('stop')
    while q_i_buf.qsize() > 0 or q_i_eva.qsize() > 0:
        time.sleep(1)
    time.sleep(4)
Esempio n. 4
0
def mp__update_params(args, q_i_eva, q_o_eva):  # 2020-11-11 update network parameters using replay buffer
    rl_agent = args.rl_agent
    max_memo = args.max_memo
    net_dim = args.net_dim
    max_step = args.max_step
    max_total_step = args.break_step
    batch_size = args.batch_size
    repeat_times = args.repeat_times
    cwd = args.cwd
    env_name = args.env_name
    reward_scale = args.reward_scale
    if_stop = args.if_break_early
    gamma = args.gamma
    del args

    env, state_dim, action_dim, target_reward, if_discrete = build_env(env_name, if_print=False)

    '''build agent'''
    agent = rl_agent(state_dim, action_dim, net_dim)  # training agent
    agent.state = env.reset()

    '''send agent to q_i_eva'''
    from copy import deepcopy
    act_cpu = deepcopy(agent.act).to(torch.device("cpu"))
    act_cpu.eval()
    [setattr(param, 'requires_grad', False) for param in act_cpu.parameters()]
    q_i_eva.put(act_cpu)  # q_i_eva 1.

    '''build replay buffer, init: total_step, reward_avg'''
    total_step = 0
    if bool(rl_agent.__name__ in {'AgentModPPO', 'AgentInterPPO'}):
        buffer = BufferArrayGPU(max_memo + max_step, state_dim, action_dim, if_ppo=True)  # experiment replay buffer
        with torch.no_grad():
            reward_avg = get_episode_reward(env, act_cpu, max_step, torch.device("cpu"), if_discrete)
    else:
        buffer = BufferArrayGPU(max_memo, state_dim, action_dim=1 if if_discrete else action_dim, if_ppo=False)
        '''initial exploration'''
        with torch.no_grad():  # update replay buffer
            rewards, steps = initial_exploration(env, buffer, max_step, if_discrete, reward_scale, gamma, action_dim)
        reward_avg = np.average(rewards)
        step_sum = sum(steps)

        '''pre training and hard update before training loop'''
        buffer.update_pointer_before_sample()
        agent.update_policy(buffer, max_step, batch_size, repeat_times)
        if 'act_target' in dir(agent):
            agent.act_target.load_state_dict(agent.act.state_dict())

        q_i_eva.put((act_cpu, reward_avg, step_sum, 0, 0))  # q_i_eva n.
        total_step += step_sum

    '''training loop'''
    if_train = True
    if_solve = False
    while if_train:
        '''update replay buffer by interact with environment'''
        with torch.no_grad():  # speed up running
            rewards, steps = agent.update_buffer(env, buffer, max_step, reward_scale, gamma)
        reward_avg = np.average(rewards) if len(rewards) else reward_avg
        step_sum = sum(steps)
        total_step += step_sum

        '''update network parameters by random sampling buffer for gradient descent'''
        buffer.update_pointer_before_sample()
        loss_a_avg, loss_c_avg = agent.update_policy(buffer, max_step, batch_size, repeat_times)

        '''saves the agent with max reward'''
        act_cpu.load_state_dict(agent.act.state_dict())
        q_i_eva.put((act_cpu, reward_avg, step_sum, loss_a_avg, loss_c_avg))  # q_i_eva n.

        if q_o_eva.qsize() > 0:
            if_solve = q_o_eva.get()  # q_o_eva n.

        '''break loop rules'''
        if_train = not ((if_stop and if_solve)
                        or total_step > max_total_step
                        or os.path.exists(f'{cwd}/stop'))

    env, state_dim, action_dim, target_reward, if_discrete = build_env(env_name, if_print=False)
    buffer.print_state_norm(env.neg_state_avg, env.div_state_std)

    q_i_eva.put('stop')
    while q_i_eva.qsize() > 0:
        time.sleep(1)
    time.sleep(4)