Esempio n. 1
0
    def simulateCallback(frame):
        controlModel.applyBodyTorqueGlobal(1, (0,10,0))
        
        for i in range(stepsPerFrame):
            bodyIDs, positions, positionLocals, forces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, 1000, 2*(1000**.5))
            vpWorld.applyPenaltyForce(bodyIDs, positionLocals, forces)
            vpWorld.step()

        del contactPositions[:]
        del contactForces[:]
        contactPositions[:] = positions
        contactForces[:] = forces
        
        motionModel.update(motion[frame])
        
        bodyPositions = controlModel.getBodyPositionsGlobal()
        bodyVelocities = controlModel.getBodyVelocitiesGlobal()
        CMPos_cm[0] = yrp.getCM(bodyPositions, bodyMasses, totalMass)
        CMVel_cm[0] = yrp.getCM(bodyVelocities, bodyMasses, totalMass)

        bodyPositions_ref = motionModel.getBodyPositionsGlobal()
        bodyVelocities_ref = motionModel.getBodyVelocitiesGlobal()
        CMPos_mm[0] = yrp.getCM(bodyPositions_ref, bodyMasses, totalMass)
        
        CPPos_cm_old = CPPos_cm[0]
        CPPos_cm[0] = yrp.getCP(positions, forces)
        
        if CPPos_cm_old==None or CPPos_cm[0]==None:
            CPVel_cm[0] = None
        else:
            CPVel_cm[0] = (CPPos_cm[0] - CPPos_cm_old)/(1./30.)
Esempio n. 2
0
        def simulateCallback(frame):
            for i in range(stepsPerFrame):
                vpWorld.step()

            velocities_m1 = m1.getBodyVelocitiesGlobal()
            velocities_m2 = m2.getBodyVelocitiesGlobal()

            positions_m1 = m1.getBodyPositionsGlobal()
            positions_m2 = m2.getBodyPositionsGlobal()
            CM_m1 = m1.getBodyPositionGlobal(0)
            CM_m2 = yrp.getCM(positions_m2, masses_m2, totalMass_m2)
            inertias_m1 = m1.getBodyInertiasGlobal()
            inertias_m2 = m2.getBodyInertiasGlobal()
            angVelocities_m1 = m1.getBodyAngVelocitiesGlobal()
            angVelocities_m2 = m2.getBodyAngVelocitiesGlobal()

            L1_std = getLinearMomentum(masses_m1, velocities_m1)
            L2_std = getLinearMomentum(masses_m2, velocities_m2)
            H1_std = getAngularMomentum(CM_m1, inertias_m1, angVelocities_m1,
                                        positions_m1, masses_m1, velocities_m1)
            H2_std = getAngularMomentum(CM_m2, inertias_m2, angVelocities_m2,
                                        positions_m2, masses_m2, velocities_m2)

            #===============================================================================
            # for rendering
            #===============================================================================
            p[:] = m1.getBodyPositionsGlobal() + m2.getBodyPositionsGlobal()
            v[:] = m1.getBodyVelocitiesGlobal() + m2.getBodyVelocitiesGlobal()

            CM[:] = [
                yrp.getCM(m1.getBodyPositionsGlobal(), m1.getBodyMasses()),
                CM_m2
            ]
            L_std[:] = [L1_std, L2_std]
            H_std[:] = [H1_std, H2_std]
Esempio n. 3
0
        def solveIK(desComPos,
                    desIdxs,
                    desPos,
                    desOri,
                    cmW=10.,
                    posW=1.,
                    oriW=1.):
            numItr = 100
            dt = .5
            threshold = 0.1
            for i in range(0, numItr):
                jPart_IK = []
                print '----iter num', i
                IKModel.update(pose)

                th_r_IK = pose.getDOFPositions()
                jointPositions_IK = pose.getJointPositionsGlobal()
                jointAxeses_IK = pose.getDOFAxeses()
                linkPositions_IK = IKModel.getBodyPositionsGlobal()
                linkInertias_IK = IKModel.getBodyInertiasGlobal()

                CM_IK = yrp.getCM(linkPositions_IK, linkMasses, totalMass)
                print CM_IK
                P_IK = ymt.getPureInertiaMatrix(TO, linkMasses,
                                                linkPositions_IK, CM_IK,
                                                linkInertias_IK)

                yjc.computeJacobian2(Jsys_IK, DOFs, jointPositions_IK,
                                     jointAxeses_IK, linkPositions_IK,
                                     allLinkJointMasks)

                for j in range(0, len(desIdxs)):
                    jPart_IK.append(Jsys_IK[6 * desIdxs[j]:6 * desIdxs[j] + 6])

                J_IK, JAngCom_IK = np.vsplit(np.dot(P_IK, Jsys_IK), 2)
                dv_IK = cmW * (desComPos - CM_IK)

                for j in range(0, len(desIdxs)):
                    J_IK = np.vstack((J_IK, jPart_IK[j]))
                    pos_IK = IKModel.getBodyPositionGlobal(desIdxs[j])
                    dv_IK = np.append(dv_IK, posW * (desPos[j] - pos_IK))
                    ori_IK = IKModel.getBodyOrientationGlobal(desIdxs[j])
                    dv_IK = np.append(dv_IK,
                                      oriW * mm.logSO3(desOri[j] * ori_IK.T))
                #print dv_IK[0:3]
                dth_IK_solve = npl.lstsq(J_IK, dv_IK)
                dth_IK_x = dth_IK_solve[0][:totalDOF]
                ype.nested(dth_IK_x, dth_IK)
                #print dth_IK[0][0:3]
                th_IK = yct.getIntegralDOF(th_r_IK, dth_IK, dt)
                pose.setDOFPositions(th_IK)

                if np.dot(dv_IK, dv_IK) < threshold:
                    break
Esempio n. 4
0
        def simulateCallback(frame):
            linkPositions = controlModel.getBodyPositionsGlobal()
            CM = yrp.getCM(linkPositions, linkMasses, totalMass)
            inertias = controlModel.getBodyInertiasGlobal()
            P = getPureInertiaMatrix(TO, linkMasses, linkPositions, CM,
                                     inertias)

            linkVelocities = controlModel.getBodyVelocitiesGlobal()
            dCM = yrp.getCM(linkVelocities, linkMasses, totalMass)
            dP = getPureInertiaMatrixDerivative(
                dTO, linkMasses, linkVelocities, dCM,
                controlModel.getBodyAngVelocitiesGlobal(), inertias)

            if VERBOSE:
                print('P')
                print(P)
                print('dP')
                print(dP)

            for i in range(stepsPerFrame):
                vpWorld.step()
Esempio n. 5
0
    def simulateCallback(frame):
        print "main:frame : ", frame

        curTime = time.time()

        if frame % 30 == 1: pt[0] = time.time()

        global g_initFlag
        global forceShowFrame
        global forceApplyFrame
        global JsysPre
        global JsupPreL
        global JsupPreR
        global JsupPre
        global softConstPoint
        global stage
        global contactRendererName
        global desCOMOffset

        motionModel.update(motion[0])

        Kt, Kk, Kl, Kh, Ksc, Bt, Bl, Bh, B_CM, B_CMSd, B_Toe = viewer.GetParam(
        )

        Dt = 2 * (Kt**.5)
        Dk = 2 * (Kk**.5)
        Dl = 2 * (Kl**.5)
        Dh = 2 * (Kh**.5)
        Dsc = 2 * (Ksc**.5)

        # tracking
        th_r_ori = motion.getDOFPositions(frame)
        th_r = copy.copy(th_r_ori)

        ############################
        #Reference motion modulation

        dCM_k = 10.
        linkVelocities = controlModel.getBodyVelocitiesGlobal()
        dCM = yrp.getCM(linkVelocities, linkMasses, totalMass)
        dCM_plane = copy.copy(dCM)
        dCM_plane[1] = 0.

        global leftHipTimer
        if viewer.objectInfoWnd.onLeftHip:
            leftHipTimer = 60
            viewer.objectInfoWnd.onLeftHip = False
        if leftHipTimer > 0:
            viewer.objectInfoWnd.comOffsetX.value(
                0.08 * np.sin(2 * 3.14 * leftHipTimer / 60.))
            #viewer.objectInfoWnd.comOffsetZ.value(0.04*np.cos(2*3.14*leftHipTimer/90.))
            #B_Hipd = viewer.objectInfoWnd.labelLeftHip.value()
            #newR1 = mm.exp(mm.v3(0.0,1.0,0.0), 3.14*0.5*B_Hipd/100.)
            #idx = motion[0].skeleton.getJointIndex('LeftUpLeg')
            #th_r[idx] = np.dot(th_r[idx], newR1)
            #idx = motion[0].skeleton.getJointIndex('RightUpLeg')
            #th_r[idx] = np.dot(th_r[idx], newR1)
            leftHipTimer -= 1

        timeReport[0] += time.time() - curTime
        curTime = time.time()

        th = controlModel.getDOFPositions()
        dth_r = motion.getDOFVelocities(frame)
        dth = controlModel.getDOFVelocities()
        ddth_r = motion.getDOFAccelerations(frame)
        ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r,
                                                  Kt, Dt)
        ddth_c = controlModel.getDOFAccelerations()

        ype.flatten(ddth_des, ddth_des_flat)
        ype.flatten(dth, dth_flat)

        ype.flatten(ddth_c, ddth_c_flat)

        # jacobian
        refFootL = motionModel.getBodyPositionGlobal(supL)
        refFootR = motionModel.getBodyPositionGlobal(supR)

        positionFootL = [None] * footPartNum
        positionFootR = [None] * footPartNum
        for i in range(footPartNum):
            positionFootL[i] = controlModel.getBodyPositionGlobal(
                indexFootL[i])
            positionFootR[i] = controlModel.getBodyPositionGlobal(
                indexFootR[i])

        linkPositions = controlModel.getBodyPositionsGlobal()
        linkVelocities = controlModel.getBodyVelocitiesGlobal()
        linkAngVelocities = controlModel.getBodyAngVelocitiesGlobal()
        linkInertias = controlModel.getBodyInertiasGlobal()

        jointPositions = controlModel.getJointPositionsGlobal()
        jointAxeses = controlModel.getDOFAxeses()

        CM = yrp.getCM(linkPositions, linkMasses, totalMass)
        dCM = yrp.getCM(linkVelocities, linkMasses, totalMass)
        CM_plane = copy.copy(CM)
        CM_plane[1] = 0.
        dCM_plane = copy.copy(dCM)
        dCM_plane[1] = 0.

        linkPositions_ref = motionModel.getBodyPositionsGlobal()
        linkVelocities_ref = motionModel.getBodyVelocitiesGlobal()
        linkAngVelocities_ref = motionModel.getBodyAngVelocitiesGlobal()
        linkInertias_ref = motionModel.getBodyInertiasGlobal()

        CM_ref = yrp.getCM(linkPositions_ref, linkMasses, totalMass)
        CM_plane_ref = copy.copy(CM_ref)
        CM_plane_ref[1] = 0.

        P = ymt.getPureInertiaMatrix(TO, linkMasses, linkPositions, CM,
                                     linkInertias)
        dP = ymt.getPureInertiaMatrixDerivative(dTO, linkMasses,
                                                linkVelocities, dCM,
                                                linkAngVelocities,
                                                linkInertias)

        timeReport[1] += time.time() - curTime
        curTime = time.time()

        yjc.computeJacobian2(Jsys, DOFs, jointPositions, jointAxeses,
                             linkPositions, allLinkJointMasks)
        timeReport[2] += time.time() - curTime
        curTime = time.time()

        # yjc.computeJacobianDerivative2(dJsys, DOFs, jointPositions, jointAxeses, linkAngVelocities, linkPositions, allLinkJointMasks)
        if frame > 0:
            dJsys = (Jsys - JsysPre) * 30.
        else:
            dJsys = (Jsys - Jsys)
        JsysPre = Jsys.copy()

        timeReport[3] += time.time() - curTime
        curTime = time.time()

        lcpBodyIDs, lcpContactPositions, lcpContactPositionLocals, lcpContactForces = hls.calcLCPForces(
            motion, vpWorld, controlModel, bodyIDsToCheck, 1., 4, None)
        # bodyIDs : IDs for Virtual Physics, not VpModel !!!
        bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(
            bodyIDsToCheck, mus, Ks, Ds)
        CP = yrp.getCP(contactPositions, contactForces)
        if (CP is not None):
            CP[1] = 0.

        for i in range(controlModel.getBodyNum()):
            controlModel.SetBodyColor(bodyIDsToCheck[i], 0, 0, 0, 255)

        contactFlagFootL = [0] * footPartNum
        contactFlagFootR = [0] * footPartNum

        for i in range(len(bodyIDs)):
            controlModel.SetBodyColor(bodyIDs[i], 255, 105, 105, 200)
            index = controlModel.id2index(bodyIDs[i])
            for j in range(len(indexFootL)):
                if index == indexFootL[j]:
                    contactFlagFootL[j] = 1
            for j in range(len(indexFootR)):
                if index == indexFootR[j]:
                    contactFlagFootR[j] = 1

        for j in range(0, footPartNum):
            jFootR[j] = Jsys[6 * indexFootR[j]:6 * indexFootR[j] + 6]  #.copy()
            jFootL[j] = Jsys[6 * indexFootL[j]:6 * indexFootL[j] + 6]  #.copy()
            dJFootR[j] = dJsys[6 * indexFootR[j]:6 * indexFootR[j] +
                               6]  #.copy()
            dJFootL[j] = dJsys[6 * indexFootL[j]:6 * indexFootL[j] +
                               6]  #.copy()
        if footPartNum == 1:
            desFCL = (controlModel.getBodyPositionGlobal(supL))
            desFCR = (controlModel.getBodyPositionGlobal(supR))
        else:
            r = .5 + desCOMOffset
            desFCL = (controlModel.getBodyPositionGlobal(indexFootL[0]) * r +
                      controlModel.getBodyPositionGlobal(indexFootL[1]) *
                      (1.0 - r)
                      )  #controlModel.getBodyPositionGlobal(indexFootL[1])
            desFCR = (controlModel.getBodyPositionGlobal(indexFootR[0]) * r +
                      controlModel.getBodyPositionGlobal(indexFootR[1]) *
                      (1.0 - r)
                      )  #controlModel.getBodyPositionGlobal(indexFootR[1])
        desFC = desFCL + (desFCR - desFCL) / 2.0
        desFC[1] = 0
        rd_footCenter_des[0] = desFC.copy()
        curRelCMVec = CM_plane - desFC
        vecRatio = mm.length(curRelCMVec) * 0.
        #print(frame, vecRatio)
        footCenter = desFC - curRelCMVec * (vecRatio)  #/10.0

        footCenter = (
            getBodyGlobalPos(controlModel, motion, 'LeftCalcaneus_1') +
            getBodyGlobalPos(controlModel, motion, 'LeftPhalange_1') +
            getBodyGlobalPos(controlModel, motion, 'RightCalcaneus_1') +
            getBodyGlobalPos(controlModel, motion, 'RightPhalange_1')) / 4.
        #footCenter = (getBodyGlobalPos(controlModel, motion, 'LeftCalcaneus_1') + getBodyGlobalPos(controlModel, motion, 'LeftTalus_1') + getBodyGlobalPos(controlModel, motion, 'RightCalcaneus_1') + getBodyGlobalPos(controlModel, motion, 'RightTalus_1'))/4.

        footCenter_ref = refFootL + (refFootR - refFootL) / 2.0
        #footCenter_ref[1] = 0.
        footCenter[1] = 0.
        footCenterOffset = np.array([
            viewer.objectInfoWnd.comOffsetX.value(), 0,
            viewer.objectInfoWnd.comOffsetZ.value()
        ])
        #footCenter += footCenterOffset

        vecRatio = mm.length(curRelCMVec) * 0.
        softConstPointOffset = -curRelCMVec * (vecRatio)  #/10.0
        #print(frame, vecRatio, softConstPointOffset)

        desForeSupLAcc = [0, 0, 0]
        desForeSupRAcc = [0, 0, 0]

        totalNormalForce = [0, 0, 0]

        for i in range(len(contactForces)):
            totalNormalForce[0] += contactForces[i][0]
            totalNormalForce[1] += contactForces[i][1]
            totalNormalForce[2] += contactForces[i][2]

        #print((totalMass*mm.s2v(wcfg.gravity))[1])

        footCenterOffset = np.array([
            viewer.objectInfoWnd.comOffsetX.value(),
            viewer.objectInfoWnd.comOffsetY.value(),
            viewer.objectInfoWnd.comOffsetZ.value()
        ])

        ######################
        # optimization terms
        ######################

        # linear momentum
        CM_ref_plane = footCenter + footCenterOffset
        dL_des_plane = Kl * totalMass * (CM_ref_plane -
                                         CM_plane) - Dl * totalMass * dCM_plane
        dL_des_plane[1] = Kl * totalMass * (CM_ref[1] + footCenterOffset[1] -
                                            CM[1]) - Dl * totalMass * dCM[1]
        #dL_des_plane[1] = 0.
        #print 'dL_des_plane', dL_des_plane

        # angular momentum
        CP_ref = footCenter + footCenterOffset
        CP_ref[1] = 0.

        timeStep = 30.
        if (CP_old[0] is None) or (CP is None):
            dCP = None
        else:
            dCP = (CP - CP_old[0]) * timeStep
        CP_old[0] = CP

        if (CP is not None) and (dCP is not None):
            ddCP_des = Kh * (CP_ref - CP) - Dh * (dCP)
            CP_des = CP + dCP * (1 / timeStep) + .5 * ddCP_des * (
                (1 / timeStep)**2)
            #print 'dCP: ', dCP
            #print 'ddCP_des: ', ddCP_des
            #print 'CP_des: ', CP_des
            #dH_des = np.cross((CP_des - CM), (dL_des_plane + totalMass*mm.s2v(wcfg.gravity)))
            dH_des = np.cross(
                (CP_des - CM_plane),
                (dL_des_plane + totalMass * mm.s2v(wcfg.gravity)))
        else:
            dH_des = None

        # momentum matrix
        RS = np.dot(P, Jsys)
        R, S = np.vsplit(RS, 2)

        rs = np.dot((np.dot(dP, Jsys) + np.dot(P, dJsys)), dth_flat)
        r_bias, s_bias = np.hsplit(rs, 2)

        flagContact = True
        if (dH_des is None) or np.any(np.isnan(dH_des)) == True:
            flagContact = False
            #viewer.doc.showRenderer('rd_grf_des', False)
            #viewer.motionViewWnd.update(1, viewer.doc)
        #else:
        #viewer.doc.showRenderer('rd_grf_des', True)
        #viewer.motionViewWnd.update(1, viewer.doc)
        '''
        0 : initial
        1 : contact
        2 : fly
        3 : landing
        '''

        #MOTION = FORWARD_JUMP
        if mit.MOTION == mit.FORWARD_JUMP:
            frame_index = [136, 100]
            #frame_index = [100000, 100000]
        elif mit.MOTION == mit.TAEKWONDO:
            frame_index = [130, 100]
            #frame_index = [100000, 100000]
        elif mit.MOTION == mit.TAEKWONDO2:
            frame_index = [130 + 40, 100]
        elif mit.MOTION == mit.WALK:
            frame_index = [10000, 60]
        elif mit.MOTION == mit.TIPTOE:
            frame_index = [1000000, 1000000]
            #frame_index = [10000, 165]
        else:
            frame_index = [1000000, 1000000]

        #MOTION = TAEKWONDO
        #frame_index = [135, 100]

        if frame > frame_index[0]:
            if stage != POWERFUL_BALANCING:
                print("#", frame, "-POWERFUL_BALANCING")
            stage = POWERFUL_BALANCING
            Kk = Kk * 2
            Dk = 2 * (Kk**.5)
        elif frame > frame_index[1]:
            if stage != MOTION_TRACKING:
                print("#", frame, "-MOTION_TRACKING")
            stage = MOTION_TRACKING

        trackingW = w

        #if checkAll(contactFlagFootR, 0) != 1 :
        if 0:  #stage == MOTION_TRACKING:
            trackingW = w2
            #stage = POWERFUL_BALANCING
            Bt = Bt * 2

        # optimization

        mot.addTrackingTerms(problem, totalDOF, Bt, trackingW, ddth_des_flat)

        #mot.addSoftPointConstraintTerms(problem, totalDOF, Bsc, ddP_des1, Q1, q_bias1)

        if flagContact == True:
            if stage != MOTION_TRACKING + 10:
                mot.addLinearTerms(problem, totalDOF, Bl, dL_des_plane, R,
                                   r_bias)
                #mot.addAngularTerms(problem, totalDOF, Bh, dH_des, S, s_bias)
                # using || dH ||^2 instead
                mot.addAnotherTerms(problem, totalDOF, Bh, S,
                                    -(s_bias + Kh * np.dot(S, dth_flat)))

        a_sup_2 = None
        Jsup_2 = None
        dJsup_2 = None

        ##############################
        # Hard constraint

        Kk2 = Kk * 4.0
        Dk2 = 2 * (Kk2**.5)

        ankleW = 0
        ankleOffset = ankleW * curRelCMVec[2]
        metatarW = 0
        metatarOffset = metatarW * curRelCMVec[2]

        ##############################

        ##############################
        # Additional constraint

        if stage != MOTION_TRACKING and frame > 5:
            # ankle strategy
            idx = 0  #LEFT/RIGHT_TOES
            if mit.FOOT_PART_NUM == 1:
                yOffset = 0.03
            else:
                yOffset = 0.069
                #yOffset = 0.06
            # ankleOffset = (footCenter - CM_plane)*4.
            ankleOffset = footCenterOffset * 10.

            ankleOffset[1] = 0.
            #ankleOffset[2] = 0.
            ankleOffset[2] = ankleOffset[2] * 20.
            ankleOffsetL = ankleOffset.copy()
            ankleOffsetR = ankleOffset.copy()

            #ankleOffset= np.array((0,0,0))

            if footCenterOffset[0] > 0.0:
                ankleOffsetL[0] = 0.
            else:
                ankleOffsetR[0] = 0.

            # print 'ankleOffset=', ankleOffset

            desLinearAccL, desPosL = getDesFootLinearAcc(
                motionModel, controlModel, indexFootL[idx], ModelOffset,
                CM_ref, CM, Kk, Dk, yOffset)  #0.076) #0.14)
            desLinearAccR, desPosR = getDesFootLinearAcc(
                motionModel, controlModel, indexFootR[idx], ModelOffset,
                CM_ref, CM, Kk, Dk, yOffset)

            ax = [0, 0, -1]
            aaa = getBodyGlobalOri(controlModel, motion, 'RightFoot')
            #print np.dot(aaa, ax)
            if mit.FOOT_PART_NUM == 1:
                ax = [0, 1, 0]

            desAngularAccL = getDesFootAngularAcc(
                motionModel, controlModel, indexFootL[idx], Kk, Dk, ax,
                mm.normalize([0, 1, 0] + ankleOffsetL))
            desAngularAccR = getDesFootAngularAcc(
                motionModel, controlModel, indexFootR[idx], Kk, Dk, ax,
                mm.normalize([0, 1, 0] + ankleOffsetR))

            a_sup_2 = np.hstack((np.hstack((desLinearAccL, desAngularAccL)),
                                 np.hstack((desLinearAccR, desAngularAccR))))
            Jsup_2 = np.vstack((jFootL[idx], jFootR[idx]))
            dJsup_2 = np.vstack((dJFootL[idx], dJFootR[idx]))
            #mot.addConstraint(problem, totalDOF, Jsup_2, dJsup_2, dth_flat, a_sup_2)
            #mot.addConstraint(problem, totalDOF, Jsup_2[:1], dJsup_2[:1], dth_flat, a_sup_2[:1])
            #mot.addConstraint(problem, totalDOF, Jsup_2[2:], dJsup_2[2:], dth_flat, a_sup_2[2:])
            #mot.addConstraint(problem, totalDOF, Jsup_2[3:], dJsup_2[3:], dth_flat, a_sup_2[3:])
            mot.addAnotherTerms(problem, totalDOF,
                                viewer.objectInfoWnd.Bc.value(), Jsup_2[3:],
                                a_sup_2[3:] - np.dot(dJsup_2[3:], dth_flat))
            #mot.addAnotherTerms(problem, totalDOF, viewer.objectInfoWnd.Bc.value(), Jsup_2, a_sup_2 - np.dot(dJsup_2, dth_flat))
            #mot.addAnotherTerms(problem, totalDOF, 1.*viewer.objectInfoWnd.Bc.value(), Jsup_2[0:1], a_sup_2[0:1] - np.dot(dJsup_2[0:1] , dth_flat))
            #mot.addAnotherTerms(problem, totalDOF, 1.*viewer.objectInfoWnd.Bc.value(), Jsup_2[2:], a_sup_2[2:] - np.dot(dJsup_2[2:] , dth_flat))

            desCOMOffset = 0.0

            rd_DesPosL[0] = desPosL.copy()
            rd_DesPosR[0] = desPosR.copy()

        if stage == STATIC_BALANCING and frame > 10:  # and False:
            del rd_desPoints[:]
            # foot strategy
            #Kk2 = Kk * 2.5
            #Kk2 = Kk * .2
            #Dk2 = 2*(Kk2**.5)
            desForePosL = [0, 0, 0]
            desForePosR = [0, 0, 0]
            desRearPosL = [0, 0, 0]
            desRearPosR = [0, 0, 0]
            footPartPos = []
            footPartPos.append(
                controlModel.getBodyPositionGlobal(
                    motion[0].skeleton.getJointIndex('LeftCalcaneus_1')))
            footPartPos.append(
                controlModel.getBodyPositionGlobal(
                    motion[0].skeleton.getJointIndex('LeftPhalange_1')))
            footPartPos.append(
                controlModel.getBodyPositionGlobal(
                    motion[0].skeleton.getJointIndex('RightCalcaneus_1')))
            footPartPos.append(
                controlModel.getBodyPositionGlobal(
                    motion[0].skeleton.getJointIndex('RightPhalange_1')))

            for i in range(1, footPartNum):
                contactFlagFootL[i] = 1
                contactFlagFootR[i] = 1
            SupPts = np.vstack(
                (np.array((footPartPos[0][0], footPartPos[1][0],
                           footPartPos[2][0], footPartPos[3][0])),
                 np.array(
                     (footPartPos[0][2], footPartPos[1][2], footPartPos[2][2],
                      footPartPos[3][2])), np.array((1., 1., 1., 1.))))

            coordWidthLen = 2.
            coordLengthLen = 1.5
            SupUV = np.vstack(
                (np.array((-coordWidthLen, -coordWidthLen, coordWidthLen,
                           coordWidthLen)),
                 np.array((-coordLengthLen, coordLengthLen, -coordLengthLen,
                           coordLengthLen)), np.array((1., 1., 1., 1.))))
            SupMap = np.dot(np.dot(SupUV, SupUV.T),
                            np.linalg.inv(np.dot(SupPts, SupUV.T)))
            #print SupMap
            desFootCenter = footCenter + footCenterOffset
            footCenterPts = np.array((desFootCenter[0], desFootCenter[2], 1))

            #print np.dot(SupMap, footCenterPts)
            #print np.dot(getBodyGlobalOri(controlModel, motion, 'LeftMetatarsal_1'), np.array((0,1,0)))

            CM_plane_2D = np.array((CM[0], CM[2], 1))
            # CM_plane_UV = np.dot(SupMap, CM_plane_2D)
            CM_plane_UV = np.dot(SupMap, footCenterPts)
            # print CM_plane_UV
            # for i in range(1, footPartNum):
            if CM_plane_UV[1] > .5:
                # com is in front
                for i in range(1, 5):
                    contactFlagFootL[i] = 0
                    contactFlagFootR[i] = 0
            elif CM_plane_UV[1] < -.5:
                # com is back
                for i in range(3, footPartNum):
                    contactFlagFootL[i] = 0
                    contactFlagFootR[i] = 0
            else:
                # com is in middle position
                for i in range(3, 5):
                    contactFlagFootL[i] = 0
                    contactFlagFootR[i] = 0

            contactFlagFoot = contactFlagFootL
            if CM_plane_UV[0] < 0.:
                contactFlagFoot = contactFlagFootR
                # CM_plane_UV[0] = -CM_plane_UV[0]

            if abs(CM_plane_UV[0]) > 1.:
                for j in range(0, 3):
                    contactFlagFoot[2 * j + 2] = 0

            # print 'footL : ',contactFlagFootL
            # print 'footR : ',contactFlagFootR

            for i in range(1, footPartNum):

                axis = [0, 0, 1]
                if i == 1 or i == 2:
                    axis = [0, 0, -1]

                desAng = [0, 0, 1]
                if i == 1 or i == 2:
                    desAng = [0, 0, -1]

                desY = 0.029
                if contactFlagFootL[i] == 1:
                    desLinearAccL, desForePosL = getDesFootLinearAcc(
                        motionModel, controlModel, indexFootL[i], ModelOffset,
                        CM_ref, CM, Kk2, Dk2, desY)
                    desAngularAccL = getDesFootAngularAcc(
                        motionModel, controlModel, indexFootL[i], Kk2, Dk2,
                        axis, desAng)
                    a_sup_2 = np.hstack((desLinearAccL, desAngularAccL))
                    Jsup_2 = jFootL[i].copy()
                    dJsup_2 = dJFootL[i].copy()
                    mot.addConstraint(problem, totalDOF, Jsup_2, dJsup_2,
                                      dth_flat, a_sup_2)
                    #mot.addAnotherTerms(problem, totalDOF, viewer.objectInfoWnd.Bc.value(), Jsup_2, a_sup_2 - np.dot(dJsup_2, dth_flat))
                    #mot.addAnotherTerms(problem, totalDOF, viewer.objectInfoWnd.Bc.value(), Jsup_2[3:], a_sup_2[3:] - np.dot(dJsup_2[3:] , dth_flat))
                    rd_desPoints.append(desForePosL.copy())

                if contactFlagFootR[i] == 1:
                    desLinearAccR, desForePosR = getDesFootLinearAcc(
                        motionModel, controlModel, indexFootR[i], ModelOffset,
                        CM_ref, CM, Kk2, Dk2, desY)
                    desAngularAccR = getDesFootAngularAcc(
                        motionModel, controlModel, indexFootR[i], Kk2, Dk2,
                        axis, desAng)
                    a_sup_2 = np.hstack((desLinearAccR, desAngularAccR))
                    Jsup_2 = jFootR[i].copy()
                    dJsup_2 = dJFootR[i].copy()
                    mot.addConstraint(problem, totalDOF, Jsup_2, dJsup_2,
                                      dth_flat, a_sup_2)
                    #mot.addAnotherTerms(problem, totalDOF, viewer.objectInfoWnd.Bc.value(), Jsup_2, a_sup_2 - np.dot(dJsup_2, dth_flat))
                    #mot.addAnotherTerms(problem, totalDOF, viewer.objectInfoWnd.Bc.value(), Jsup_2[3:], a_sup_2[3:] - np.dot(dJsup_2[3:], dth_flat))
                    rd_desPoints.append(desForePosR.copy())

            rd_DesForePosL[0] = desForePosL
            rd_DesForePosR[0] = desForePosR
            rd_DesRearPosL[0] = desRearPosL
            rd_DesRearPosR[0] = desRearPosR

        ##############################

        #if Jsup_2 is not None:
        #    mot.addConstraint(problem, totalDOF, Jsup_2, dJsup_2, dth_flat, a_sup_2)

        timeReport[4] += time.time() - curTime
        curTime = time.time()

        r = problem.solve()
        #print frame
        #Ashape = np.shape(problem.A)
        #if len(Ashape) >0 :
        #    for i in range(0, Ashape[0]):
        #        print problem.A[i]
        #print problem.A[]
        #print problem.b
        #print r
        problem.clear()
        #print r['x']
        ype.nested(r['x'], ddth_sol)

        #print ddth_sol

        rootPos[0] = controlModel.getBodyPositionGlobal(selectedBody)
        localPos = [[0, 0, 0]]

        ###########################################
        ##Jacobian Transpose control

        # COM Position control
        #fCom = Wcp*(pHatComDes - pHatCom) + Wcv*(vComDes - vCom) + Wcm*(footCenter_plane - CM_plane)

        w1 = 10  #10.1
        w2 = 1  #1#2*(w1**.5)

        if frame > 100:
            w1 = 10.1  #10.1
            w2 = 1

        footToCMVec = CM - footCenter
        desCMPos = [footCenter[0], mm.length(footToCMVec), footCenter[2]]
        #print("desCMPos", desCMPos)
        #print("CM", CM)
        fCom = w1 * (desCMPos - CM) + w2 * (-dCM)
        #print("fCom", fCom)
        #fCom[0] = 0.
        #fCom[1] = 0
        #fCom[2] = 0
        rd_virtualForce[0] = fCom.copy()

        #hipPos = controlModel.getBodyPositionGlobal(rootB)
        headPos = controlModel.getBodyPositionGlobal(selectedBody)
        hipPos = controlModel.getBodyPositionGlobal(rootB)
        yjc.computeJacobian2(Jcom, DOFs, jointPositions, jointAxeses,
                             [headPos], comUpperJointMasks)
        #yjc.computeJacobianDerivative2(dJcom, DOFs, jointPositions, jointAxeses, linkAngVelocities, [CM], comUpperJointMasks, False)
        JcomT = Jcom.T
        TauJT = np.dot(JcomT, fCom)

        # Angular Momentum
        Hc = ymt.getAngularMomentum(CM, linkInertias, linkAngVelocities,
                                    linkPositions, linkMasses, linkVelocities)
        Href = ymt.getAngularMomentum(CM_ref, linkInertias_ref,
                                      linkAngVelocities_ref, linkPositions_ref,
                                      linkMasses, linkVelocities_ref)

        Wam = .05
        Tam = Wam * (Href - Hc)
        #print("Tam", Tam)

        yjc.computeAngJacobian2(JcomAng, DOFs, jointPositions, jointAxeses,
                                [headPos], comUpperJointMasks)
        TauAM = np.dot(JcomAng.T, Tam)

        timeReport[5] += time.time() - curTime
        curTime = time.time()

        for i in range(stepsPerFrame):
            # apply penalty force
            bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(
                bodyIDsToCheck, mus, Ks, Ds)
            #print frame, bodyIDs, contactPositions, contactPositionLocals, contactForces
            vpWorld.applyPenaltyForce(bodyIDs, contactPositionLocals,
                                      contactForces)

            extraForce[0] = viewer.GetForce()
            if (extraForce[0][0] != 0 or extraForce[0][1] != 0
                    or extraForce[0][2] != 0):
                forceApplyFrame += 1
                #vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce)
                controlModel.applyBodyForceGlobal(selectedBody, extraForce[0])
                applyedExtraForce[0] = extraForce[0]

            if forceApplyFrame * wcfg.timeStep > 0.1:
                viewer.ResetForce()
                forceApplyFrame = 0
            #print ddth_sol
            controlModel.setDOFAccelerations(ddth_sol)

            controlModel.solveHybridDynamics()
            vpWorld.step()

        #if frame%30==0: print 'elapsed time for 30 frames:', time.time()-pt[0]
        # rendering

        rd_footCenter[0] = footCenter

        rd_CM[0] = CM.copy()

        rd_CM_plane[0] = CM_plane.copy()

        rd_footCenter_ref[0] = footCenter_ref
        rd_CM_plane_ref[0] = CM_ref.copy()
        rd_CM_ref[0] = CM_ref.copy()
        rd_CM_ref_vec[0] = (CM_ref - footCenter_ref) * 3.
        rd_CM_vec[0] = (CM - CM_plane)
        rd_CM_des[0] = CM_ref_plane.copy()
        rd_CM_des[0][1] = .01

        #rd_CM_plane[0][1] = 0.

        if (CP is not None) and (dCP is not None):
            rd_CP[0] = CP
            rd_CP_des[0] = CP_des

        rd_dL_des_plane[0] = dL_des_plane
        rd_dH_des[0] = dH_des

        rd_grf_des[
            0] = totalNormalForce  # - totalMass*mm.s2v(wcfg.gravity)#dL_des_plane - totalMass*mm.s2v(wcfg.gravity)

        rd_exf_des[0] = applyedExtraForce[0]
        rd_root_des[0] = rootPos[0]

        rd_CMP[0] = softConstPoint

        rd_soft_const_vec[0] = controlModel.getBodyPositionGlobal(
            constBody) - softConstPoint

        del rd_contactForces[:]
        del rd_contactPositions[:]
        if CP is not None:
            for i in range(len(lcpBodyIDs)):
                rd_contactForces.append(lcpContactForces[i].copy() / 200.)
                rd_contactPositions.append(lcpContactPositions[i].copy())

        timeReport[6] += time.time() - curTime
    def simulateCallback(frame):
        global g_initFlag
        global forceShowFrame
        global forceApplyFrame
        global JsysPre
        global JsupPreL
        global JsupPreR
        global JsupPre
        global softConstPoint
        global stage

        motionModel.update(motion[frame])

        Kt, Kk, Kl, Kh, Ksc, Bt, Bl, Bh, Bsc = viewer.GetParam()

        Dt = 2 * (Kt**.5)
        Dk = 2 * (Kk**.5)
        Dl = 2 * (Kl**.5)
        Dh = 2 * (Kh**.5)
        Dsc = 2 * (Ksc**.5)

        if Bsc == 0.0:
            viewer.doc.showRenderer('softConstraint', False)
            viewer.motionViewWnd.update(1, viewer.doc)
        else:
            viewer.doc.showRenderer('softConstraint', True)
            renderer1 = viewer.doc.getRenderer('softConstraint')
            renderer1.rc.setLineWidth(0.1 + Bsc * 3)
            viewer.motionViewWnd.update(1, viewer.doc)

        # tracking
        th_r = motion.getDOFPositions(frame)
        th = controlModel.getDOFPositions()
        dth_r = motion.getDOFVelocities(frame)
        dth = controlModel.getDOFVelocities()
        ddth_r = motion.getDOFAccelerations(frame)
        ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r,
                                                  Kt, Dt)
        ddth_c = controlModel.getDOFAccelerations()

        ype.flatten(ddth_des, ddth_des_flat)
        ype.flatten(dth, dth_flat)

        ype.flatten(ddth_c, ddth_c_flat)

        # jacobian
        '''
        if stage == POWERFUL_BALANCING:
        #if stage != MOTION_TRACKING:
            footCenterL = controlModel.getBodyPositionGlobal(supL)        
            footCenterR = controlModel.getBodyPositionGlobal(supR)
        else:
            footCenterL = controlModel.getBodyPositionGlobal(indexFootL[1])        
            footCenterR = controlModel.getBodyPositionGlobal(indexFootR[1])
        '''
        if footPartNum == 1:
            footCenterL = controlModel.getBodyPositionGlobal(supL)
            footCenterR = controlModel.getBodyPositionGlobal(supR)
        else:
            if stage == POWERFUL_BALANCING:
                footCenterL = controlModel.getBodyPositionGlobal(supL)
                footCenterR = controlModel.getBodyPositionGlobal(supR)
            else:
                footCenterL = (
                    controlModel.getBodyPositionGlobal(supL) +
                    controlModel.getBodyPositionGlobal(indexFootL[1])) / 2.0
                footCenterR = (
                    controlModel.getBodyPositionGlobal(supR) +
                    controlModel.getBodyPositionGlobal(indexFootR[1])) / 2.0

        refFootL = motionModel.getBodyPositionGlobal(supL)
        refFootR = motionModel.getBodyPositionGlobal(supR)

        footCenter = footCenterL + (footCenterR - footCenterL) / 2.0
        footCenter[1] = 0.

        footCenter_ref = refFootL + (refFootR - refFootL) / 2.0
        #footCenter_ref[1] = 0.

        positionFootL = [None] * footPartNum
        positionFootR = [None] * footPartNum
        for i in range(footPartNum):
            positionFootL[i] = controlModel.getBodyPositionGlobal(
                indexFootL[i])
            positionFootR[i] = controlModel.getBodyPositionGlobal(
                indexFootR[i])

        linkPositions = controlModel.getBodyPositionsGlobal()
        linkVelocities = controlModel.getBodyVelocitiesGlobal()
        linkAngVelocities = controlModel.getBodyAngVelocitiesGlobal()
        linkInertias = controlModel.getBodyInertiasGlobal()

        jointPositions = controlModel.getJointPositionsGlobal()
        jointAxeses = controlModel.getDOFAxeses()

        CM = yrp.getCM(linkPositions, linkMasses, totalMass)
        dCM = yrp.getCM(linkVelocities, linkMasses, totalMass)
        CM_plane = copy.copy(CM)
        CM_plane[1] = 0.
        dCM_plane = copy.copy(dCM)
        dCM_plane[1] = 0.

        linkPositions_ref = motionModel.getBodyPositionsGlobal()
        CM_ref = yrp.getCM(linkPositions_ref, linkMasses, totalMass)
        CM_plane_ref = copy.copy(CM_ref)
        CM_plane_ref[1] = 0.

        P = ymt.getPureInertiaMatrix(TO, linkMasses, linkPositions, CM,
                                     linkInertias)
        dP = ymt.getPureInertiaMatrixDerivative(dTO, linkMasses,
                                                linkVelocities, dCM,
                                                linkAngVelocities,
                                                linkInertias)

        yjc.computeJacobian2(Jsys, DOFs, jointPositions, jointAxeses,
                             linkPositions, allLinkJointMasks)
        yjc.computeJacobianDerivative2(dJsys, DOFs, jointPositions,
                                       jointAxeses, linkAngVelocities,
                                       linkPositions, allLinkJointMasks)

        if g_initFlag == 0:
            softConstPoint = controlModel.getBodyPositionGlobal(constBody)
            softConstPoint[1] -= .3
            g_initFlag = 1

        yjc.computeJacobian2(jFootL[0], DOFs, jointPositions, jointAxeses,
                             [positionFootL[0]], jointMasksFootL[0])
        yjc.computeJacobianDerivative2(dJFootL[0], DOFs, jointPositions,
                                       jointAxeses, linkAngVelocities,
                                       [positionFootL[0]], jointMasksFootL[0],
                                       False)

        yjc.computeJacobian2(jFootR[0], DOFs, jointPositions, jointAxeses,
                             [positionFootR[0]], jointMasksFootR[0])
        yjc.computeJacobianDerivative2(dJFootR[0], DOFs, jointPositions,
                                       jointAxeses, linkAngVelocities,
                                       [positionFootR[0]], jointMasksFootR[0],
                                       False)

        yjc.computeAngJacobian2(jAngFootL[0], DOFs, jointPositions,
                                jointAxeses, [positionFootL[0]],
                                jointMasksFootL[0])
        yjc.computeAngJacobianDerivative2(dJAngFootL[0], DOFs, jointPositions,
                                          jointAxeses, linkAngVelocities,
                                          [positionFootL[0]],
                                          jointMasksFootL[0], False)

        yjc.computeAngJacobian2(jAngFootR[0], DOFs, jointPositions,
                                jointAxeses, [positionFootR[0]],
                                jointMasksFootR[0])
        yjc.computeAngJacobianDerivative2(dJAngFootR[0], DOFs, jointPositions,
                                          jointAxeses, linkAngVelocities,
                                          [positionFootR[0]],
                                          jointMasksFootR[0], False)

        bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(
            bodyIDsToCheck, mus, Ks, Ds)
        CP = yrp.getCP(contactPositions, contactForces)

        for i in range(len(bodyIDsToCheck)):
            controlModel.SetBodyColor(bodyIDsToCheck[i], 0, 0, 0)

        contactFlagFootL = [0] * footPartNum
        contactFlagFootR = [0] * footPartNum

        for i in range(len(bodyIDs)):
            controlModel.SetBodyColor(bodyIDs[i], 255, 105, 105)
            index = controlModel.id2index(bodyIDs[i])
            for j in range(len(indexFootL)):
                if index == indexFootL[j]:
                    contactFlagFootL[j] = 1
                    if j != 0:
                        yjc.computeJacobian2(jFootL[j], DOFs, jointPositions,
                                             jointAxeses, [positionFootL[j]],
                                             jointMasksFootL[j])
                        yjc.computeJacobianDerivative2(
                            dJFootL[j], DOFs, jointPositions, jointAxeses,
                            linkAngVelocities, [positionFootL[j]],
                            jointMasksFootL[j], False)
                    break
            for j in range(len(indexFootR)):
                if index == indexFootR[j]:
                    contactFlagFootR[j] = 1
                    if j != 0:
                        yjc.computeJacobian2(jFootR[j], DOFs, jointPositions,
                                             jointAxeses, [positionFootR[j]],
                                             jointMasksFootR[j])
                        yjc.computeJacobianDerivative2(
                            dJFootR[j], DOFs, jointPositions, jointAxeses,
                            linkAngVelocities, [positionFootR[j]],
                            jointMasksFootR[j], False)
                    break

        for j in range(len(indexFootL)):
            yjc.computeAngJacobian2(jAngFootL[j], DOFs, jointPositions,
                                    jointAxeses, [positionFootL[j]],
                                    jointMasksFootL[j])
            yjc.computeAngJacobianDerivative2(dJAngFootL[j], DOFs,
                                              jointPositions, jointAxeses,
                                              linkAngVelocities,
                                              [positionFootL[j]],
                                              jointMasksFootL[j], False)
            yjc.computeAngJacobian2(jAngFootR[j], DOFs, jointPositions,
                                    jointAxeses, [positionFootR[j]],
                                    jointMasksFootR[j])
            yjc.computeAngJacobianDerivative2(dJAngFootR[j], DOFs,
                                              jointPositions, jointAxeses,
                                              linkAngVelocities,
                                              [positionFootR[j]],
                                              jointMasksFootR[j], False)

        #
        if checkAll(contactFlagFootL, 0) == 1 and checkAll(
                contactFlagFootR, 0) == 1:
            footCenter = footCenter
        elif checkAll(contactFlagFootL, 0) == 1:
            footCenter = footCenterR
        elif checkAll(contactFlagFootR, 0) == 1:
            footCenter = footCenterL
        footCenter[1] = 0.

        desForeSupLAcc = [0, 0, 0]
        desForeSupRAcc = [0, 0, 0]

        totalNormalForce = [0, 0, 0]

        for i in range(len(contactForces)):
            totalNormalForce[0] += contactForces[i][0]
            totalNormalForce[1] += contactForces[i][1]
            totalNormalForce[2] += contactForces[i][2]

        # linear momentum
        CM_ref_plane = footCenter
        dL_des_plane = Kl * totalMass * (CM_ref_plane -
                                         CM_plane) - Dl * totalMass * dCM_plane

        # angular momentum
        CP_ref = footCenter

        timeStep = 30.
        if CP_old[0] == None or CP == None:
            dCP = None
        else:
            dCP = (CP - CP_old[0]) / (1 / timeStep)
        CP_old[0] = CP

        if CP != None and dCP != None:
            ddCP_des = Kh * (CP_ref - CP) - Dh * (dCP)
            CP_des = CP + dCP * (1 / timeStep) + .5 * ddCP_des * (
                (1 / timeStep)**2)
            dH_des = np.cross(
                (CP_des - CM),
                (dL_des_plane + totalMass * mm.s2v(wcfg.gravity)))
            #dH_des = np.cross((CP_des - CM_plane), (dL_des_plane + totalMass*mm.s2v(wcfg.gravity)))
        else:
            dH_des = None

        # momentum matrix
        RS = np.dot(P, Jsys)
        R, S = np.vsplit(RS, 2)

        rs = np.dot((np.dot(dP, Jsys) + np.dot(P, dJsys)), dth_flat)
        r_bias, s_bias = np.hsplit(rs, 2)

        ##############################
        # soft point constraint

        P_des = softConstPoint
        P_cur = controlModel.getBodyPositionGlobal(constBody)
        dP_des = [0, 0, 0]
        dP_cur = controlModel.getBodyVelocityGlobal(constBody)
        ddP_des1 = Ksc * (P_des - P_cur) - Dsc * (dP_cur - dP_des)

        r = P_des - P_cur
        I = np.vstack(([1, 0, 0], [0, 1, 0], [0, 0, 1]))
        Z = np.hstack((I, mm.getCrossMatrixForm(-r)))

        yjc.computeJacobian2(Jconst, DOFs, jointPositions, jointAxeses,
                             [softConstPoint], constJointMasks)
        JL, JA = np.vsplit(Jconst, 2)
        Q1 = np.dot(Z, Jconst)

        q1 = np.dot(JA, dth_flat)
        q2 = np.dot(mm.getCrossMatrixForm(q1),
                    np.dot(mm.getCrossMatrixForm(q1), r))

        yjc.computeJacobianDerivative2(dJconst, DOFs, jointPositions,
                                       jointAxeses, linkAngVelocities,
                                       [softConstPoint], constJointMasks,
                                       False)
        q_bias1 = np.dot(np.dot(Z, dJconst), dth_flat) + q2

        ##############################

        flagContact = True
        if dH_des == None or np.any(np.isnan(dH_des)) == True:
            flagContact = False
            viewer.doc.showRenderer('rd_grf_des', False)
            viewer.motionViewWnd.update(1, viewer.doc)
        else:
            viewer.doc.showRenderer('rd_grf_des', True)
            viewer.motionViewWnd.update(1, viewer.doc)
        '''
        0 : initial
        1 : contact
        2 : fly
        3 : landing
        '''

        #MOTION = FORWARD_JUMP
        if mit.MOTION == mit.FORWARD_JUMP:
            frame_index = [136, 100]
            #frame_index = [100000, 100000]
        elif mit.MOTION == mit.TAEKWONDO:
            frame_index = [130, 100]
            #frame_index = [100000, 100000]
        else:
            frame_index = [1000000, 1000000]

        #MOTION = TAEKWONDO
        #frame_index = [135, 100]
        '''
        if frame > 300 :
            if stage != DYNAMIC_BALANCING:
                print("#", frame,"-DYNAMIC_BALANCING")
            stage = DYNAMIC_BALANCING
            Kk = Kk*1
            Dk = 2*(Kk**.5)        
        '''
        if frame > frame_index[0]:
            if stage != POWERFUL_BALANCING:
                print("#", frame, "-POWERFUL_BALANCING")
            stage = POWERFUL_BALANCING
            Kk = Kk * 2
            Dk = 2 * (Kk**.5)
        elif frame > frame_index[1]:
            if stage != MOTION_TRACKING:
                print("#", frame, "-MOTION_TRACKING")
            stage = MOTION_TRACKING

        trackingW = w

        if stage == MOTION_TRACKING:
            trackingW = w2
            Bt = Bt * 2

        # optimization

        mot.addTrackingTerms(problem, totalDOF, Bt, trackingW, ddth_des_flat)

        mot.addSoftPointConstraintTerms(problem, totalDOF, Bsc, ddP_des1, Q1,
                                        q_bias1)

        if flagContact == True:
            if stage != MOTION_TRACKING + 10:
                mot.addLinearTerms(problem, totalDOF, Bl, dL_des_plane, R,
                                   r_bias)
                mot.addAngularTerms(problem, totalDOF, Bh, dH_des, S, s_bias)

        a_sup_2 = [None]
        Jsup_2 = [None]
        dJsup_2 = [None]

        ##############################
        # Hard constraint
        if stage != MOTION_TRACKING:
            Kk2 = Kk * 2.0
        else:
            Kk2 = Kk * 1.5

        Dk2 = 2 * (Kk2**.5)
        '''
        desLinearAccL, desPosL = getDesFootLinearAcc(motionModel, controlModel, supL, ModelOffset, CM_ref, CM, Kk2, Dk2) 
        desLinearAccR, desPosR = getDesFootLinearAcc(motionModel, controlModel, supR, ModelOffset, CM_ref, CM, Kk2, Dk2) 

        desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, supL, Kk2, Dk2)
        desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, supR, Kk2, Dk2)
        '''

        if stage != MOTION_TRACKING:
            idx = 0  #LEFT/RIGHT_TOES

            desLinearAccL, desPosL = getDesFootLinearAcc(
                motionModel, controlModel, indexFootL[idx], ModelOffset,
                CM_ref, CM, Kk2, Dk2)
            desLinearAccR, desPosR = getDesFootLinearAcc(
                motionModel, controlModel, indexFootR[idx], ModelOffset,
                CM_ref, CM, Kk2, Dk2)

            desAngularAccL = getDesFootAngularAcc(motionModel, controlModel,
                                                  indexFootL[idx], Kk2, Dk2)
            desAngularAccR = getDesFootAngularAcc(motionModel, controlModel,
                                                  indexFootR[idx], Kk2, Dk2)

            a_sup_2 = np.hstack((np.hstack((desLinearAccL, desAngularAccL)),
                                 np.hstack((desLinearAccR, desAngularAccR))))

            Jsup_2 = np.vstack((jFootL[idx], jFootR[idx]))
            dJsup_2 = np.vstack((dJFootL[idx], dJFootR[idx]))

            rd_DesPosL[0] = desPosL.copy()
            rd_DesPosR[0] = desPosR.copy()
        else:
            if footPartNum != 1:
                idx = 1
            else:
                idx = 0
            desAngularAccL = getDesFootAngularAcc(motionModel, controlModel,
                                                  indexFootL[idx], Kk2, Dk2)
            desAngularAccR = getDesFootAngularAcc(motionModel, controlModel,
                                                  indexFootR[idx], Kk2, Dk2)

            a_sup_2 = np.hstack((desAngularAccL, desAngularAccR))

            Jsup_2 = np.vstack((jAngFootL[idx], jAngFootR[idx]))
            dJsup_2 = np.vstack((dJAngFootL[idx], dJAngFootR[idx]))

        ##############################

        ##############################
        # Additional constraint

        if stage != MOTION_TRACKING:
            Kk2 = Kk * 1.5
            Dk2 = 2 * (Kk2**.5)
            desForePosL = [0, 0, 0]
            desForePosR = [0, 0, 0]
            desRearPosL = [0, 0, 0]
            desRearPosR = [0, 0, 0]

            for i in range(1, footPartNum):
                if contactFlagFootL[i] == 1:
                    desLinearAccL, desForePosL = getDesFootLinearAcc(
                        motionModel, controlModel, indexFootL[i], ModelOffset,
                        CM_ref, CM, Kk2, Dk2)
                    desAngularAccL = getDesFootAngularAcc(
                        motionModel, controlModel, indexFootL[i], Kk2, Dk2)
                    a_sup_2 = np.hstack(
                        (a_sup_2, np.hstack((desLinearAccL, desAngularAccL))))
                    Jsup_2 = np.vstack((Jsup_2, jFootL[i]))
                    dJsup_2 = np.vstack((dJsup_2, dJFootL[i]))
                if contactFlagFootR[i] == 1:
                    desLinearAccR, desForePosR = getDesFootLinearAcc(
                        motionModel, controlModel, indexFootR[i], ModelOffset,
                        CM_ref, CM, Kk2, Dk2)
                    desAngularAccR = getDesFootAngularAcc(
                        motionModel, controlModel, indexFootR[i], Kk2, Dk2)
                    a_sup_2 = np.hstack(
                        (a_sup_2, np.hstack((desLinearAccR, desAngularAccR))))
                    Jsup_2 = np.vstack((Jsup_2, jFootR[i]))
                    dJsup_2 = np.vstack((dJsup_2, dJFootR[i]))

            rd_DesForePosL[0] = desForePosL
            rd_DesForePosR[0] = desForePosR
            rd_DesRearPosL[0] = desRearPosL
            rd_DesRearPosR[0] = desRearPosR
        ##############################

        mot.setConstraint(problem, totalDOF, Jsup_2, dJsup_2, dth_flat,
                          a_sup_2)

        r = problem.solve()
        problem.clear()
        ype.nested(r['x'], ddth_sol)

        rootPos[0] = controlModel.getBodyPositionGlobal(selectedBody)
        localPos = [[0, 0, 0]]

        for i in range(stepsPerFrame):
            # apply penalty force
            bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(
                bodyIDsToCheck, mus, Ks, Ds)

            vpWorld.applyPenaltyForce(bodyIDs, contactPositionLocals,
                                      contactForces)

            extraForce[0] = viewer.GetForce()
            if (extraForce[0][0] != 0 or extraForce[0][1] != 0
                    or extraForce[0][2] != 0):
                forceApplyFrame += 1
                #vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce)
                controlModel.applyBodyForceGlobal(selectedBody, extraForce[0])
                applyedExtraForce[0] = extraForce[0]

            if forceApplyFrame * wcfg.timeStep > 0.1:
                viewer.ResetForce()
                forceApplyFrame = 0

            controlModel.setDOFAccelerations(ddth_sol)

            controlModel.solveHybridDynamics()
            '''
            extraForce[0] = viewer.GetForce()
            if (extraForce[0][0] != 0 or extraForce[0][1] != 0 or extraForce[0][2] != 0) :
                forceApplyFrame += 1
                vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce)
                applyedExtraForce[0] = extraForce[0]
            
            if forceApplyFrame*wcfg.timeStep > 0.1:
                viewer.ResetForce()
                forceApplyFrame = 0            
            '''
            vpWorld.step()

        # rendering
        rd_footCenter[0] = footCenter

        rd_CM[0] = CM.copy()

        rd_CM_plane[0] = CM_plane.copy()

        rd_footCenter_ref[0] = footCenter_ref
        rd_CM_plane_ref[0] = CM_ref.copy()
        rd_CM_ref[0] = CM_ref.copy()
        rd_CM_ref_vec[0] = (CM_ref - footCenter_ref) * 3.
        rd_CM_vec[0] = (CM - footCenter) * 3

        #rd_CM_plane[0][1] = 0.

        if CP != None and dCP != None:
            rd_CP[0] = CP
            rd_CP_des[0] = CP_des

        rd_dL_des_plane[0] = dL_des_plane
        rd_dH_des[0] = dH_des

        rd_grf_des[0] = totalNormalForce - totalMass * mm.s2v(
            wcfg.gravity)  #dL_des_plane - totalMass*mm.s2v(wcfg.gravity)

        rd_exf_des[0] = applyedExtraForce[0]
        rd_root_des[0] = rootPos[0]

        rd_CMP[0] = softConstPoint

        rd_soft_const_vec[0] = controlModel.getBodyPositionGlobal(
            constBody) - softConstPoint

        if (forceApplyFrame == 0):
            applyedExtraForce[0] = [0, 0, 0]
Esempio n. 7
0
            if start < end:
                # box foot
                seginfos[i]['ground_height'] = min([
                    posture_seg.getJointPositionGlobal(foot)[1]
                    for foot in [lFoot, rFoot]
                    for posture_seg in motion_ori[start + 1:end + 1]
                ])
                # segmented foot
                # seginfos[i]['ground_height'] = min([posture_seg.getJointPositionGlobal(foot)[1] - 0.05 for foot in [lFoot, rFoot] for posture_seg in motion_ori[start+1:end+1]])

                seginfos[i]['max_stf_push_frame'] = None
                if len(swingFoots) > 0:
                    pushes = []
                    for frame in range(start, int((start + end) // 2) + 1):
                        dCM_tar = yrp.getCM(
                            motion_ori.getJointVelocitiesGlobal(frame),
                            bodyMasses, None, uppers)
                        direction = mm.normalize2(
                            mm.projectionOnPlane(dCM_tar, (1, 0, 0),
                                                 (0, 0, 1)))
                        directionAxis = np.cross((0, 1, 0), direction)
                        pushes.append(
                            mm.componentOnVector(
                                mm.logSO3(motion_ori[frame].
                                          getJointOrientationFromParentGlobal(
                                              swingFoots[0])), directionAxis))
                    seginfos[i]['max_stf_push_frame'] = pushes.index(
                        max(pushes))

        # write .seg
        inputName = os.path.basename(path)
Esempio n. 8
0
    def simulateCallback(frame):
        motionModel.update(motion[frame])

        # tracking
        th_r = motion.getDOFPositions(frame)
        th = controlModel.getDOFPositions()
        dth_r = motion.getDOFVelocities(frame)
        dth = controlModel.getDOFVelocities()
        ddth_r = motion.getDOFAccelerations(frame)
        ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r,
                                                  Kt, Dt)
        '''
        th2 = controlModel2.getDOFPositions()
        dth2 = controlModel2.getDOFVelocities()
        ddth_des2 = yct.getDesiredDOFAccelerations(th_r, th2, dth_r, dth2, ddth_r, Kt, Dt)
        '''

        #ype.flatten(ddth_des, ddth_des_flat)
        #ype.flatten(dth, dth_flat)

        #Control

        #tracking control
        #print(Kt, Dt)
        #Tpd = yct.getDesiredDOFTorques(th_r, th, dth_r, dth, 100.0, 0.1)#0.65, 0.031)

        linkPositions = controlModel.getBodyPositionsGlobal()
        linkVelocities = controlModel.getBodyVelocitiesGlobal()
        linkAngVelocities = controlModel.getBodyAngVelocitiesGlobal()
        linkInertias = controlModel.getBodyInertiasGlobal()

        jointPositions = controlModel.getJointPositionsGlobal()
        jointAxeses = controlModel.getDOFAxeses()

        CM = yrp.getCM(linkPositions, linkMasses, totalMass)
        dCM = yrp.getCM(linkVelocities, linkMasses, totalMass)
        footCenter1 = controlModel.getBodyPositionGlobal(sup)
        footCenter2 = controlModel.getBodyPositionGlobal(sup2)
        footCenter = (footCenter1 + footCenter2) / 2
        '''
        yjc.computeJacobian2(Jt, DOFs, jointPositions, jointAxeses, [CM], CMJointMask)

        pHatCom = CM - footCenter
        vCom = dCM
        '''

        CM_plane = copy.copy(CM)
        CM_plane[1] = 0.
        dCM_plane = copy.copy(dCM)
        dCM_plane[1] = 0.
        CM_ref_plane = footCenter
        dL_des_plane = Kl * totalMass * (CM_ref_plane -
                                         CM_plane) - Dl * totalMass * dCM_plane
        dL_des_plane[1] = 0.

        CP_ref = footCenter
        bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(
            bodyIDsToCheck, mus, Ks, Ds)
        CP = yrp.getCP(contactPositions, contactForces)

        if CP_old[0] == None or CP == None:
            dCP = None
        else:
            dCP = (CP - CP_old[0]) / (1 / 30.)
        CP_old[0] = CP

        if CP != None and dCP != None:
            ddCP_des = Kh * (CP_ref - CP) - Dh * (dCP)
            CP_des = CP + dCP * (1 / 30.) + .5 * ddCP_des * ((1 / 30.)**2)
            dH_des = np.cross(
                (CP_des - CM),
                (dL_des_plane - totalMass * mm.s2v(wcfg.gravity)))
        else:
            dH_des = None

        ################
        '''
        linkPositions = motionModel.getBodyPositionsGlobal()
        linkVelocities = motionModel.getBodyVelocitiesGlobal()
        linkAngVelocities = motionModel.getBodyAngVelocitiesGlobal()
        linkInertias = motionModel.getBodyInertiasGlobal()
                    
        CM2 = yrp.getCM(linkPositions, linkMasses, totalMass)
        dCM2 = yrp.getCM(linkVelocities, linkMasses, totalMass)            
        footCenter1 = motionModel.getBodyPositionGlobal(sup)
        footCenter2 = motionModel.getBodyPositionGlobal(sup2)
        footCenter = (footCenter1+footCenter2)/2
        pHatComDes = CM2 - footCenter
        vComDes = dCM2

        Wcp = -750
        Wcv = -10
        fCom = Wcp*(pHatComDes - pHatCom) + Wcv*(vComDes - vCom)
        '''

        #print("VirtualForce", fCom)
        #fCom[0] = 0.
        #fCom[1] = 0.
        #fCom[2] = -20.
        #fCom = [0., 0., 100.]
        #print("VirtualForce", fCom)

        for i in range(stepsPerFrame):
            # apply penalty force
            bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(
                bodyIDsToCheck, mus, Ks, Ds)
            vpWorld.applyPenaltyForce(bodyIDs, contactPositionLocals,
                                      contactForces)

            controlModel.setDOFAccelerations(ddth_des)

            linkPositions = controlModel.getBodyPositionsGlobal()
            linkVelocities = controlModel.getBodyVelocitiesGlobal()
            linkAngVelocities = controlModel.getBodyAngVelocitiesGlobal()
            linkInertias = controlModel.getBodyInertiasGlobal()

            jointPositions = controlModel.getJointPositionsGlobal()
            jointAxeses = controlModel.getDOFAxeses()

            CM = yrp.getCM(linkPositions, linkMasses, totalMass)
            dCM = yrp.getCM(linkVelocities, linkMasses, totalMass)
            footCenter1 = controlModel.getBodyPositionGlobal(sup)
            footCenter2 = controlModel.getBodyPositionGlobal(sup2)
            footCenter = (footCenter1 + footCenter2) / 2

            CM_plane = copy.copy(CM)
            CM_plane[1] = 0.
            footCenter_plane = copy.copy(footCenter)
            footCenter_plane[1] = 0.

            yjc.computeJacobian2(Jt, DOFs, jointPositions, jointAxeses, [CM],
                                 CMJointMask)

            pHatCom = CM - footCenter
            vCom = dCM

            linkPositions2 = motionModel.getBodyPositionsGlobal()
            linkVelocities2 = motionModel.getBodyVelocitiesGlobal()
            linkAngVelocities2 = motionModel.getBodyAngVelocitiesGlobal()
            linkInertias2 = motionModel.getBodyInertiasGlobal()

            CM2 = yrp.getCM(linkPositions2, linkMasses, totalMass)
            dCM2 = yrp.getCM(linkVelocities2, linkMasses, totalMass)
            footCenter1 = motionModel.getBodyPositionGlobal(sup)
            footCenter2 = motionModel.getBodyPositionGlobal(sup2)
            footCenter = (footCenter1 + footCenter2) / 2
            pHatComDes = CM2 - footCenter
            vComDes = dCM2

            Wcp = 0
            Wcv = 0
            Wcm = 0
            '''
            0 : initial
            1 : contact
            2 : fly
            3 : landing
            '''

            global stage
            if len(contactForces) == 0:
                if stage == 1:
                    stage = 2
                    print("fly")
            else:
                if stage == 0:
                    stage = 1
                    print("contact")
                elif stage == 2:
                    stage = 3
                    print("landing")

            Wcp = -550
            Wcv = -100
            Wcm = 0

            if stage == 1:
                Wcp = -550
                Wcv = -100
                Wcm = 0
                #Wcp = -550
                #Wcv = -100
            elif stage == 3:
                #Wcp = -950
                #Wcv = -300
                Wcp = -950
                Wcv = -300
                Wcm = 0

            # COM Position control
            fCom = Wcp * (pHatComDes - pHatCom) + Wcv * (
                vComDes - vCom) + Wcm * (footCenter_plane - CM_plane)

            if len(contactForces) == 0:
                fCom[0] = 0.
                fCom[1] = -10.  #-10
                fCom[2] = 0.
            '''
            fCom[0] = 10.
            fCom[1] = 0.
            fCom[2] = 250.
            '''

            # Angular Momentum control
            L_ref = 0
            L_con = 0
            #R,i
            for i in range(1, controlModel.getBodyNum()):
                L_ref += (
                    linkMasses[i] *
                    np.cross(linkPositions2[i] - [CM], linkVelocities2[i]) +
                    linkInertias2[i] * linkAngVelocities2[i])
                L_con += (
                    linkMasses[i] *
                    np.cross(linkPositions[i] - [CM], linkVelocities[i]) +
                    linkInertias[i] * linkAngVelocities[i])

            for iJoint in range(1, 7):  # from 'LeftUpLeg'(1) to 'RightFoot'(6)
                JpT1 = (Jt[0][6 + 3 * (iJoint - 1)],
                        Jt[1][6 + 3 * (iJoint - 1)],
                        Jt[2][6 + 3 * (iJoint - 1)])
                JpT2 = (Jt[0][6 + 3 * (iJoint - 1) + 1],
                        Jt[1][6 + 3 * (iJoint - 1) + 1],
                        Jt[2][6 + 3 * (iJoint - 1) + 1])
                JpT3 = (Jt[0][6 + 3 * (iJoint - 1) + 2],
                        Jt[1][6 + 3 * (iJoint - 1) + 2],
                        Jt[2][6 + 3 * (iJoint - 1) + 2])
                Tfi = (np.dot(JpT1, fCom), np.dot(JpT2,
                                                  fCom), np.dot(JpT3, fCom))
                currentT = controlModel.getJointAngAccelerationLocal(iJoint)
                controlModel.setJointAngAccelerationLocal(
                    iJoint, currentT + Tfi)

            currentT = controlModel.getJointAngAccelerationLocal(0)
            #print(currentT)
            #JpT = ( Jt[0][0], Jt[1][0], Jt[2][0])
            #Tfi = JpT*fCom
            #controlModel.setJointAngAccelerationLocal(0, currentT+Tfi)
            '''
            if (len(contactForces) != 0) :
                for iJoint in range(1, 7): # from 'LeftUpLeg'(1) to 'RightFoot'(6)
                    JpT = ( Jt[0][6+3*(iJoint-1)], Jt[1][6+3*(iJoint-1)], Jt[2][6+3*(iJoint-1)])
                    Tfi = JpT*fCom
                    currentT = controlModel.getJointAngAccelerationLocal(iJoint)
                    controlModel.setJointAngAccelerationLocal(iJoint, currentT+Tfi)
            else:
                print("No Contact force!!")
            '''

            controlModel.solveHybridDynamics()

            vpWorld.step()

        # rendering

        rd_CM[0] = CM

        rd_CM_plane[0] = CM.copy()
        rd_CM_plane[0][1] = 0.

        if CP != None and dCP != None:
            rd_CP[0] = CP
            rd_CP_des[0] = CP_des

        rd_dL_des_plane[0] = dL_des_plane
        rd_dH_des[0] = dH_des

        rd_grf_des[0] = dL_des_plane - totalMass * mm.s2v(wcfg.gravity)
        rd_vf[0] = fCom
Esempio n. 9
0
    def simulateCallback(frame):
        # seginfo
        segIndex = seg_index[0]
        curState = seginfo[segIndex]['state']
        curInterval = yma.offsetInterval(acc_offset[0], seginfo[segIndex]['interval'])
        stanceLegs = seginfo[segIndex]['stanceHips']
        swingLegs = seginfo[segIndex]['swingHips']
        stanceFoots = seginfo[segIndex]['stanceFoots']
        swingFoots = seginfo[segIndex]['swingFoots']
        swingKnees = seginfo[segIndex]['swingKnees']
        groundHeight = seginfo[segIndex]['ground_height']
#        maxStfPushFrame = seginfo[segIndex]['max_stf_push_frame']
        
        prev_frame = frame-1 if frame>0 else 0
#        prev_frame = frame
        
        # information
#        dCM_tar = yrp.getCM(motion_seg.getJointVelocitiesGlobal(frame), bodyMasses, upperMass, uppers)
#        CM_tar = yrp.getCM(motion_seg.getJointPositionsGlobal(frame), bodyMasses, upperMass, uppers)
##        dCM_tar = yrp.getCM(motion_seg.getJointVelocitiesGlobal(frame), bodyMasses, totalMass)
##        CM_tar = yrp.getCM(motion_seg.getJointPositionsGlobal(frame), bodyMasses, totalMass)
#        stf_tar = motion_seg.getJointPositionGlobal(stanceFoots[0], frame)
#        CMr_tar = CM_tar - stf_tar

        dCM_tar = motion_seg.getJointVelocityGlobal(0, prev_frame)
        CM_tar = motion_seg.getJointPositionGlobal(0, prev_frame)
#        dCM_tar = yrp.getCM(motion_seg.getJointVelocitiesGlobal(prev_frame), bodyMasses, upperMass, uppers)
#        CM_tar = yrp.getCM(motion_seg.getJointPositionsGlobal(prev_frame), bodyMasses, upperMass, uppers)
#        dCM_tar = yrp.getCM(motion_seg.getJointVelocitiesGlobal(prev_frame), bodyMasses, totalMass)
#        CM_tar = yrp.getCM(motion_seg.getJointPositionsGlobal(prev_frame), bodyMasses, totalMass)
        stf_tar = motion_seg.getJointPositionGlobal(stanceFoots[0], prev_frame)
        CMr_tar = CM_tar - stf_tar
            
        dCM = avg_dCM[0]
        CM = controlModel.getJointPositionGlobal(0)
#        CM = yrp.getCM(controlModel.getJointPositionsGlobal(), bodyMasses, upperMass, uppers)
#        CM = yrp.getCM(controlModel.getJointPositionsGlobal(), bodyMasses, totalMass)
        CMreal = yrp.getCM(controlModel.getJointPositionsGlobal(), bodyMasses, totalMass)
        stf = controlModel.getJointPositionGlobal(stanceFoots[0])
        CMr = CM - stf
        
        diff_dCM = mm.projectionOnPlane(dCM-dCM_tar, (1,0,0), (0,0,1))
        diff_dCM_axis = np.cross((0,1,0), diff_dCM)
        rd_vec1[0] = diff_dCM; rd_vecori1[0] = CM_tar
        
        diff_CMr = mm.projectionOnPlane(CMr-CMr_tar, (1,0,0), (0,0,1))
#        rd_vec1[0] = diff_CMr; rd_vecori1[0] = stf_tar
        diff_CMr_axis = np.cross((0,1,0), diff_CMr)
        
        direction = mm.normalize2(mm.projectionOnPlane(dCM_tar, (1,0,0), (0,0,1)))
#        direction = mm.normalize2(mm.projectionOnPlane(dCM, (1,0,0), (0,0,1)))
        directionAxis = np.cross((0,1,0), direction)
        
        diff_dCM_sag, diff_dCM_cor = mm.projectionOnVector2(diff_dCM, direction)
#        rd_vec1[0] = diff_dCM_sag; rd_vecori1[0] = CM_tar
        diff_dCM_sag_axis = np.cross((0,1,0), diff_dCM_sag)
        diff_dCM_cor_axis = np.cross((0,1,0), diff_dCM_cor)
            
        diff_CMr_sag, diff_CMr_cor = mm.projectionOnVector2(diff_CMr, direction)
        diff_CMr_sag_axis = np.cross((0,1,0), diff_CMr_sag)
        diff_CMr_cor_axis = np.cross((0,1,0), diff_CMr_cor)
            
        t = (frame-curInterval[0])/float(curInterval[1]-curInterval[0])
        t_raw = t
        if t>1.: t=1.
        
        
        p_root = motion_stitch[frame].getJointPositionGlobal(0)
        R_root = motion_stitch[frame].getJointOrientationGlobal(0)

        motion_seg_orig.goToFrame(frame)
        motion_seg.goToFrame(frame)
        motion_stitch.goToFrame(frame)
        
        motion_debug1.append(motion_stitch[frame].copy())
        motion_debug1.goToFrame(frame)
        motion_debug2.append(motion_stitch[frame].copy())
        motion_debug2.goToFrame(frame)
        motion_debug3.append(motion_stitch[frame].copy())
        motion_debug3.goToFrame(frame)
        
        # paper implementation
        M_tc.append(motion_stitch[prev_frame])
        M_tc.goToFrame(frame)
        P_hat.append(M_tc[frame].copy())
        P_hat.goToFrame(frame)
        
        p_temp = ym.JointPosture(skeleton)
        p_temp.rootPos = controlModel.getJointPositionGlobal(0)
        p_temp.setJointOrientationsLocal(controlModel.getJointOrientationsLocal())
        P.append(p_temp)
        P.goToFrame(frame)
        
        # stance foot stabilize
        motion_stf_stabilize.append(motion_stitch[frame].copy())
        motion_stf_stabilize.goToFrame(frame)
        if STANCE_FOOT_STABILIZE:
            for stanceFoot in stanceFoots:
                R_target_foot = motion_seg[frame].getJointOrientationGlobal(stanceFoot)
                R_current_foot = motion_stf_stabilize[frame].getJointOrientationGlobal(stanceFoot)
                motion_stf_stabilize[frame].setJointOrientationGlobal(stanceFoot, cm.slerp(R_current_foot, R_target_foot , stf_stabilize_func(t)))
#                R_target_foot = motion_seg[frame].getJointOrientationLocal(stanceFoot)
#                R_current_foot = motion_stf_stabilize[frame].getJointOrientationLocal(stanceFoot)
#                motion_stf_stabilize[frame].setJointOrientationLocal(stanceFoot, cm.slerp(R_current_foot, R_target_foot , stf_stabilize_func(t)))

        # match stance leg 
        motion_match_stl.append(motion_stf_stabilize[frame].copy())
        motion_match_stl.goToFrame(frame)
        if MATCH_STANCE_LEG:
            if curState!=yba.GaitState.STOP:
                for i in range(len(stanceLegs)):
                    stanceLeg = stanceLegs[i]
                    stanceFoot = stanceFoots[i]
                    
#                    # motion stance leg -> character stance leg as time goes
                    R_motion = motion_match_stl[frame].getJointOrientationGlobal(stanceLeg)
                    R_character = controlModel.getJointOrientationGlobal(stanceLeg)
                    motion_match_stl[frame].setJointOrientationGlobal(stanceLeg, cm.slerp(R_motion, R_character, match_stl_func(t)))

#                    t_y = match_stl_func_y(t)
#                    t_xz = match_stl_func(t)
#                    
#                    R_motion = motion_match_stl[frame].getJointOrientationGlobal(stanceLeg)
#                    R_character = controlModel.getJointOrientationGlobal(stanceLeg)
#                    R = np.dot(R_character, R_motion.T)
#                    R_y, R_xz = mm.projectRotation((0,1,0), R)
#                    motion_match_stl[frame].mulJointOrientationGlobal(stanceLeg, mm.scaleSO3(R_xz, t_xz))
#                    motion_match_stl[frame].mulJointOrientationGlobal(stanceLeg, mm.scaleSO3(R_y, t_y))

        # swing foot placement
        motion_swf_placement.append(motion_match_stl[frame].copy())
        motion_swf_placement.goToFrame(frame)
        if SWING_FOOT_PLACEMENT:
            t_swing_foot_placement = swf_placement_func(t);
            
            if extended[0]:
                R_swp_sag = prev_R_swp[0][0]
                R_swp_cor = prev_R_swp[0][1]
            else:
                R_swp_sag = mm.I_SO3(); R_swp_cor = mm.I_SO3()
                R_swp_cor = np.dot(R_swp_cor, mm.exp(diff_dCM_cor_axis * K_swp_vel_cor * -t_swing_foot_placement))
                if np.dot(direction, diff_CMr_sag) < 0:
                    R_swp_sag = np.dot(R_swp_sag, mm.exp(diff_dCM_sag_axis * K_swp_vel_sag * -t_swing_foot_placement))
                    R_swp_sag = np.dot(R_swp_sag, mm.exp(diff_CMr_sag_axis * K_swp_pos_sag * -t_swing_foot_placement))
                else:
                    R_swp_sag = np.dot(R_swp_sag, mm.exp(diff_dCM_sag_axis * K_swp_vel_sag_faster * -t_swing_foot_placement))
                    R_swp_sag = np.dot(R_swp_sag, mm.exp(diff_CMr_sag_axis * K_swp_pos_sag_faster * -t_swing_foot_placement))
                R_swp_cor = np.dot(R_swp_cor, mm.exp(diff_CMr_cor_axis * K_swp_pos_cor * -t_swing_foot_placement))

            for i in range(len(swingLegs)):
                swingLeg = swingLegs[i]
                swingFoot = swingFoots[i] 
                
                # save swing foot global orientation
#                R_swf = motion_swf_placement[frame].getJointOrientationGlobal(swingFoot)
                
                # rotate swing leg
                motion_swf_placement[frame].mulJointOrientationGlobal(swingLeg, R_swp_sag)
                motion_swf_placement[frame].mulJointOrientationGlobal(swingLeg, R_swp_cor)
                
                # restore swing foot global orientation
#                motion_swf_placement[frame].setJointOrientationGlobal(swingFoot, R_swf)
                
                prev_R_swp[0] = (R_swp_sag, R_swp_cor)

        # swing foot height
        motion_swf_height.append(motion_swf_placement[frame].copy())
        motion_swf_height.goToFrame(frame)
        if SWING_FOOT_HEIGHT:
            for swingFoot in swingFoots:
                stanceFoot = stanceFoots[0]

                # save foot global orientation
                R_foot = motion_swf_height[frame].getJointOrientationGlobal(swingFoot)
                R_stance_foot = motion_swf_height[frame].getJointOrientationGlobal(stanceFoot)

                if OLD_SWING_HEIGHT:
                    height_tar = motion_swf_height[frame].getJointPositionGlobal(swingFoot)[1] - motion_swf_height[frame].getJointPositionGlobal(stanceFoot)[1]
                else:
                    height_tar = motion_swf_height[prev_frame].getJointPositionGlobal(swingFoot)[1] - groundHeight
                    d_height_tar = motion_swf_height.getJointVelocityGlobal(swingFoot, prev_frame)[1]
#                    height_tar += c_swf_mid_offset * swf_height_sine_func(t)
#                motion_debug1[frame] = motion_swf_height[frame].copy()

                # rotate
                motion_swf_height[frame].rotateByTarget(controlModel.getJointOrientationGlobal(0))
#                motion_debug2[frame] = motion_swf_height[frame].copy()
#                motion_debug2[frame].translateByTarget(controlModel.getJointPositionGlobal(0))

                if OLD_SWING_HEIGHT:
                    height_cur = motion_swf_height[frame].getJointPositionGlobal(swingFoot)[1] - motion_swf_height[frame].getJointPositionGlobal(stanceFoot)[1]
                else:
                    height_cur = controlModel.getJointPositionGlobal(swingFoot)[1] - halfFootHeight - c_swf_offset
                    d_height_cur = controlModel.getJointVelocityGlobal(swingFoot)[1]

                if OLD_SWING_HEIGHT:
                    offset_height = (height_tar - height_cur) * swf_height_func(t) * c5
                else:
                    offset_height = ((height_tar - height_cur) * c5
                                     + (d_height_tar - d_height_cur) * c6) * swf_height_func(t)

                offset_sine = c_swf_mid_offset * swf_height_sine_func(t)
#                offset_sine = 0.
                
                offset = 0.
                offset += offset_height
                offset += offset_sine

                if offset > 0.:
                    newPosition =  motion_swf_height[frame].getJointPositionGlobal(swingFoot)
                    newPosition[1] += offset
                    aik.ik_analytic(motion_swf_height[frame], swingFoot, newPosition)
                else:
                    if HIGHER_OFFSET:
                        newPosition =  motion_swf_height[frame].getJointPositionGlobal(stanceFoot)
                        newPosition[1] -= offset
                        aik.ik_analytic(motion_swf_height[frame], stanceFoot, newPosition)

                # return
#                motion_debug3[frame] = motion_swf_height[frame].copy()
#                motion_debug3[frame].translateByTarget(controlModel.getJointPositionGlobal(0))
                motion_swf_height[frame].rotateByTarget(R_root)
                
                # restore foot global orientation
                motion_swf_height[frame].setJointOrientationGlobal(swingFoot, R_foot)
                motion_swf_height[frame].setJointOrientationGlobal(stanceFoot, R_stance_foot)

                if plot!=None:
                    plot.addDataPoint('debug1', frame, offset_height)
                    plot.addDataPoint('debug2', frame, height_tar - height_cur)
#                    plot.addDataPoint('diff', frame, diff)


        # swing foot orientation
        motion_swf_orientation.append(motion_swf_height[frame].copy())
        motion_swf_orientation.goToFrame(frame)
        if SWING_FOOT_ORIENTATION:
            swf_orientation_func = yfg.concatenate([yfg.zero, yfg.hermite2nd, yfg.one], [.25, .75])
            for swingFoot in swingFoots:
                R_target_foot = motion_seg[curInterval[1]].getJointOrientationGlobal(swingFoot)
                R_current_foot = motion_swf_orientation[frame].getJointOrientationGlobal(swingFoot)
                motion_swf_orientation[frame].setJointOrientationGlobal(swingFoot, cm.slerp(R_current_foot, R_target_foot, swf_orientation_func(t)))
#    swf_stabilize_func = yfg.concatenate([yfg.hermite2nd, yfg.one], [c_taking_duration])
            # push orientation
#            for swingFoot in swingFoots:
#                R_target_foot = motion_seg[frame].getJointOrientationGlobal(swingFoot)
#                R_current_foot = motion_swf_orientation[frame].getJointOrientationGlobal(swingFoot)
#                motion_swf_orientation[frame].setJointOrientationGlobal(swingFoot, cm.slerp(R_current_foot, R_target_foot , swf_stabilize_func(t)))
            
        # stance foot push                
        motion_stf_push.append(motion_swf_orientation[frame].copy())
        motion_stf_push.goToFrame(frame)
        if STANCE_FOOT_PUSH:
            for swingFoot in swingFoots:
#                max_t = (maxStfPushFrame)/float(curInterval[1]-curInterval[0])
#                stf_push_func = yfg.concatenate([yfg.sine, yfg.zero], [max_t*2])
                stf_push_func = yfg.concatenate([yfg.sine, yfg.zero], [c_taking_duration*2])
                
                R_swp_sag = mm.I_SO3()
#                R_swp_sag = np.dot(R_swp_sag, mm.exp(diff_dCM_sag_axis * K_stp_vel * -stf_push_func(t)))
                
#                if step_length_cur[0] < step_length_tar[0]:
#                    ratio = step_length_cur[0] / step_length_tar[0]
#                    R_max = maxmaxStfPushFrame
#                    R_zero = 
                R_swp_sag = np.dot(R_swp_sag, mm.exp((step_length_tar[0] - step_length_cur[0])*step_axis[0] * K_stp_pos * -stf_push_func(t)))
                    
                motion_stf_push[frame].mulJointOrientationGlobal(swingFoot, R_swp_sag)
                
        # stance foot balancing 
        motion_stf_balancing.append(motion_stf_push[frame].copy())
        motion_stf_balancing.goToFrame(frame)
        if STANCE_FOOT_BALANCING:
            R_stb = mm.exp(diff_dCM_axis * K_stb_vel * stf_balancing_func(t))
            R_stb = np.dot(R_stb, mm.exp(diff_CMr_axis * K_stb_pos * stf_balancing_func(t)))
            for stanceFoot in stanceFoots:
                if frame < 5: continue
                motion_stf_balancing[frame].mulJointOrientationGlobal(stanceFoot, R_stb)
                    
        # control trajectory
        motion_control.append(motion_stf_balancing[frame].copy())
        motion_control.goToFrame(frame)
        
        #=======================================================================
        # tracking with inverse dynamics
        #=======================================================================
        th_r = motion_control.getDOFPositions(frame)
        th = controlModel.getDOFPositions()
        dth_r = motion_control.getDOFVelocities(frame)
        dth = controlModel.getDOFVelocities()
        ddth_r = motion_control.getDOFAccelerations(frame)
        ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r, Kt, Dt)

        #=======================================================================
        # simulation
        #=======================================================================
        CP = mm.v3(0.,0.,0.)
        F = mm.v3(0.,0.,0.)
        avg_dCM[0] = mm.v3(0.,0.,0.)
        
        # external force rendering info
        del rd_forces[:]; del rd_force_points[:]
        for fi in forceInfos:
            if fi.startFrame <= frame and frame < fi.startFrame + fi.duration*(1/frameTime):
                rd_forces.append(fi.force)
                rd_force_points.append(controlModel.getBodyPositionGlobal(fi.targetBody)  + -mm.normalize2(fi.force)*.2)
                    
        for i in range(stepsPerFrame):
            
            bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds)
            vpWorld.applyPenaltyForce(bodyIDs, contactPositionLocals, contactForces)
            
            # apply external force
            for fi in forceInfos:
                if fi.startFrame <= frame and frame < fi.startFrame + fi.duration*(1/frameTime):
                    controlModel.applyBodyForceGlobal(fi.targetBody, fi.force)
                                
            controlModel.setDOFAccelerations(ddth_des)
            controlModel.solveHybridDynamics()
            
#            # apply external force
#            for fi in forceInfos:
#                if fi.startFrame <= frame and frame < fi.startFrame + fi.duration*(1/frameTime):
#                    controlModel.applyBodyForceGlobal(fi.targetBody, fi.force)
            
            vpWorld.step()
#            yvu.align2D(controlModel)

            if len(contactForces) > 0:
                CP += yrp.getCP(contactPositions, contactForces)
                F += sum(contactForces)
            avg_dCM[0] += controlModel.getJointVelocityGlobal(0)
#            avg_dCM[0] += yrp.getCM(controlModel.getJointVelocitiesGlobal(), bodyMasses, upperMass, uppers)
#            avg_dCM[0] += yrp.getCM(controlModel.getJointVelocitiesGlobal(), bodyMasses, totalMass)

#            if len(stanceFoots)>0:
#                avg_stf_v[0] += controlModel.getJointVelocityGlobal(stanceFoots[0])
#                avg_stf_av[0] += controlModel.getJointAngVelocityGlobal(stanceFoots[0])
        
        CP /= stepsPerFrame
        F /= stepsPerFrame
        avg_dCM[0] /= stepsPerFrame
        
#        if len(stanceFoots)>0:
#            avg_stf_v[0] /= stepsPerFrame
#            avg_stf_av[0] /= stepsPerFrame
#            rd_vec1[0] = avg_stf_av[0]; rd_vec1[0][0] = 0.; rd_vec1[0][2] = 0.
#            rd_vecori1[0]= controlModel.getJointPositionGlobal(stanceFoots[0])

        #=======================================================================
        # segment editing
        #=======================================================================
        lastFrame = False
        
        if SEGMENT_EDITING:
            if curState==yba.GaitState.STOP:
                if frame == len(motion_seg)-1:
                    lastFrame = True
                    
            elif (curState==yba.GaitState.LSWING or curState==yba.GaitState.RSWING) and t>c_min_contact_time:
                swingID = lID if curState==yba.GaitState.LSWING else rID

                contact = False
                if swingID in bodyIDs:
                    minContactVel = 1000.
                    for i in range(len(bodyIDs)):
                        if bodyIDs[i]==swingID:
                            vel = controlModel.getBodyVelocityGlobal(swingID, contactPositionLocals[i])
                            vel[1] = 0
                            contactVel = mm.length(vel)
                            if contactVel < minContactVel: minContactVel = contactVel 
                    if minContactVel < c_min_contact_vel: contact = True
                
                extended[0] = False
                
                if contact:
#                    print frame, 'foot touch'
                    lastFrame = True
                    acc_offset[0] += frame - curInterval[1]
                    
                elif frame == len(motion_seg)-1:
                    print frame, 'extend frame', frame+1
                    
                    preserveJoints = []
#                    preserveJoints = [lFoot, rFoot]
#                    preserveJoints = [lFoot, rFoot, lKnee, rKnee]
#                    preserveJoints = [lFoot, rFoot, lKnee, rKnee, lUpLeg, rUpLeg]
                    stanceKnees = [rKnee] if curState==yba.GaitState.LSWING else [lKnee]   
                    preserveJoints = [stanceFoots[0], stanceKnees[0], stanceLegs[0]]
   
                    diff = 3
                    motion_seg_orig.extend([motion_seg_orig[-1]])
                    motion_seg.extend(ymt.extendByIntegration_root(motion_seg, 1, diff))
                    
                    motion_stitch.extend(ymt.extendByIntegration_constant(motion_stitch, 1, preserveJoints, diff))

#                    # extend for swing foot ground speed matching & swing foot height lower
##                    extendedPostures = ymt.extendByIntegration(motion_stitch, 1, preserveJoints, diff)
##                    extendedPostures = [motion_stitch[-1]] 
##
#                    extendFrameNum = frame - curInterval[1] + 1
#                    k = 1.-extendFrameNum/5.
#                    if k<0.: k=0.
#                    extendedPostures = ymt.extendByIntegrationAttenuation(motion_stitch, 1, preserveJoints, diff, k)
#
##                    if len(swingFoots)>0 and np.inner(dCM_tar, dCM)>0.:
##                        print frame, 'speed matching'
##                        R_swf = motion_stitch[-1].getJointOrientationGlobal(swingFoots[0])
##                        
##                        p_swf = motion_stitch[-1].getJointPositionGlobal(swingFoots[0])
##                        v_swf = motion_stitch.getJointVelocityGlobal(swingFoots[0], frame-diff, frame)
##                        a_swf = motion_stitch.getJointAccelerationGlobal(swingFoots[0], frame-diff, frame)
##                        p_swf += v_swf * (frameTime) + a_swf * (frameTime)*(frameTime)
##                        aik.ik_analytic(extendedPostures[0], swingFoots[0], p_swf)
##                        
##                        extendedPostures[0].setJointOrientationGlobal(swingFoots[0], R_swf)
#
#                    motion_stitch.extend(extendedPostures)
                    
                    extended[0] = True
        else:
            if frame == len(motion_seg)-1: lastFrame = True
                    
        if lastFrame:
            if segIndex < len(segments)-1:
                print '%d (%d): end of %dth seg (%s, %s)'%(frame, frame-curInterval[1],segIndex, yba.GaitState.text[curState], curInterval)
                if plot!=None: plot.addDataPoint('diff', frame, (frame-curInterval[1])*.01)
                
                if len(stanceFoots)>0 and len(swingFoots)>0:
#                    step_cur = controlModel.getJointPositionGlobal(swingFoots[0]) - controlModel.getJointPositionGlobal(stanceFoots[0])
#                    step_tar = motion_seg[curInterval[1]].getJointPositionGlobal(swingFoots[0]) - motion_seg[curInterval[1]].getJointPositionGlobal(stanceFoots[0])
                    step_cur = controlModel.getJointPositionGlobal(0) - controlModel.getJointPositionGlobal(stanceFoots[0])
                    step_tar = motion_seg[curInterval[1]].getJointPositionGlobal(0) - motion_seg[curInterval[1]].getJointPositionGlobal(stanceFoots[0])
                    
                    step_cur = mm.projectionOnPlane(step_cur, (1,0,0), (0,0,1))
                    step_tar = mm.projectionOnPlane(step_tar, (1,0,0), (0,0,1))
                    
                    step_cur_sag, step_cur_cor = mm.projectionOnVector2(step_cur, direction)
                    step_tar_sag, step_tar_cor = mm.projectionOnVector2(step_tar, direction)
                    
                    step_length_tar[0] = mm.length(step_tar_sag)
                    if np.inner(step_tar_sag, step_cur_sag) > 0:
                        step_length_cur[0] = mm.length(step_cur_sag)
                    else:
                        step_length_cur[0] = -mm.length(step_cur_sag)
                    
                    step_axis[0] = directionAxis
                    
#                    rd_vec1[0] = step_tar_sag
#                    rd_vecori1[0] = motion_seg[curInterval[1]].getJointPositionGlobal(stanceFoots[0])
#                    rd_vec2[0] = step_cur_sag
#                    rd_vecori2[0] = controlModel.getJointPositionGlobal(stanceFoots[0])

                seg_index[0] += 1
                curSeg = segments[seg_index[0]]
                stl_y_limit_num[0] = 0
                stl_xz_limit_num[0] = 0
                
                del motion_seg_orig[frame+1:]
                motion_seg_orig.extend(ymb.getAttachedNextMotion(curSeg, motion_seg_orig[-1], False, False))
                
                del motion_seg[frame+1:]
                del motion_stitch[frame+1:]
                transitionLength = len(curSeg)-1

#                motion_seg.extend(ymb.getAttachedNextMotion(curSeg, motion_seg[-1], False, False))
#                motion_stitch.extend(ymb.getStitchedNextMotion(curSeg, motion_control[-1], transitionLength, stitch_func, True, False))

                d = motion_seg[-1] - curSeg[0]
                d.rootPos[1] = 0.
                motion_seg.extend(ymb.getAttachedNextMotion(curSeg, d, True, False))
                d = motion_control[-1] - curSeg[0]
                d.rootPos[1] = 0.
                motion_stitch.extend(ymb.getStitchedNextMotion(curSeg, d, transitionLength, stitch_func, True, False))
                
#                motion_seg.extend(ymb.getAttachedNextMotion(curSeg, motion_seg[-1], False, True))
#                motion_stitch.extend(ymb.getStitchedNextMotion(curSeg, motion_control[-1], transitionLength, stitch_func, True, True))
            else:
                motion_seg_orig.append(motion_seg_orig[-1])
                motion_seg.append(motion_seg[-1])
                motion_stitch.append(motion_control[-1])
                
                
        # rendering
        motionModel.update(motion_ori[frame])
#        motionModel.update(motion_seg[frame])
        
        rd_CP[0] = CP
        rd_CMP[0] = (CMreal[0] - (F[0]/F[1])*CMreal[1], 0, CMreal[2] - (F[2]/F[1])*CMreal[1])
        
        if plot!=None:
            plot.addDataPoint('zero', frame, 0)
            plot.updatePoints()
Esempio n. 10
0
    def simulateCallback(frame):
        global g_initFlag
        global forceShowFrame
        global forceApplyFrame
        global JsysPre
        global JsupPreL
        global JsupPreR
        global JsupPre
        global softConstPoint
        global stage

        motionModel.update(motion[frame])

        Kt, Kk, Kl, Kh, Ksc, Bt, Bl, Bh, Bsc = viewer.GetParam()

        Dt = 2 * (Kt**.5)
        Dk = 2 * (Kk**.5)
        Dl = 2 * (Kl**.5)
        Dh = 2 * (Kh**.5)
        Dsc = 2 * (Ksc**.5)

        if Bsc == 0.0:
            viewer.doc.showRenderer('softConstraint', False)
            viewer.motionViewWnd.update(1, viewer.doc)
        else:
            viewer.doc.showRenderer('softConstraint', True)
            renderer1 = viewer.doc.getRenderer('softConstraint')
            renderer1.rc.setLineWidth(0.1 + Bsc * 3)
            viewer.motionViewWnd.update(1, viewer.doc)

        # tracking
        th_r = motion.getDOFPositions(frame)
        th = controlModel.getDOFPositions()
        dth_r = motion.getDOFVelocities(frame)
        dth = controlModel.getDOFVelocities()
        ddth_r = motion.getDOFAccelerations(frame)
        ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r,
                                                  Kt, Dt)
        ddth_c = controlModel.getDOFAccelerations()

        ype.flatten(ddth_des, ddth_des_flat)
        ype.flatten(dth, dth_flat)

        ype.flatten(ddth_c, ddth_c_flat)

        # jacobian
        footCenterL = controlModel.getBodyPositionGlobal(supL)
        footCenterR = controlModel.getBodyPositionGlobal(supR)

        refFootL = motionModel.getBodyPositionGlobal(supL)
        refFootR = motionModel.getBodyPositionGlobal(supR)

        footCenter = footCenterL + (footCenterR - footCenterL) / 2.0
        footCenter[1] = 0.

        footCenter_ref = refFootL + (refFootR - refFootL) / 2.0
        #footCenter_ref[1] = 0.

        foreFootCenterL = controlModel.getBodyPositionGlobal(foreSupL)
        foreFootCenterR = controlModel.getBodyPositionGlobal(foreSupR)
        rearFootCenterL = controlModel.getBodyPositionGlobal(rearSupL)
        rearFootCenterR = controlModel.getBodyPositionGlobal(rearSupR)

        linkPositions = controlModel.getBodyPositionsGlobal()
        linkVelocities = controlModel.getBodyVelocitiesGlobal()
        linkAngVelocities = controlModel.getBodyAngVelocitiesGlobal()
        linkInertias = controlModel.getBodyInertiasGlobal()

        jointPositions = controlModel.getJointPositionsGlobal()
        jointAxeses = controlModel.getDOFAxeses()

        CM = yrp.getCM(linkPositions, linkMasses, totalMass)
        dCM = yrp.getCM(linkVelocities, linkMasses, totalMass)
        CM_plane = copy.copy(CM)
        CM_plane[1] = 0.
        dCM_plane = copy.copy(dCM)
        dCM_plane[1] = 0.

        linkPositions_ref = motionModel.getBodyPositionsGlobal()
        CM_ref = yrp.getCM(linkPositions_ref, linkMasses, totalMass)
        CM_plane_ref = copy.copy(CM_ref)
        CM_plane_ref[1] = 0.

        P = ymt.getPureInertiaMatrix(TO, linkMasses, linkPositions, CM,
                                     linkInertias)
        dP = ymt.getPureInertiaMatrixDerivative(dTO, linkMasses,
                                                linkVelocities, dCM,
                                                linkAngVelocities,
                                                linkInertias)

        yjc.computeJacobian2(Jsys, DOFs, jointPositions, jointAxeses,
                             linkPositions, allLinkJointMasks)
        #dJsys = (Jsys - JsysPre)/(1/30.)
        #JsysPre = Jsys
        yjc.computeJacobianDerivative2(dJsys, DOFs, jointPositions,
                                       jointAxeses, linkAngVelocities,
                                       linkPositions, allLinkJointMasks)

        if g_initFlag == 0:
            softConstPoint = controlModel.getBodyPositionGlobal(constBody)
            softConstPoint[1] -= .3
            g_initFlag = 1

        yjc.computeJacobian2(JsupL, DOFs, jointPositions, jointAxeses,
                             [footCenterL], supLJointMasks)
        #dJsupL = (JsupL - JsupPreL)/(1/30.)
        #JsupPreL = JsupL
        yjc.computeJacobianDerivative2(dJsupL, DOFs, jointPositions,
                                       jointAxeses, linkAngVelocities,
                                       [footCenterL], supLJointMasks, False)

        yjc.computeJacobian2(JsupR, DOFs, jointPositions, jointAxeses,
                             [footCenterR], supRJointMasks)
        #dJsupR = (JsupR - JsupPreR)/(1/30.)
        #JsupPreR = JsupR
        yjc.computeJacobianDerivative2(dJsupR, DOFs, jointPositions,
                                       jointAxeses, linkAngVelocities,
                                       [footCenterR], supRJointMasks, False)

        bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(
            bodyIDsToCheck, mus, Ks, Ds)
        CP = yrp.getCP(contactPositions, contactForces)

        for i in range(len(bodyIDsToCheck)):
            controlModel.SetBodyColor(bodyIDsToCheck[i], 0, 0, 0)

        flagForeSupLContact = 0
        flagForeSupRContact = 0
        flagRearSupLContact = 0
        flagRearSupLContact = 0

        for i in range(len(bodyIDs)):
            controlModel.SetBodyColor(bodyIDs[i], 255, 105, 105)
            index = controlModel.id2index(bodyIDs[i])
            if index == foreSupL:
                flagForeSupLContact = 1
                yjc.computeJacobian2(JforeSupL, DOFs, jointPositions,
                                     jointAxeses, [foreFootCenterL],
                                     foreSupLJointMasks)
                yjc.computeJacobianDerivative2(dJforeSupL, DOFs,
                                               jointPositions, jointAxeses,
                                               linkAngVelocities,
                                               [foreFootCenterL],
                                               foreSupLJointMasks, False)
            elif index == foreSupR:
                flagForeSupRContact = 1
                yjc.computeJacobian2(JforeSupR, DOFs, jointPositions,
                                     jointAxeses, [foreFootCenterR],
                                     foreSupRJointMasks)
                yjc.computeJacobianDerivative2(dJforeSupR, DOFs,
                                               jointPositions, jointAxeses,
                                               linkAngVelocities,
                                               [foreFootCenterR],
                                               foreSupRJointMasks, False)
            elif index == rearSupL:
                flagRearSupLContact = 1
                yjc.computeJacobian2(JrearSupL, DOFs, jointPositions,
                                     jointAxeses, [rearFootCenterL],
                                     rearSupLJointMasks)
                yjc.computeJacobianDerivative2(dJrearSupL, DOFs,
                                               jointPositions, jointAxeses,
                                               linkAngVelocities,
                                               [rearFootCenterL],
                                               rearSupLJointMasks, False)
            elif index == rearSupR:
                flagRearSupRContact = 1
                yjc.computeJacobian2(JrearSupR, DOFs, jointPositions,
                                     jointAxeses, [rearFootCenterR],
                                     rearSupRJointMasks)
                yjc.computeJacobianDerivative2(dJrearSupR, DOFs,
                                               jointPositions, jointAxeses,
                                               linkAngVelocities,
                                               [rearFootCenterR],
                                               rearSupRJointMasks, False)
        #

        desForeSupLAcc = [0, 0, 0]
        desForeSupRAcc = [0, 0, 0]

        totalNormalForce = [0, 0, 0]

        for i in range(len(contactForces)):
            totalNormalForce[0] += contactForces[i][0]
            totalNormalForce[1] += contactForces[i][1]
            totalNormalForce[2] += contactForces[i][2]

        # linear momentum
        CM_ref_plane = footCenter
        dL_des_plane = Kl * totalMass * (CM_ref_plane -
                                         CM_plane) - Dl * totalMass * dCM_plane

        # angular momentum
        CP_ref = footCenter

        timeStep = 30.
        if CP_old[0] == None or CP == None:
            dCP = None
        else:
            dCP = (CP - CP_old[0]) / (1 / timeStep)
        CP_old[0] = CP

        if CP != None and dCP != None:
            ddCP_des = Kh * (CP_ref - CP) - Dh * (dCP)
            CP_des = CP + dCP * (1 / timeStep) + .5 * ddCP_des * (
                (1 / timeStep)**2)
            dH_des = np.cross(
                (CP_des - CM),
                (dL_des_plane + totalMass * mm.s2v(wcfg.gravity)))
            #dH_des = np.cross((CP_des - CM_plane), (dL_des_plane + totalMass*mm.s2v(wcfg.gravity)))
        else:
            dH_des = None

        CMP = yrp.getCMP(contactForces, CM)
        r = [0, 0, 0]
        if CP != None and np.any(np.isnan(CMP)) != True:
            r = CP - CMP

        # momentum matrix
        RS = np.dot(P, Jsys)
        R, S = np.vsplit(RS, 2)

        rs = np.dot((np.dot(dP, Jsys) + np.dot(P, dJsys)), dth_flat)
        r_bias, s_bias = np.hsplit(rs, 2)

        ##############################
        # soft point constraint

        P_des = softConstPoint
        P_cur = controlModel.getBodyPositionGlobal(constBody)
        dP_des = [0, 0, 0]
        dP_cur = controlModel.getBodyVelocityGlobal(constBody)
        ddP_des1 = Ksc * (P_des - P_cur) - Dsc * (dP_cur - dP_des)

        r = P_des - P_cur
        I = np.vstack(([1, 0, 0], [0, 1, 0], [0, 0, 1]))
        Z = np.hstack((I, mm.getCrossMatrixForm(-r)))

        yjc.computeJacobian2(Jconst, DOFs, jointPositions, jointAxeses,
                             [softConstPoint], constJointMasks)
        JL, JA = np.vsplit(Jconst, 2)
        Q1 = np.dot(Z, Jconst)

        q1 = np.dot(JA, dth_flat)
        q2 = np.dot(mm.getCrossMatrixForm(q1),
                    np.dot(mm.getCrossMatrixForm(q1), r))

        yjc.computeJacobianDerivative2(dJconst, DOFs, jointPositions,
                                       jointAxeses, linkAngVelocities,
                                       [softConstPoint], constJointMasks,
                                       False)
        q_bias1 = np.dot(np.dot(Z, dJconst), dth_flat) + q2

        ##############################

        flagContact = True
        if dH_des == None or np.any(np.isnan(dH_des)) == True:
            flagContact = False
            viewer.doc.showRenderer('rd_grf_des', False)
            viewer.motionViewWnd.update(1, viewer.doc)
        else:
            viewer.doc.showRenderer('rd_grf_des', True)
            viewer.motionViewWnd.update(1, viewer.doc)
        '''
        0 : initial
        1 : contact
        2 : fly
        3 : landing
        '''

        #MOTION = FORWARD_JUMP
        if mit.MOTION == mit.FORWARD_JUMP:
            frame_index = [136, 100]
        elif mit.MOTION == mit.TAEKWONDO:
            frame_index = [130, 100]
        else:
            frame_index = [1000000, 1000000]

        #MOTION = TAEKWONDO
        #frame_index = [135, 100]

        if frame > frame_index[0]:
            stage = POWERFUL_BALANCING
            Kk = Kk * 2
            Dk = 2 * (Kk**.5)
        elif frame > frame_index[1]:
            stage = MOTION_TRACKING

        trackingW = w
        if stage == MOTION_TRACKING:
            trackingW = w2

        # optimization

        mot.addTrackingTerms(problem, totalDOF, Bt, trackingW, ddth_des_flat)

        mot.addSoftPointConstraintTerms(problem, totalDOF, Bsc, ddP_des1, Q1,
                                        q_bias1)

        if flagContact == True:
            if stage != MOTION_TRACKING:
                mot.addLinearTerms(problem, totalDOF, Bl, dL_des_plane, R,
                                   r_bias)
                mot.addAngularTerms(problem, totalDOF, Bh, dH_des, S, s_bias)

        ##############################
        # Hard constraint

        desLinearAccL = getDesFootLinearAcc(motionModel, controlModel, supL,
                                            ModelOffset, CM_ref, CM, Kk, Dk)
        desLinearAccR = getDesFootLinearAcc(motionModel, controlModel, supR,
                                            ModelOffset, CM_ref, CM, Kk, Dk)

        desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, supL,
                                              Kk, Dk)
        desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, supR,
                                              Kk, Dk)
        '''
        desLinearAccL = [0,0,0]
        desAngularAccL = [0,0,0]
        desLinearAccR = [0,0,0]
        desAngularAccR = [0,0,0]

        refPos = motionModel.getBodyPositionGlobal(supL)  
        curPos = controlModel.getBodyPositionGlobal(supL)
        refRootPos = motionModel.getBodyPositionGlobal(rootB)
        curRootPos = controlModel.getBodyPositionGlobal(rootB)
        refVecL = refPos - CM_ref
        if stage == MOTION_TRACKING:
            refPos = CM + refVecL
            refPos[1] += 0.05
            refPos[0] -= 0.05
        elif stage == POWERFUL_BALANCING:
            refPos = copy.copy(curPos)
            refPos[1] = 0
        else:
            refPos[0] += ModelOffset[0]
        
        rd_root[0] = curRootPos
                        
        refVel = motionModel.getBodyVelocityGlobal(supL) 
        rd_footCenterL[0] = copy.copy(curPos)
        #rd_footCenterL[0][2] += 0.2
        curVel = controlModel.getBodyVelocityGlobal(supL)
        #refAcc = (0,0,0)
        refAcc = motionModel.getBodyAccelerationGlobal(supL)
         
        if stage != MOTION_TRACKING:
            refPos[1] = 0
        
        if refPos[1] < 0.0 :
            refPos[1] = 0.0
        rd_DesPosL[0] = refPos

        desLinearAccL = yct.getDesiredAcceleration(refPos, curPos, refVel, curVel, refAcc, Kk, Dk)
         
        refPos = motionModel.getBodyPositionGlobal(supR)       
        curPos = controlModel.getBodyPositionGlobal(supR)
        refVecR = refPos - CM_ref
        if stage == MOTION_TRACKING:
            refPos = CM + refVecR
            refPos[1] += 0.05
            refPos[0] -= 0.05
        elif stage == POWERFUL_BALANCING:
            refPos = copy.copy(curPos)
            refPos[1] = 0
        else :
            refPos[0] += ModelOffset[0]
        
        refVel = motionModel.getBodyVelocityGlobal(supR) 
        curVel = controlModel.getBodyVelocityGlobal(supR)
        refAcc = motionModel.getBodyAccelerationGlobal(supR)
        
        if stage != MOTION_TRACKING:
            refPos[1] = 0
        
        if refPos[1] < 0.0 :
            refPos[1] = 0.0
        rd_DesPosR[0] = refPos

        desLinearAccR = yct.getDesiredAcceleration(refPos, curPos, refVel, curVel, refAcc, Kk, Dk)

        curAng = [controlModel.getBodyOrientationGlobal(supL)]
        refAngVel = motionModel.getBodyAngVelocityGlobal(supL)
        curAngVel = controlModel.getBodyAngVelocityGlobal(supL)
        refAngAcc = (0,0,0)
                        
        curAngY = np.dot(curAng, np.array([0,1,0]))
        refAngY = np.array([0,1,0])
        if stage == DYNAMIC_BALANCING:    
            refAng = [motionModel.getBodyOrientationGlobal(supL)]
            refAngY2 = np.dot(refAng, np.array([0,1,0]))
            refAngY = refAngY2[0]
            
        rd_footL_vec[0] = refAngY
        rd_footR_vec[0] = curAngY[0]
        aL = mm.logSO3(mm.getSO3FromVectors(curAngY[0], refAngY))
        desAngularAccL = [Kk*aL + Dk*(refAngVel-curAngVel)]      
        
        curAng = [controlModel.getBodyOrientationGlobal(supR)]
        refAngVel = motionModel.getBodyAngVelocityGlobal(supR)
        curAngVel = controlModel.getBodyAngVelocityGlobal(supR)
        refAngAcc = (0,0,0)
        
        curAngY = np.dot(curAng, np.array([0,1,0]))
        refAngY = np.array([0,1,0])
        if stage == DYNAMIC_BALANCING:    
            refAng = [motionModel.getBodyOrientationGlobal(supR)]
            refAngY2 = np.dot(refAng, np.array([0,1,0]))
            refAngY = refAngY2[0]
            
        aL = mm.logSO3(mm.getSO3FromVectors(curAngY[0], refAngY))
        desAngularAccR = [Kk*aL + Dk*(refAngVel-curAngVel)]

        a_sup_2 = [desLinearAccL[0], desLinearAccL[1], desLinearAccL[2], desAngularAccL[0][0], desAngularAccL[0][1], desAngularAccL[0][2], 
                   desLinearAccR[0], desLinearAccR[1], desLinearAccR[2], desAngularAccR[0][0], desAngularAccR[0][1], desAngularAccR[0][2]]
        '''
        a_sup_2 = np.hstack((np.hstack((desLinearAccL, desAngularAccL)),
                             np.hstack((desLinearAccR, desAngularAccR))))

        Jsup_2 = np.vstack((JsupL, JsupR))
        dJsup_2 = np.vstack((dJsupL, dJsupR))

        mot.setConstraint(problem, totalDOF, Jsup_2, dJsup_2, dth_flat,
                          a_sup_2)

        ##############################

        ##############################
        # Additional constraint
        desLinearAccL = [0, 0, 0]
        desAngularAccL = [0, 0, 0]
        desLinearAccR = [0, 0, 0]
        desAngularAccR = [0, 0, 0]

        refPos = motionModel.getBodyPositionGlobal(supL)
        curPos = controlModel.getBodyPositionGlobal(supL)
        refVecL = refPos - CM_ref
        if stage == MOTION_TRACKING:
            refPos = CM + refVecL
            refPos[1] += 0.05
            refPos[0] -= 0.05
        elif stage == POWERFUL_BALANCING:
            refPos = copy.copy(curPos)
            refPos[1] = 0
        else:
            refPos[0] += ModelOffset[0]

        refVel = motionModel.getBodyVelocityGlobal(supL)
        curVel = controlModel.getBodyVelocityGlobal(supL)
        #refAcc = (0,0,0)
        refAcc = motionModel.getBodyAccelerationGlobal(supL)

        if stage != MOTION_TRACKING:
            refPos[1] = 0

        if refPos[1] < 0.0:
            refPos[1] = 0.0

        desLinearAccL = yct.getDesiredAcceleration(refPos, curPos, refVel,
                                                   curVel, refAcc, Kk, Dk)

        curAng = [controlModel.getBodyOrientationGlobal(supL)]
        refAngVel = motionModel.getBodyAngVelocityGlobal(supL)
        curAngVel = controlModel.getBodyAngVelocityGlobal(supL)
        refAngAcc = (0, 0, 0)

        curAngY = np.dot(curAng, np.array([0, 1, 0]))
        refAngY = np.array([0, 1, 0])
        if stage == DYNAMIC_BALANCING:
            refAng = [motionModel.getBodyOrientationGlobal(supL)]
            refAngY2 = np.dot(refAng, np.array([0, 1, 0]))
            refAngY = refAngY2[0]

        rd_footL_vec[0] = refAngY
        rd_footR_vec[0] = curAngY[0]
        aL = mm.logSO3(mm.getSO3FromVectors(curAngY[0], refAngY))
        desAngularAccL = [Kk * aL + Dk * (refAngVel - curAngVel)]

        ##############################

        r = problem.solve()
        problem.clear()
        ype.nested(r['x'], ddth_sol)

        rootPos[0] = controlModel.getBodyPositionGlobal(selectedBody)
        localPos = [[0, 0, 0]]

        for i in range(stepsPerFrame):
            # apply penalty force
            bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(
                bodyIDsToCheck, mus, Ks, Ds)

            vpWorld.applyPenaltyForce(bodyIDs, contactPositionLocals,
                                      contactForces)

            controlModel.setDOFAccelerations(ddth_sol)

            if flagForeSupLContact == 1:
                controlModel.setJointAngAccelerationLocal(
                    foreSupL, (2.1, 0, 0))
            if flagForeSupRContact == 1:
                controlModel.setJointAngAccelerationLocal(
                    foreSupR, (2.1, 0, 0))

            controlModel.solveHybridDynamics()

            extraForce[0] = viewer.GetForce()
            if (extraForce[0][0] != 0 or extraForce[0][1] != 0
                    or extraForce[0][2] != 0):
                forceApplyFrame += 1
                vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce)
                applyedExtraForce[0] = extraForce[0]

            if forceApplyFrame * wcfg.timeStep > 0.1:
                viewer.ResetForce()
                forceApplyFrame = 0

            vpWorld.step()

        # rendering
        rd_footCenter[0] = footCenter

        rd_CM[0] = CM.copy()

        rd_CM_plane[0] = CM_plane.copy()

        rd_footCenter_ref[0] = footCenter_ref
        rd_CM_plane_ref[0] = CM_ref.copy()
        rd_CM_ref[0] = CM_ref.copy()
        rd_CM_ref_vec[0] = (CM_ref - footCenter_ref) * 3.
        rd_CM_vec[0] = (CM - footCenter) * 3

        #rd_CM_plane[0][1] = 0.

        if CP != None and dCP != None:
            rd_CP[0] = CP
            rd_CP_des[0] = CP_des

        rd_dL_des_plane[0] = dL_des_plane
        rd_dH_des[0] = dH_des

        rd_grf_des[0] = totalNormalForce - totalMass * mm.s2v(
            wcfg.gravity)  #dL_des_plane - totalMass*mm.s2v(wcfg.gravity)

        rd_exf_des[0] = applyedExtraForce[0]
        rd_root_des[0] = rootPos[0]

        rd_CMP[0] = softConstPoint

        rd_soft_const_vec[0] = controlModel.getBodyPositionGlobal(
            constBody) - softConstPoint

        if (forceApplyFrame == 0):
            applyedExtraForce[0] = [0, 0, 0]
Esempio n. 11
0
    def simulateCallback(frame):
        global g_initFlag
        global forceShowFrame
        global forceApplyFrame
        global JsysPre
        global JsupPreL
        global JsupPreR
        global JsupPre
        global softConstPoint
        global stage
        global contactRendererName

        motionModel.update(motion[frame])

        Kt, Kk, Kl, Kh, Ksc, Bt, Bl, Bh, Bsc = viewer.GetParam()
        
        Dt = 2*(Kt**.5)
        Dk = 2*(Kk**.5)
        Dl = 2*(Kl**.5)
        Dh = 2*(Kh**.5)
        Dsc = 2*(Ksc**.5)
                
        if Bsc == 0.0 :
            viewer.doc.showRenderer('softConstraint', False)
            viewer.motionViewWnd.update(1, viewer.doc)
        else:
            viewer.doc.showRenderer('softConstraint', True)
            renderer1 = viewer.doc.getRenderer('softConstraint')
            renderer1.rc.setLineWidth(0.1+Bsc*3)
            viewer.motionViewWnd.update(1, viewer.doc)
                        
        # tracking
        th_r = motion.getDOFPositions(frame)
        th = controlModel.getDOFPositions()
        dth_r = motion.getDOFVelocities(frame)
        dth = controlModel.getDOFVelocities()
        ddth_r = motion.getDOFAccelerations(frame)
        ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r, Kt, Dt)
        ddth_c = controlModel.getDOFAccelerations()

        ype.flatten(ddth_des, ddth_des_flat)
        ype.flatten(dth, dth_flat)

        ype.flatten(ddth_c, ddth_c_flat)
        
        # jacobian                                 
        refFootL = motionModel.getBodyPositionGlobal(supL)        
        refFootR = motionModel.getBodyPositionGlobal(supR)
               
        positionFootL = [None]*footPartNum
        positionFootR = [None]*footPartNum
        for i in range(footPartNum):
            positionFootL[i] = controlModel.getBodyPositionGlobal(indexFootL[i])
            positionFootR[i] = controlModel.getBodyPositionGlobal(indexFootR[i])
        
        linkPositions = controlModel.getBodyPositionsGlobal()
        linkVelocities = controlModel.getBodyVelocitiesGlobal()
        linkAngVelocities = controlModel.getBodyAngVelocitiesGlobal()
        linkInertias = controlModel.getBodyInertiasGlobal()

        jointPositions = controlModel.getJointPositionsGlobal()
        jointAxeses = controlModel.getDOFAxeses()
        
        CM = yrp.getCM(linkPositions, linkMasses, totalMass)
        dCM = yrp.getCM(linkVelocities, linkMasses, totalMass)
        CM_plane = copy.copy(CM); CM_plane[1]=0.
        dCM_plane = copy.copy(dCM); dCM_plane[1]=0.
                
        linkPositions_ref = motionModel.getBodyPositionsGlobal()
        CM_ref = yrp.getCM(linkPositions_ref, linkMasses, totalMass)
        CM_plane_ref = copy.copy(CM_ref)
        CM_plane_ref[1] = 0.
        
        P = ymt.getPureInertiaMatrix(TO, linkMasses, linkPositions, CM, linkInertias)
        dP = ymt.getPureInertiaMatrixDerivative(dTO, linkMasses, linkVelocities, dCM, linkAngVelocities, linkInertias)

        yjc.computeJacobian2(Jsys, DOFs, jointPositions, jointAxeses, linkPositions, allLinkJointMasks)       
        yjc.computeJacobianDerivative2(dJsys, DOFs, jointPositions, jointAxeses, linkAngVelocities, linkPositions, allLinkJointMasks)
                
        yjc.computeJacobian2(jFootL[0], DOFs, jointPositions, jointAxeses, [positionFootL[0]], jointMasksFootL[0])
        yjc.computeJacobianDerivative2(dJFootL[0], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootL[0]], jointMasksFootL[0], False)
        
        yjc.computeJacobian2(jFootR[0], DOFs, jointPositions, jointAxeses, [positionFootR[0]], jointMasksFootR[0])
        yjc.computeJacobianDerivative2(dJFootR[0], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootR[0]], jointMasksFootR[0], False)
                
        yjc.computeAngJacobian2(jAngFootL[0], DOFs, jointPositions, jointAxeses, [positionFootL[0]], jointMasksFootL[0])
        yjc.computeAngJacobianDerivative2(dJAngFootL[0], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootL[0]], jointMasksFootL[0], False)
        
        yjc.computeAngJacobian2(jAngFootR[0], DOFs, jointPositions, jointAxeses, [positionFootR[0]], jointMasksFootR[0])
        yjc.computeAngJacobianDerivative2(dJAngFootR[0], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootR[0]], jointMasksFootR[0], False)
        
        bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds)
        CP = yrp.getCP(contactPositions, contactForces)

        for i in range(len(bodyIDsToCheck)) :
            controlModel.SetBodyColor(bodyIDsToCheck[i], 0, 0, 0)
        
        ##########################################
        
        for i in range(len(rd_contactPositions)):
            rd_contactPositions[i] = [0,0,0]
            rd_contactForces[i] = [0,0,0]

        for i in range(len(contactPositions)):
            rd_contactPositions[i] = np.copy(contactPositions[i])
            rd_contactForces[i] = np.copy(contactForces[i])
        '''
        if len(contactPositions) > 0:
            rd_contactPositions = np.copy(contactPositions)
            rd_contactForces = np.copy(contactForces)
            print("rd_contactPositions", rd_contactPositions)
            print("contactPositions", contactPositions)
        '''
        '''
        for i in range(len(contactRendererName)):
                viewer.doc.removeRenderer(contactRendererName[i])
                
        del contactRendererName[:]

        for i in range(len(contactPositions)):
            contactRendererName.append(str(i))
            #viewer.doc.addRenderer(str(i), yr.PointsRenderer([contactPositions[i]], (0,255,0)))
            viewer.doc.addRenderer(str(i), yr.ForcesRenderer([contactForces[i]], [contactPositions[i]], (0,255,0), .009, 0.009))


        viewer.motionViewWnd.update(1, viewer.doc)
        '''
        ##########################################


        contactFlagFootL = [0]*footPartNum
        contactFlagFootR = [0]*footPartNum

        partialDOFIndex = [22, 22]
        for i in range(len(bodyIDs)) :
            controlModel.SetBodyColor(bodyIDs[i], 255, 105, 105)
            index = controlModel.id2index(bodyIDs[i])
            for j in range(len(indexFootL)):
                if index == indexFootL[j]:
                    contactFlagFootL[j] = 1
                    if j != 0:
                        yjc.computePartialJacobian2(jFootL[j], DOFs, jointPositions, jointAxeses, [positionFootL[j]], jointMasksFootL[j], partialDOFIndex)
                        yjc.computePartialJacobianDerivative2(dJFootL[j], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootL[j]], jointMasksFootL[j], False, partialDOFIndex)
                    break
            for j in range(len(indexFootR)):
                if index == indexFootR[j]:
                    contactFlagFootR[j] = 1
                    if j != 0:
                        yjc.computePartialJacobian2(jFootR[j], DOFs, jointPositions, jointAxeses, [positionFootR[j]], jointMasksFootR[j], partialDOFIndex)
                        yjc.computePartialJacobianDerivative2(dJFootR[j], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootR[j]], jointMasksFootR[j], False, partialDOFIndex)
                    break
                

        for j in range(len(indexFootL)):
            yjc.computeAngJacobian2(jAngFootL[j], DOFs, jointPositions, jointAxeses, [positionFootL[j]], jointMasksFootL[j])
            yjc.computeAngJacobianDerivative2(dJAngFootL[j], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootL[j]], jointMasksFootL[j], False)            
            yjc.computeAngJacobian2(jAngFootR[j], DOFs, jointPositions, jointAxeses, [positionFootR[j]], jointMasksFootR[j])
            yjc.computeAngJacobianDerivative2(dJAngFootR[j], DOFs, jointPositions, jointAxeses, linkAngVelocities, [positionFootR[j]], jointMasksFootR[j], False)

        '''
        if footPartNum == 1:
             footCenterL = controlModel.getBodyPositionGlobal(supL)
             footCenterR = controlModel.getBodyPositionGlobal(supR)             
        else:
            if ((contactFlagFootL[3] == 1 or contactFlagFootL[4] == 1) and contactFlagFootL[0] == 0) or ((contactFlagFootR[3] == 1 or contactFlagFootR[4] == 1) and contactFlagFootR[0] == 0):
                r = 0.8
                footCenterL = (controlModel.getBodyPositionGlobal(supL)*r + controlModel.getBodyPositionGlobal(indexFootL[1])*(1.0-r))
                footCenterR = (controlModel.getBodyPositionGlobal(supR)*r + controlModel.getBodyPositionGlobal(indexFootR[1])*(1.0-r))
                #footCenterL = controlModel.getBodyPositionGlobal(indexFootL[1]) 
                #footCenterR = controlModel.getBodyPositionGlobal(indexFootR[1])                 
            else :
                #footCenterL = (controlModel.getBodyPositionGlobal(supL) + controlModel.getBodyPositionGlobal(indexFootL[1]))/2.0
                #footCenterR = (controlModel.getBodyPositionGlobal(supR) + controlModel.getBodyPositionGlobal(indexFootR[1]))/2.0
                #footCenterL = controlModel.getBodyPositionGlobal(indexFootL[1])                    
                #footCenterR = controlModel.getBodyPositionGlobal(indexFootR[1])
                r = 0.8
                footCenterL = (controlModel.getBodyPositionGlobal(indexFootL[1])*r + controlModel.getBodyPositionGlobal(indexFootL[3])*(1.0-r))
                footCenterR = (controlModel.getBodyPositionGlobal(indexFootR[1])*r + controlModel.getBodyPositionGlobal(indexFootR[3])*(1.0-r))
        '''
        
        '''
        if stage == POWERFUL_BALANCING:
            footCenterL = controlModel.getBodyPositionGlobal(indexFootL[1])        
            footCenterR = controlModel.getBodyPositionGlobal(indexFootR[1])
        else:
            footCenterL = (controlModel.getBodyPositionGlobal(indexFootL[1]) + controlModel.getBodyPositionGlobal(indexFootL[3]) )/2.0       
            footCenterR = (controlModel.getBodyPositionGlobal(indexFootR[1]) + controlModel.getBodyPositionGlobal(indexFootR[3]))/2.0
        '''
        '''
        p1 = controlModel.getBodyPositionGlobal(indexFootL[0])
        p2 = controlModel.getBodyPositionGlobal(indexFootR[0])
        p3 = controlModel.getBodyPositionGlobal(indexFootL[3])
        p4 = controlModel.getBodyPositionGlobal(indexFootR[3])
        print(frame, "supL", p1[1])
        print(frame, "supR", p2[1])
        print(frame, "calcL", p3[1])
        print(frame, "calcR", p4[1])        
        '''

        #footCenter = footCenterL + (footCenterR - footCenterL)/2.0
        #footCenter[1] = 0.     
        
        #
        '''
        if checkAll(contactFlagFootL, 0) == 1 and checkAll(contactFlagFootR, 0) == 1:
            footCenter = footCenter
        elif checkAll(contactFlagFootL, 0) == 1 :
            footCenter = footCenterR
        elif checkAll(contactFlagFootR, 0) == 1 :
            footCenter = footCenterL
        '''

        if footPartNum == 1:
            desFCL = (controlModel.getBodyPositionGlobal(supL))
            desFCR = (controlModel.getBodyPositionGlobal(supR))
        else :
            r = .4
            desFCL = (controlModel.getBodyPositionGlobal(indexFootL[1])*r + controlModel.getBodyPositionGlobal(indexFootL[3])*(1.0-r))#controlModel.getBodyPositionGlobal(indexFootL[1])
            desFCR = (controlModel.getBodyPositionGlobal(indexFootR[1])*r + controlModel.getBodyPositionGlobal(indexFootR[3])*(1.0-r))#controlModel.getBodyPositionGlobal(indexFootR[1])
        desFC = desFCL + (desFCR - desFCL)/2.0  
           
        if checkAll(contactFlagFootL, 0) == 1 and checkAll(contactFlagFootR, 0) == 1:
            desFC = desFC
        elif checkAll(contactFlagFootL, 0) == 1 :
            desFC = desFCR
        elif checkAll(contactFlagFootR, 0) == 1 :
            desFC = desFCL
           
        #if stage == MOTION_TRACKING:
        #    desFC = desFCL
        
        desFC[1] = 0
        rd_footCenter_des[0] = desFC.copy()
        curRelCMVec = CM_plane - desFC
        vecRatio = mm.length(curRelCMVec)*0.
        #print(frame, vecRatio)
        footCenter = desFC - curRelCMVec*(vecRatio)#/10.0

        footCenter_ref = refFootL + (refFootR - refFootL)/2.0
        #footCenter_ref[1] = 0.    
        footCenter[1] = 0.  

        
        vecRatio = mm.length(curRelCMVec)*0.
        softConstPointOffset = -curRelCMVec*(vecRatio)#/10.0
        #print(frame, vecRatio, softConstPointOffset)

        desForeSupLAcc = [0,0,0]
        desForeSupRAcc = [0,0,0]
                
        totalNormalForce = [0,0,0]    
        
        for i in range(len(contactForces)):
            totalNormalForce[0] += contactForces[i][0]
            totalNormalForce[1] += contactForces[i][1]
            totalNormalForce[2] += contactForces[i][2]
                                   
        #print((totalMass*mm.s2v(wcfg.gravity))[1])
        print("totalNormalForce=", totalNormalForce[1])
        print("F_Diff=", (totalMass*mm.s2v(wcfg.gravity))[1]+totalNormalForce[1])

        # linear momentum
        CM_ref_plane = footCenter
        dL_des_plane = Kl*totalMass*(CM_ref_plane - CM_plane) - Dl*totalMass*dCM_plane
    
        print("CM_Diff=",mm.length(CM_ref_plane - CM_plane))
        # angular momentum
        CP_ref = footCenter

        timeStep = 30.
        if CP_old[0]==None or CP==None:
            dCP = None
        else:
            dCP = (CP - CP_old[0])/(1/timeStep)
        CP_old[0] = CP            
        
        if CP!=None and dCP!=None:
            ddCP_des = Kh*(CP_ref - CP) - Dh*(dCP)
            CP_des = CP + dCP*(1/timeStep) + .5*ddCP_des*((1/timeStep)**2)
            #dH_des = np.cross((CP_des - CM), (dL_des_plane + totalMass*mm.s2v(wcfg.gravity)))            
            dH_des = np.cross((CP_des - CM_plane), (dL_des_plane + totalMass*mm.s2v(wcfg.gravity)))
            print("CP_Diff=",mm.length(CP_des - CP))
        else:
            dH_des = None
                        
 
        # momentum matrix
        RS = np.dot(P, Jsys)
        R, S = np.vsplit(RS, 2)
        
        rs = np.dot((np.dot(dP, Jsys) + np.dot(P, dJsys)), dth_flat)
        r_bias, s_bias = np.hsplit(rs, 2)


        ##############################
        # soft point constraint

        #####################################################
        P_cur = controlModel.getBodyPositionGlobal(constBody)
        constBodyVec = P_cur - footCenter
        softConstPoint = [footCenter[0]+softConstPointOffset[0], mm.length(constBodyVec), footCenter[2]+softConstPointOffset[2]]
        #####################################################

        P_des = softConstPoint
        #P_cur = controlModel.getBodyPositionGlobal(constBody)
        dP_des = [0, 0, 0]
        dP_cur = controlModel.getBodyVelocityGlobal(constBody)
        ddP_des1 = Ksc*(-(P_des - P_cur)) - Dsc*(-(dP_cur - dP_des))

        r = -(P_des - P_cur)
        I = np.vstack(([1,0,0],[0,1,0],[0,0,1]))
        Z = np.hstack((I, mm.getCrossMatrixForm(-r)))
          
        yjc.computeJacobian2(Jconst, DOFs, jointPositions, jointAxeses, [P_cur], constJointMasks)
        JL, JA = np.vsplit(Jconst, 2)
        Q1 = np.dot(Z, Jconst)
                  
        q1 = np.dot(JA, dth_flat)
        q2 = np.dot(mm.getCrossMatrixForm(q1), np.dot(mm.getCrossMatrixForm(q1), r))
        
        yjc.computeJacobianDerivative2(dJconst, DOFs, jointPositions, jointAxeses, linkAngVelocities, [P_cur], constJointMasks, False)
        q_bias1 = np.dot(np.dot(Z, dJconst), dth_flat) + q2
        
        ##############################
        
         
        flagContact = True
        if dH_des==None or np.any(np.isnan(dH_des)) == True:
            flagContact = False 
            viewer.doc.showRenderer('rd_grf_des', False)
            viewer.motionViewWnd.update(1, viewer.doc)
        else:
            viewer.doc.showRenderer('rd_grf_des', True)
            viewer.motionViewWnd.update(1, viewer.doc)
        '''
        0 : initial
        1 : contact
        2 : fly
        3 : landing
        '''

        #MOTION = FORWARD_JUMP
        if mit.MOTION == mit.FORWARD_JUMP :
            frame_index = [136, 100]
            #frame_index = [100000, 100000]
        elif mit.MOTION == mit.TAEKWONDO:
            frame_index = [130, 100]
            #frame_index = [100000, 100000]
        elif mit.MOTION == mit.TAEKWONDO2:
            frame_index = [130+40, 100]
        elif mit.MOTION == mit.WALK:
            frame_index = [10000, 60]
        else :
            frame_index = [1000000, 1000000]
        
        #MOTION = TAEKWONDO 
        #frame_index = [135, 100]

        '''
        if frame > 300 :
            if stage != DYNAMIC_BALANCING:
                print("#", frame,"-DYNAMIC_BALANCING")
            stage = DYNAMIC_BALANCING
            Kk = Kk*1
            Dk = 2*(Kk**.5)        
        '''
        if frame > frame_index[0] :
            if stage != POWERFUL_BALANCING:
                print("#", frame,"-POWERFUL_BALANCING")
            stage = POWERFUL_BALANCING
            Kk = Kk*2
            Dk = 2*(Kk**.5)            
        elif frame > frame_index[1]:
            if stage != MOTION_TRACKING:
                print("#", frame,"-MOTION_TRACKING")
            stage = MOTION_TRACKING

        trackingW = w

        #if checkAll(contactFlagFootR, 0) != 1 :
        if stage == MOTION_TRACKING:
            trackingW = w2
            #stage = POWERFUL_BALANCING
            Bt = Bt*2

        # optimization
                
        mot.addTrackingTerms(problem, totalDOF, Bt, trackingW, ddth_des_flat)
                
        mot.addSoftPointConstraintTerms(problem, totalDOF, Bsc, ddP_des1, Q1, q_bias1)

        if flagContact == True:
            if stage != MOTION_TRACKING+10:
                mot.addLinearTerms(problem, totalDOF, Bl, dL_des_plane, R, r_bias) 
                mot.addAngularTerms(problem, totalDOF, Bh, dH_des, S, s_bias)
            
        a_sup_2 = [None]
        Jsup_2 = [None]
        dJsup_2 = [None]

        ##############################
        # Hard constraint        
        if stage != MOTION_TRACKING:
            Kk2 = Kk * 2.0
        else :
            Kk2 = Kk * 1.5
                    
        Dk2 = 2*(Kk2**.5)

        '''
        desLinearAccL, desPosL = getDesFootLinearAcc(motionModel, controlModel, supL, ModelOffset, CM_ref, CM, Kk2, Dk2) 
        desLinearAccR, desPosR = getDesFootLinearAcc(motionModel, controlModel, supR, ModelOffset, CM_ref, CM, Kk2, Dk2) 

        desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, supL, Kk2, Dk2)
        desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, supR, Kk2, Dk2)
        '''
        
        if stage != MOTION_TRACKING:
            idx = 0 #LEFT/RIGHT_TOES 
                        
            if stage != MOTION_TRACKING:
                desLinearAccL, desPosL = getDesFootLinearAcc(motionModel, controlModel, indexFootL[idx], ModelOffset, CM_ref, CM, Kk2, Dk2, 0.14)#0.076) 
                desLinearAccR, desPosR = getDesFootLinearAcc(motionModel, controlModel, indexFootR[idx], ModelOffset, CM_ref, CM, Kk2, Dk2, 0.14) 

                desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[idx], Kk2, Dk2, [0,0,-1], [0,1,1.5])
                desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[idx], Kk2, Dk2, [0,0,-1], [0,1,1.5])
        
                a_sup_2 = np.hstack(( np.hstack((desLinearAccL, desAngularAccL)), np.hstack((desLinearAccR, desAngularAccR)) ))
 
                Jsup_2 = np.vstack((jFootL[idx], jFootR[idx]))
                dJsup_2 = np.vstack((dJFootL[idx], dJFootR[idx]))   
            else:
                desLinearAccL, desPosL = getDesFootLinearAcc(motionModel, controlModel, indexFootL[idx], ModelOffset, CM_ref, CM, Kk2, Dk2, 0.040) 
                desLinearAccR, desPosR = getDesFootLinearAcc(motionModel, controlModel, indexFootR[idx], ModelOffset, CM_ref, CM, Kk2, Dk2, 0.040) 

                desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[idx], Kk2, Dk2)
                    
                a_sup_2 = np.hstack((desLinearAccL, desAngularAccL))
 
                Jsup_2 = jFootL[idx] 
                dJsup_2 = dJFootL[idx]
            
            rd_DesPosL[0] = desPosL.copy()
            rd_DesPosR[0] = desPosR.copy()
        else:
            if footPartNum != 5:
                idx = 0
                desLinearAccL, desPosL = getDesFootLinearAcc(motionModel, controlModel, indexFootL[idx], ModelOffset, CM_ref, CM, Kk2, Dk2, 0.045) 
                desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[idx], Kk2, Dk2)
        
                a_sup_2 = np.hstack(( desLinearAccL, desAngularAccL))
 
                Jsup_2 = (jFootL[idx])
                dJsup_2 = (dJFootL[idx])  
                '''
                idx = 4
                desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[idx], Kk2, Dk2)
        
                a_sup_2 = np.hstack(( a_sup_2, desAngularAccL))
 
                Jsup_2 = np.vstack(( Jsup_2, jAngFootL[idx]))
                dJsup_2 = np.vstack(( dJsup_2, dJAngFootL[idx]))
                '''
                '''                
                idx = 1
                desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[idx], Kk2, Dk2)        
                a_sup_2 = np.hstack(( a_sup_2, desAngularAccL))
 
                Jsup_2 = np.vstack(( Jsup_2, jAngFootL[idx]))
                dJsup_2 = np.vstack(( dJsup_2, dJAngFootL[idx]))
                '''
            else:                
                idx = 0
                desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[idx], Kk2, Dk2)
                desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[idx], Kk2, Dk2)
        
                a_sup_2 = np.hstack(( desAngularAccL, desAngularAccR ))
 
                Jsup_2 = np.vstack((jAngFootL[idx], jAngFootR[idx]))
                dJsup_2 = np.vstack((dJAngFootL[idx], dJAngFootR[idx]))             
                       

        ##############################
        
        ##############################
        # Additional constraint          

        if stage != MOTION_TRACKING+10:
            #Kk2 = Kk * 2.5
            Kk2 = Kk * 2.5
            Dk2 = 2*(Kk2**.5)
            desForePosL = [0,0,0]
            desForePosR = [0,0,0]
            desRearPosL = [0,0,0]
            desRearPosR = [0,0,0]
            
            for i in range(1, footPartNum) :
                if stage != MOTION_TRACKING:
                    axis = [0,1,0]
                    desAng = [0,1,0]
                    desY = 0.04
                    if i == 1 or i == 2:
                        desAng = [0,1,1.2]
                        desY = 0.076
                    if contactFlagFootL[i] == 1:
                        desLinearAccL, desForePosL = getDesFootLinearAcc(motionModel, controlModel, indexFootL[i], ModelOffset, CM_ref, CM, Kk2, Dk2, desY) 
                        desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[i], Kk2, Dk2, axis, desAng)
                        a_sup_2 = np.hstack(( a_sup_2, np.hstack((desLinearAccL, desAngularAccL)) ))
                        Jsup_2 = np.vstack(( Jsup_2, jFootL[i] ))
                        dJsup_2 = np.vstack(( dJsup_2, dJFootL[i] ))                
                    if contactFlagFootR[i] == 1:
                        desLinearAccR, desForePosR = getDesFootLinearAcc(motionModel, controlModel, indexFootR[i], ModelOffset, CM_ref, CM, Kk2, Dk2, desY) 
                        desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[i], Kk2, Dk2, axis, desAng)
                        a_sup_2 = np.hstack(( a_sup_2, np.hstack((desLinearAccR, desAngularAccR)) ))            
                        Jsup_2 = np.vstack(( Jsup_2, jFootR[i] ))
                        dJsup_2 = np.vstack(( dJsup_2, dJFootR[i] ))
                else:
                    if contactFlagFootL[i] == 1:
                        desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[i], Kk2, Dk2)
                        a_sup_2 = np.hstack(( a_sup_2, desAngularAccL ))
                        Jsup_2 = np.vstack(( Jsup_2, jAngFootL[i] ))
                        dJsup_2 = np.vstack(( dJsup_2, dJAngFootL[i] ))                
                    if contactFlagFootR[i] == 1:
                        desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[i], Kk2, Dk2)
                        a_sup_2 = np.hstack(( a_sup_2, desAngularAccR ))            
                        Jsup_2 = np.vstack(( Jsup_2, jAngFootR[i] ))
                        dJsup_2 = np.vstack(( dJsup_2, dJAngFootR[i] ))

            '''
            for i in range(1, footPartNum) :
                if contactFlagFootL[i] == 1:
                    desLinearAccL, desForePosL = getDesFootLinearAcc(motionModel, controlModel, indexFootL[i], ModelOffset, CM_ref, CM, Kk2, Dk2, 0.034) 
                    desAngularAccL = getDesFootAngularAcc(motionModel, controlModel, indexFootL[i], Kk2, Dk2)
                    a_sup_2 = np.hstack(( a_sup_2, np.hstack((desLinearAccL, desAngularAccL)) ))
                    Jsup_2 = np.vstack(( Jsup_2, jFootL[i] ))
                    dJsup_2 = np.vstack(( dJsup_2, dJFootL[i] ))                
                if contactFlagFootR[i] == 1:
                    desLinearAccR, desForePosR = getDesFootLinearAcc(motionModel, controlModel, indexFootR[i], ModelOffset, CM_ref, CM, Kk2, Dk2, 0.034) 
                    desAngularAccR = getDesFootAngularAcc(motionModel, controlModel, indexFootR[i], Kk2, Dk2)
                    a_sup_2 = np.hstack(( a_sup_2, np.hstack((desLinearAccR, desAngularAccR)) ))            
                    Jsup_2 = np.vstack(( Jsup_2, jFootR[i] ))
                    dJsup_2 = np.vstack(( dJsup_2, dJFootR[i] ))
            '''
            rd_DesForePosL[0] = desForePosL
            rd_DesForePosR[0] = desForePosR
            rd_DesRearPosL[0] = desRearPosL
            rd_DesRearPosR[0] = desRearPosR
        ##############################
        

        mot.setConstraint(problem, totalDOF, Jsup_2, dJsup_2, dth_flat, a_sup_2)
        

        r = problem.solve()
        problem.clear()
        ype.nested(r['x'], ddth_sol)
                      
        rootPos[0] = controlModel.getBodyPositionGlobal(selectedBody)
        localPos = [[0, 0, 0]]   

        rd_Joint[0] = controlModel.getJointPositionGlobal(motion[0].skeleton.getJointIndex('LeftMetatarsal_1'))
        rd_Joint2[0] = controlModel.getJointPositionGlobal(motion[0].skeleton.getJointIndex('LeftMetatarsal_3'))
        rd_Joint3[0] = controlModel.getJointPositionGlobal(motion[0].skeleton.getJointIndex('LeftPhalange_1'))
        rd_Joint4[0] = controlModel.getJointPositionGlobal(motion[0].skeleton.getJointIndex('LeftPhalange_3'))
                
        for i in range(stepsPerFrame):
            # apply penalty force
            bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds)
     
            vpWorld.applyPenaltyForce(bodyIDs, contactPositionLocals, contactForces)                      
            
            extraForce[0] = viewer.GetForce()
            if (extraForce[0][0] != 0 or extraForce[0][1] != 0 or extraForce[0][2] != 0) :
                forceApplyFrame += 1
                #vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce)
                controlModel.applyBodyForceGlobal(selectedBody, extraForce[0])
                applyedExtraForce[0] = extraForce[0]
            
            if forceApplyFrame*wcfg.timeStep > 0.1:
                viewer.ResetForce()
                forceApplyFrame = 0            

            controlModel.setDOFAccelerations(ddth_sol)
            
            controlModel.solveHybridDynamics()
            '''
            extraForce[0] = viewer.GetForce()
            if (extraForce[0][0] != 0 or extraForce[0][1] != 0 or extraForce[0][2] != 0) :
                forceApplyFrame += 1
                vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce)
                applyedExtraForce[0] = extraForce[0]
            
            if forceApplyFrame*wcfg.timeStep > 0.1:
                viewer.ResetForce()
                forceApplyFrame = 0            
            '''
            vpWorld.step()                    
            
        # rendering        

        rd_footCenter[0] = footCenter
        
        rd_CM[0] = CM.copy()
        
        rd_CM_plane[0] = CM_plane.copy()
        
        rd_footCenter_ref[0] = footCenter_ref
        rd_CM_plane_ref[0] = CM_ref.copy()
        rd_CM_ref[0] = CM_ref.copy()
        rd_CM_ref_vec[0] = (CM_ref - footCenter_ref)*3.
        rd_CM_vec[0] = (CM - footCenter)*3

        #rd_CM_plane[0][1] = 0.
        
        if CP!=None and dCP!=None:
            rd_CP[0] = CP
            rd_CP_des[0] = CP_des
        
        rd_dL_des_plane[0] = dL_des_plane
        rd_dH_des[0] = dH_des
        
        rd_grf_des[0] = totalNormalForce# - totalMass*mm.s2v(wcfg.gravity)#dL_des_plane - totalMass*mm.s2v(wcfg.gravity)
                
        rd_exf_des[0] = applyedExtraForce[0]
        rd_root_des[0] = rootPos[0]

        rd_CMP[0] = softConstPoint

        rd_soft_const_vec[0] = controlModel.getBodyPositionGlobal(constBody)-softConstPoint


        #indexL = motion[0].skeleton.getJointIndex('Hips')
        #indexR = motion[0].skeleton.getJointIndex('Spine1')
        indexL = indexFootL[0]        
        indexR = indexFootR[0]

        curAng = [controlModel.getBodyOrientationGlobal(indexL)]                        
        curAngY = np.dot(curAng, np.array([0,0,1]))

        rd_footL_vec[0] = np.copy(curAngY[0])
        rd_footCenterL[0] = controlModel.getBodyPositionGlobal(indexL)
                
        curAng = [controlModel.getBodyOrientationGlobal(indexR)]                        
        curAngY = np.dot(curAng, np.array([0,0,1]))

        rd_footR_vec[0] = np.copy(curAngY[0])
        rd_footCenterR[0] = controlModel.getBodyPositionGlobal(indexR)
        
        if (forceApplyFrame == 0) :
            applyedExtraForce[0] = [0, 0, 0]
Esempio n. 12
0
    def simulateCallback(frame):
        global g_initFlag
        global preFootCenterL, preFootCenterR
        global preFootOrientationL, preFootOrientationR
        global forceShowFrame
        global forceApplyFrame

        global JsysPre
        global JsupPreL
        global JsupPreR
        global JsupPre

        global softConstPoint

        global stage

        motionModel.update(motion[frame])

        Kt, Kk, Kl, Kh, Ksc, Bt, Bl, Bh, Bsc = viewer.GetParam()
        
        if stage == 3:
            Bsc = 0
            #Kl *= 1.5

        Dt = 2*(Kt**.5)
        Dk = 2*(Kk**.5)
        Dl = 2*(Kl**.5)
        Dh = 2*(Kh**.5)
        Dsc = 2*(Ksc**.5)
                
        if Bsc == 0.0 :
            viewer.doc.showRenderer('softConstraint', False)
            viewer.motionViewWnd.update(1, viewer.doc)
        else:
            viewer.doc.showRenderer('softConstraint', True)
            renderer1 = viewer.doc.getRenderer('softConstraint')
            renderer1.rc.setLineWidth(0.1+Bsc*3)
            viewer.motionViewWnd.update(1, viewer.doc)
                        
        # tracking
        th_r = motion.getDOFPositions(frame)
        th = controlModel.getDOFPositions()
        dth_r = motion.getDOFVelocities(frame)
        dth = controlModel.getDOFVelocities()
        ddth_r = motion.getDOFAccelerations(frame)
        ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r, Kt, Dt)
        ddth_c = controlModel.getDOFAccelerations()

        ype.flatten(ddth_des, ddth_des_flat)
        ype.flatten(dth, dth_flat)

        ype.flatten(ddth_c, ddth_c_flat)
        
        # jacobian 
        footCenterL = controlModel.getBodyPositionGlobal(supL)        
        footCenterR = controlModel.getBodyPositionGlobal(supR)
                        
        refFootL = motionModel.getBodyPositionGlobal(supL)        
        refFootR = motionModel.getBodyPositionGlobal(supR)
        
        footCenter = footCenterL + (footCenterR - footCenterL)/2.0
        footCenter[1] = 0.        
        
        footCenter_ref = refFootL + (refFootR - refFootL)/2.0
        footCenter_ref[1] = 0.      
        
        linkPositions = controlModel.getBodyPositionsGlobal()
        linkVelocities = controlModel.getBodyVelocitiesGlobal()
        linkAngVelocities = controlModel.getBodyAngVelocitiesGlobal()
        linkInertias = controlModel.getBodyInertiasGlobal()

        jointPositions = controlModel.getJointPositionsGlobal()
        jointAxeses = controlModel.getDOFAxeses()
        
        CM = yrp.getCM(linkPositions, linkMasses, totalMass)
        dCM = yrp.getCM(linkVelocities, linkMasses, totalMass)
        CM_plane = copy.copy(CM); CM_plane[1]=0.
        dCM_plane = copy.copy(dCM); dCM_plane[1]=0.
                
        linkPositions_ref = motionModel.getBodyPositionsGlobal()
        CM_plane_ref = yrp.getCM(linkPositions_ref, linkMasses, totalMass)
        CM_plane_ref[1] = 0.
        
        P = ymt.getPureInertiaMatrix(TO, linkMasses, linkPositions, CM, linkInertias)
        dP = ymt.getPureInertiaMatrixDerivative(dTO, linkMasses, linkVelocities, dCM, linkAngVelocities, linkInertias)

        yjc.computeJacobian2(Jsys, DOFs, jointPositions, jointAxeses, linkPositions, allLinkJointMasks)
        dJsys = (Jsys - JsysPre)/(1/30.)
        JsysPre = Jsys
        #yjc.computeJacobianDerivative2(dJsys, DOFs, jointPositions, jointAxeses, linkAngVelocities, linkPositions, allLinkJointMasks)
        
        
        if g_initFlag == 0:
            preFootCenterL = footCenterL
            preFootCenterR = footCenterR
            preFootCenterL[1] -= 0.02
            preFootCenterR[1] -= 0.02
            preFootOrientationL = controlModel.getBodyOrientationGlobal(supL)
            preFootOrientationR = controlModel.getBodyOrientationGlobal(supR)
            softConstPoint = controlModel.getBodyPositionGlobal(constBody)
            #softConstPoint[2] += 0.3
            #softConstPoint[1] -= 1.1
            #softConstPoint[0] += 0.1

            softConstPoint[1] -= .3            
            #softConstPoint[0] -= .1
            #softConstPoint[1] -= 1.
            #softConstPoint[0] -= .5
            g_initFlag = 1

        yjc.computeJacobian2(JsupL, DOFs, jointPositions, jointAxeses, [footCenterL], supLJointMasks)
        dJsupL = (JsupL - JsupPreL)/(1/30.)
        JsupPreL = JsupL
        #yjc.computeJacobianDerivative2(dJsupL, DOFs, jointPositions, jointAxeses, linkAngVelocities, [footCenterL], supLJointMasks, False)
        
        yjc.computeJacobian2(JsupR, DOFs, jointPositions, jointAxeses, [footCenterR], supRJointMasks)
        dJsupR = (JsupR - JsupPreR)/(1/30.)
        JsupPreR = JsupR
        #yjc.computeJacobianDerivative2(dJsupR, DOFs, jointPositions, jointAxeses, linkAngVelocities, [footCenterR], supRJointMasks, False)
        
        preFootCenter = preFootCenterL + (preFootCenterR - preFootCenterL)/2.0
        preFootCenter[1] = 0

        bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds)
        CP = yrp.getCP(contactPositions, contactForces)
                                   
        # linear momentum
        CM_ref_plane = footCenter
        #CM_ref_plane = preFootCenter
        dL_des_plane = Kl*totalMass*(CM_ref_plane - CM_plane) - Dl*totalMass*dCM_plane
        #print("dL_des_plane ", dL_des_plane )
        #dL_des_plane[1] = 0.
    
        # angular momentum
        CP_ref = footCenter

        timeStep = 30.
        if CP_old[0]==None or CP==None:
            dCP = None
        else:
            dCP = (CP - CP_old[0])/(1/timeStep)
        CP_old[0] = CP            
        
        if CP!=None and dCP!=None:
            ddCP_des = Kh*(CP_ref - CP) - Dh*(dCP)
            CP_des = CP + dCP*(1/timeStep) + .5*ddCP_des*((1/timeStep)**2)
            dH_des = np.cross((CP_des - CM), (dL_des_plane + totalMass*mm.s2v(wcfg.gravity)))            
            #dH_des = np.cross((CP_des - CM_plane), (dL_des_plane + totalMass*mm.s2v(wcfg.gravity)))
            #dH_des = [0, 0, 0]
        else:
            dH_des = None
 
        CMP = yrp.getCMP(contactForces, CM)
        r = [0,0,0]
        if CP!= None and np.any(np.isnan(CMP))!=True :
            r = CP - CMP
        #print("r.l", mm.length(r))
        #Bba = Bh*(mm.length(r))
        Bba = Bh

        # momentum matrix
        RS = np.dot(P, Jsys)
        R, S = np.vsplit(RS, 2)
        
        rs = np.dot((np.dot(dP, Jsys) + np.dot(P, dJsys)), dth_flat)
        r_bias, s_bias = np.hsplit(rs, 2)

        ##############################
        # soft point constraint

        '''
        cmDiff = footCenter - CM_plane
        print("cmDiff", cmDiff)
        if stage == 3:
            softConstPoint +=
        '''
        
        P_des = softConstPoint
        P_cur = controlModel.getBodyPositionGlobal(constBody)
        dP_des = [0, 0, 0]
        dP_cur = controlModel.getBodyVelocityGlobal(constBody)
        ddP_des1 = Ksc*(P_des - P_cur) - Dsc*(dP_cur - dP_des)

        r = P_des - P_cur
        I = np.vstack(([1,0,0],[0,1,0],[0,0,1]))
        Z = np.hstack((I, mm.getCrossMatrixForm(-r)))
          
        yjc.computeJacobian2(Jconst, DOFs, jointPositions, jointAxeses, [softConstPoint], constJointMasks)
        JL, JA = np.vsplit(Jconst, 2)
        Q1 = np.dot(Z, Jconst)
                  
        q1 = np.dot(JA, dth_flat)
        q2 = np.dot(mm.getCrossMatrixForm(q1), np.dot(mm.getCrossMatrixForm(q1), r))
        
        yjc.computeJacobianDerivative2(dJconst, DOFs, jointPositions, jointAxeses, linkAngVelocities, [softConstPoint], constJointMasks, False)
        q_bias1 = np.dot(np.dot(Z, dJconst), dth_flat) + q2
        
        '''
        P_des = preFootCenterR
        P_cur = controlModel.getBodyPositionGlobal(supR)
        P_cur[1] = 0
        dP_des = [0, 0, 0]
        dP_cur = controlModel.getBodyVelocityGlobal(supR)
        ddP_des2 = Kp*(P_des - P_cur) - Dp*(dP_cur - dP_des)
        
        r = P_des - P_cur
        #print("r2", r)
        I = np.vstack(([1,0,0],[0,1,0],[0,0,1]))
        Z = np.hstack((I, mm.getCrossMatrixForm(-r)))
            
        JL, JA = np.vsplit(JsupR, 2)
        Q2 = np.dot(Z, JsupR)
        
        q1 = np.dot(JA, dth_flat)
        q2 = np.dot(mm.getCrossMatrixForm(q1), np.dot(mm.getCrossMatrixForm(q1), r))
        q_bias2 = np.dot(np.dot(Z, dJsupR), dth_flat) + q2
        '''      
        #print("Q1", Q1)
        '''
        print("ddP_des1", ddP_des1)
        q_ddth1 = np.dot(Q1, ddth_c_flat)
        print("q_ddth1", q_ddth1)
        print("q_bias1", q_bias1)
        ddp1 = q_ddth1+q_bias1
        print("ddp1", ddp1)
        print("diff1", ddP_des1-ddp1)
        '''

        '''
        print("ddP_des2", ddP_des2)
        q_ddth2 = np.dot(Q2, ddth_c_flat)
        print("q_ddth2", q_ddth2)
        print("q_bias2", q_bias2)
        ddp2 = q_ddth2+q_bias2
        print("ddp2", ddp2)
        print("diff2", ddP_des2-ddp2)
        '''

        ##############################
        
        
        ############################
        # IK
        '''
        P_des = preFootCenterL
        P_cur = controlModel.getJointPositionGlobal(supL)
        r = P_des - P_cur
        
        Q_des = preFootOrientationL 
        Q_cur = controlModel.getJointOrientationGlobal(supL)
        rv = mm.logSO3(np.dot(Q_cur.transpose(), Q_des))
        #print("rv", rv)

        des_v_sup = (r[0],r[1],r[2], rv[0], rv[1], rv[2])
        A_large = np.dot(JsupL.T, JsupL)
        b_large = np.dot(JsupL.T, des_v_sup)

        des_d_th = npl.lstsq(A_large, b_large)

        ype.nested(des_d_th[0], d_th_IK_L)
                                        
        P_des2 = preFootCenterR
        P_cur2 = controlModel.getJointPositionGlobal(supR)
        r2 = P_des2 - P_cur2
                
        Q_des2 = preFootOrientationR
        Q_cur2 = controlModel.getJointOrientationGlobal(supR)
        rv2 = mm.logSO3(np.dot(Q_cur2.transpose(), Q_des2))
        #print("Q_des2", Q_des2)
        #print("Q_cur2", Q_cur2)
        #print("rv2", rv2)

        des_v_sup2 = (r2[0],r2[1],r2[2], rv2[0], rv2[1], rv[2])
        A_large = np.dot(JsupR.T, JsupR)
        b_large = np.dot(JsupR.T, des_v_sup2)

        des_d_th = npl.lstsq(A_large, b_large)

        ype.nested(des_d_th[0], d_th_IK_R)
        for i in range(len(d_th_IK_L)):
            for j in range(len(d_th_IK_L[i])):
                d_th_IK[i][j] = d_th_IK_L[i][j] + d_th_IK_R[i][j]
                    
        th_IK = yct.getIntegralDOF(th, d_th_IK, 1/timeStep)
        dd_th_IK = yct.getDesiredDOFAccelerations(th_IK, th, d_th_IK, dth, ddth_r, Kk, Dk)
                        
        ype.flatten(d_th_IK, d_th_IK_flat)
        ype.flatten(dd_th_IK, dd_th_IK_flat)
        '''
        ############################
        
        flagContact = True
        if dH_des==None or np.any(np.isnan(dH_des)) == True:
            flagContact = False 
        '''
        0 : initial
        1 : contact
        2 : fly
        3 : landing
        '''
        if flagContact == False :
            if stage == 1:
                stage = 2
                print("fly")
        else:
            if stage == 0:
                stage = 1
                print("contact")
            elif stage == 2:
                stage = 3 
                print("landing")


        if stage == 3:
            Bt = Bt*0.8
            Bl = Bl*1

        # optimization
                
        mot.addTrackingTerms(problem, totalDOF, Bt, w, ddth_des_flat)
        
        #mot.addTrackingTerms(problem, totalDOF, Bk, w_IK, dd_th_IK_flat)       
                
        mot.addSoftPointConstraintTerms(problem, totalDOF, Bsc, ddP_des1, Q1, q_bias1)

        #mot.addSoftPointConstraintTerms(problem, totalDOF, Bp, ddP_des2, Q2, q_bias2)

        #mot.addConstraint(problem, totalDOF, JsupL, dJsupL, dth_flat, a_sup)
        #mot.addConstraint(problem, totalDOF, JsupR, dJsupR, dth_flat, a_sup2)
        
       

        desLinearAccL = [0,0,0]
        desAngularAccL = [0,0,0]
        desLinearAccR = [0,0,0]
        desAngularAccR = [0,0,0]

        refPos = motionModel.getBodyPositionGlobal(supL)
        refPos[0] += ModelOffset[0]
        refPos[1] = 0
                        
        refVel = motionModel.getBodyVelocityGlobal(supL)        
        curPos = controlModel.getBodyPositionGlobal(supL)
        #curPos[1] = 0
        curVel = controlModel.getBodyVelocityGlobal(supL)
        refAcc = (0,0,0)
                
        if stage == 3:
            refPos = curPos
            refPos[1] = 0
            if curPos[1] < 0.0:
                curPos[1] = 0
        else :
            curPos[1] = 0
        rd_DesPosL[0] = refPos

        #(p_r, p, v_r, v, a_r, Kt, Dt)
        desLinearAccL = yct.getDesiredAcceleration(refPos, curPos, refVel, curVel, refAcc, Kk, Dk)
        #desLinearAccL[1] = 0
         
        refPos = motionModel.getBodyPositionGlobal(supR)
        refPos[0] += ModelOffset[0]
        refPos[1] = 0    

        refVel = motionModel.getBodyVelocityGlobal(supR)        
        curPos = controlModel.getBodyPositionGlobal(supR)
        #curPos[1] = 0
        curVel = controlModel.getBodyVelocityGlobal(supR)
        
        if stage == 3:
            refPos = curPos
            refPos[1] = 0
            if curPos[1] < 0.0:
                curPos[1] = 0
        else :
            curPos[1] = 0
        rd_DesPosR[0] = refPos

        desLinearAccR = yct.getDesiredAcceleration(refPos, curPos, refVel, curVel, refAcc, Kk, Dk)
        #desLinearAccR[1] = 0
                
        #(th_r, th, dth_r, dth, ddth_r, Kt, Dt)
        refAng = [preFootOrientationL]
        curAng = [controlModel.getBodyOrientationGlobal(supL)]
        refAngVel = motionModel.getBodyAngVelocityGlobal(supL)
        curAngVel = controlModel.getBodyAngVelocityGlobal(supL)
        refAngAcc = (0,0,0)
                        
        #desAngularAccL = yct.getDesiredAngAccelerations(refAng, curAng, refAngVel, curAngVel, refAngAcc, Kk, Dk)
        curAngY = np.dot(curAng, np.array([0,1,0]))
        aL = mm.logSO3(mm.getSO3FromVectors(curAngY[0], np.array([0,1,0])))
        print("curAngYL=",curAngY, "aL=", aL)
        desAngularAccL = [Kk*aL + Dk*(refAngVel-curAngVel)]

        refAng = [preFootOrientationR]
        curAng = [controlModel.getBodyOrientationGlobal(supR)]
        refAngVel = motionModel.getBodyAngVelocityGlobal(supR)
        curAngVel = controlModel.getBodyAngVelocityGlobal(supR)
        refAngAcc = (0,0,0)
        
        #desAngularAccR = yct.getDesiredAngAccelerations(refAng, curAng, refAngVel, curAngVel, refAngAcc, Kk, Dk)   
        curAngY = np.dot(curAng, np.array([0,1,0]))
        aL = mm.logSO3(mm.getSO3FromVectors(curAngY[0], np.array([0,1,0])))
        desAngularAccR = [Kk*aL + Dk*(refAngVel-curAngVel)]
            
        print("curAngYR=",curAngY, "aL=", aL)

        a_sup_2 = [desLinearAccL[0], desLinearAccL[1], desLinearAccL[2], desAngularAccL[0][0], desAngularAccL[0][1], desAngularAccL[0][2], 
                   desLinearAccR[0], desLinearAccR[1], desLinearAccR[2], desAngularAccR[0][0], desAngularAccR[0][1], desAngularAccR[0][2]]

        if stage == 2 :#or stage == 3:
            refAccL = motionModel.getBodyAccelerationGlobal(supL)
            refAndAccL = motionModel.getBodyAngAccelerationGlobal(supL)
            refAccR = motionModel.getBodyAccelerationGlobal(supR)
            refAndAccR = motionModel.getBodyAngAccelerationGlobal(supR)
            a_sup_2 = [refAccL[0], refAccL[1], refAccL[2], refAndAccL[0], refAndAccL[1], refAndAccL[2],
                       refAccR[0], refAccR[1], refAccR[2], refAndAccR[0], refAndAccR[1], refAndAccR[2]]
            '''
            a_sup_2 = [0,0,0, desAngularAccL[0][0], desAngularAccL[0][1], desAngularAccL[0][2], 
                       0,0,0, desAngularAccR[0][0], desAngularAccR[0][1], desAngularAccR[0][2]]
            '''
                    
        Jsup_2 = np.vstack((JsupL, JsupR))
        dJsup_2 = np.vstack((dJsupL, dJsupR))
        
        if flagContact == True:
            mot.addLinearTerms(problem, totalDOF, Bl, dL_des_plane, R, r_bias) 
            mot.addAngularTerms(problem, totalDOF, Bh, dH_des, S, s_bias)
                   
        mot.setConstraint(problem, totalDOF, Jsup_2, dJsup_2, dth_flat, a_sup_2)
        #mot.setConstraint(problem, totalDOF, JsupR, dJsupR, dth_flat, a_sup2)
        #mot.setConstraint(problem, totalDOF, Jsup_2, dJsup_2, dth_flat, a_sup_2)
        #mot.addConstraint(problem, totalDOF, Jsup_2, dJsup_2, d_th_IK_flat, a_sup_2)

        '''
        jZ = np.dot(dJsup_2.T, dJsup_2)

        lamda = 0.001

        for i in range(len(jZ)):
            for j in range(len(jZ[0])):
                if i == j :
                    jZ[i][j] += lamda

        jZInv = npl.pinv(jZ)
        jA = np.dot(Jsup_2, np.dot(jZInv, np.dot(dJsup_2.T, -Jsup_2)))
        mot.addConstraint2(problem, totalDOF, jA, a_sup_2)
        '''
        
        r = problem.solve()
        problem.clear()
        ype.nested(r['x'], ddth_sol)
                      
        rootPos[0] = controlModel.getBodyPositionGlobal(selectedBody)
        localPos = [[0, 0, 0]]   
                
        for i in range(stepsPerFrame):
            # apply penalty force
            bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds)
     
            vpWorld.applyPenaltyForce(bodyIDs, contactPositionLocals, contactForces)
                        
            controlModel.setDOFAccelerations(ddth_sol)
            controlModel.solveHybridDynamics()
            
            extraForce[0] = viewer.GetForce()
            if (extraForce[0][0] != 0 or extraForce[0][1] != 0 or extraForce[0][2] != 0) :
                forceApplyFrame += 1
                vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce)
                applyedExtraForce[0] = extraForce[0]
            
            if forceApplyFrame*wcfg.timeStep > 0.1:
                viewer.ResetForce()
                forceApplyFrame = 0
            
            vpWorld.step()                    
            
        # rendering
        rd_footCenter[0] = footCenter
        rd_footCenterL[0] = preFootCenterL
        rd_footCenterR[0] = preFootCenterR
        
        rd_CM[0] = CM
        
        rd_CM_plane[0] = CM_plane.copy()
        
        rd_footCenter_ref[0] = footCenter_ref
        rd_CM_plane_ref[0] = CM_plane_ref.copy()

        #rd_CM_plane[0][1] = 0.
        
        if CP!=None and dCP!=None:
            rd_CP[0] = CP
            rd_CP_des[0] = CP_des
        
        rd_dL_des_plane[0] = dL_des_plane
        rd_dH_des[0] = dH_des
        
        rd_grf_des[0] = dL_des_plane - totalMass*mm.s2v(wcfg.gravity)
                
        rd_exf_des[0] = applyedExtraForce[0]
        #print("rd_exf_des", rd_exf_des[0])
        rd_root_des[0] = rootPos[0]

        rd_CMP[0] = softConstPoint

        rd_soft_const_vec[0] = controlModel.getBodyPositionGlobal(constBody)-softConstPoint
        
        #if (applyedExtraForce[0][0] != 0 or applyedExtraForce[0][1] != 0 or applyedExtraForce[0][2] != 0) :
        if (forceApplyFrame == 0) :
            applyedExtraForce[0] = [0, 0, 0]
Esempio n. 13
0
        def simulateCallback(frame):
            for i in range(stepsPerFrame):
                vpWorld.step()

            #===============================================================================
            # momentum calculation by standard method
            #===============================================================================
            velocities = m1.getBodyVelocitiesGlobal()
            positions = m1.getBodyPositionsGlobal()
            CM = yrp.getCM(positions, masses, totalMass)
            inertias = m1.getBodyInertiasGlobal()
            angVelocities = m1.getBodyAngVelocitiesGlobal()

            L_std = getLinearMomentum(masses, velocities)
            H_std = getAngularMomentum(CM, inertias, angVelocities, positions,
                                       masses, velocities)

            #===============================================================================
            # momentum calculation by centroidal momentum matrix
            #===============================================================================
            P = getPureInertiaMatrix(TO, masses, positions, CM, inertias)

            # momentum matrix for internal joints and addition of total momentum about CM
            #            jointPositions_internal = m1.getInternalJointPositionsGlobal()
            #
            #            Rs = m1.getInternalJointOrientationsGlobal()
            #            jointAxeses_internal = [Rs[i].transpose() for i in range(0,len(Rs))]
            #
            #            yjc.computeJacobian2(J_internal, DOFs_internal, jointPositions_internal, jointAxeses_internal, positions, linkJointMasks_internal)
            #
            #            dth = m1.getInternalJointAngVelocitiesLocal()
            #            ype.flatten(dth, dth_flat_internal)
            #
            #            PJ_internal = np.dot(P, J_internal)
            #            LH_internal = np.dot(PJ_internal, dth_flat_internal)
            #            L2_jacob_internal, H2_jacob_internal = np.hsplit(LH_internal, 2)
            #
            #            p_root = m1.getBodyPositionGlobal(0)
            #            v_root = m1.getBodyVelocityGlobal(0)
            #            w_root = m1.getBodyAngVelocityGlobal(0)
            #
            #            L_jacob_internal = mm.v3(0.,0.,0.)
            #            L_jacob_internal += (totalMass * v_root)
            #            L_jacob_internal += (-totalMass * np.cross( (CM - p_root), w_root))
            #
            L_jacob_internal = None
            H_jacob_internal = None

            # momentum matrix for all joints
            jointPositions_all = m1.getJointPositionsGlobal()
            jointAxeses_all = m1.getDOFAxeses()

            yjc.computeJacobian2(J_all, DOFs_all, jointPositions_all,
                                 jointAxeses_all, positions,
                                 linkJointMasks_all)

            dth = m1.getDOFVelocities()
            ype.flatten(dth, dth_flat_all)

            PJ_all = np.dot(P, J_all)
            LH_all = np.dot(PJ_all, dth_flat_all)
            L_jacob_all, H_jacob_all = np.hsplit(LH_all, 2)

            #===============================================================================
            # for rendering
            #===============================================================================
            p[:] = positions
            v[:] = velocities

            rd_CM[:] = [CM]
            rd_L_std[:] = [L_std]
            rd_L_jacob_internal[:] = [L_jacob_internal]
            rd_L_jacob_all[:] = [L_jacob_all]

            rd_H_std[:] = [H_std]
            rd_H_jacob_internal[:] = [H_jacob_internal]
            rd_H_jacob_all[:] = [H_jacob_all]
    def simulateCallback(frame):
        # seginfo
        segIndex = seg_index[0]
        curState = seginfo[segIndex]['state']
        curInterval = yma.offsetInterval(acc_offset[0], seginfo[segIndex]['interval'])
        stanceLegs = seginfo[segIndex]['stanceHips']
        swingLegs = seginfo[segIndex]['swingHips']
        stanceFoots = seginfo[segIndex]['stanceFoots']
        swingFoots = seginfo[segIndex]['swingFoots']
        swingKnees = seginfo[segIndex]['swingKnees']
        groundHeight = seginfo[segIndex]['ground_height']
        maxStfPushFrame = seginfo[segIndex]['max_stf_push_frame']
        
        prev_frame = frame-1 if frame>0 else 0
#        prev_frame = frame
        
        # information
#        dCM_tar = yrp.getCM(motion_seg.getJointVelocitiesGlobal(frame), bodyMasses, upperMass, uppers)
#        CM_tar = yrp.getCM(motion_seg.getJointPositionsGlobal(frame), bodyMasses, upperMass, uppers)
##        dCM_tar = yrp.getCM(motion_seg.getJointVelocitiesGlobal(frame), bodyMasses, totalMass)
##        CM_tar = yrp.getCM(motion_seg.getJointPositionsGlobal(frame), bodyMasses, totalMass)
#        stf_tar = motion_seg.getJointPositionGlobal(stanceFoots[0], frame)
#        CMr_tar = CM_tar - stf_tar

        dCM_tar = motion_seg.getJointVelocityGlobal(0, prev_frame)
        CM_tar = motion_seg.getJointPositionGlobal(0, prev_frame)
#        dCM_tar = yrp.getCM(motion_seg.getJointVelocitiesGlobal(prev_frame), bodyMasses, upperMass, uppers)
#        CM_tar = yrp.getCM(motion_seg.getJointPositionsGlobal(prev_frame), bodyMasses, upperMass, uppers)
#        dCM_tar = yrp.getCM(motion_seg.getJointVelocitiesGlobal(prev_frame), bodyMasses, totalMass)
#        CM_tar = yrp.getCM(motion_seg.getJointPositionsGlobal(prev_frame), bodyMasses, totalMass)
        stf_tar = motion_seg.getJointPositionGlobal(stanceFoots[0], prev_frame)
        CMr_tar = CM_tar - stf_tar
            
        dCM = avg_dCM[0]
        CM = controlModel.getJointPositionGlobal(0)
#        CM = yrp.getCM(controlModel.getJointPositionsGlobal(), bodyMasses, upperMass, uppers)
#        CM = yrp.getCM(controlModel.getJointPositionsGlobal(), bodyMasses, totalMass)
        CMreal = yrp.getCM(controlModel.getJointPositionsGlobal(), bodyMasses, totalMass)
        stf = controlModel.getJointPositionGlobal(stanceFoots[0])
        CMr = CM - stf
        
        diff_dCM = mm.projectionOnPlane(dCM-dCM_tar, (1,0,0), (0,0,1))
        diff_dCM_axis = np.cross((0,1,0), diff_dCM)
        rd_vec1[0] = diff_dCM; rd_vecori1[0] = CM_tar
        
        diff_CMr = mm.projectionOnPlane(CMr-CMr_tar, (1,0,0), (0,0,1))
#        rd_vec1[0] = diff_CMr; rd_vecori1[0] = stf_tar
        diff_CMr_axis = np.cross((0,1,0), diff_CMr)
        
        direction = mm.normalize2(mm.projectionOnPlane(dCM_tar, (1,0,0), (0,0,1)))
#        direction = mm.normalize2(mm.projectionOnPlane(dCM, (1,0,0), (0,0,1)))
        directionAxis = np.cross((0,1,0), direction)
        
        diff_dCM_sag, diff_dCM_cor = mm.projectionOnVector2(diff_dCM, direction)
#        rd_vec1[0] = diff_dCM_sag; rd_vecori1[0] = CM_tar
        diff_dCM_sag_axis = np.cross((0,1,0), diff_dCM_sag)
        diff_dCM_cor_axis = np.cross((0,1,0), diff_dCM_cor)
            
        diff_CMr_sag, diff_CMr_cor = mm.projectionOnVector2(diff_CMr, direction)
        diff_CMr_sag_axis = np.cross((0,1,0), diff_CMr_sag)
        diff_CMr_cor_axis = np.cross((0,1,0), diff_CMr_cor)
            
        t = (frame-curInterval[0])/float(curInterval[1]-curInterval[0])
        t_raw = t
        if t>1.: t=1.
        
        
        p_root = motion_stitch[frame].getJointPositionGlobal(0)
        R_root = motion_stitch[frame].getJointOrientationGlobal(0)

        motion_seg_orig.goToFrame(frame)
        motion_seg.goToFrame(frame)
        motion_stitch.goToFrame(frame)
        
        motion_debug1.append(motion_stitch[frame].copy())
        motion_debug1.goToFrame(frame)
        motion_debug2.append(motion_stitch[frame].copy())
        motion_debug2.goToFrame(frame)
        motion_debug3.append(motion_stitch[frame].copy())
        motion_debug3.goToFrame(frame)
        
        # paper implementation
        M_tc.append(motion_stitch[prev_frame])
        M_tc.goToFrame(frame)
        P_hat.append(M_tc[frame].copy())
        P_hat.goToFrame(frame)
        
        p_temp = ym.JointPosture(skeleton)
        p_temp.rootPos = controlModel.getJointPositionGlobal(0)
        p_temp.setJointOrientationsLocal(controlModel.getJointOrientationsLocal())
        P.append(p_temp)
        P.goToFrame(frame)
        
        # stance foot stabilize
        motion_stf_stabilize.append(motion_stitch[frame].copy())
        motion_stf_stabilize.goToFrame(frame)
        if STANCE_FOOT_STABILIZE:
            for stanceFoot in stanceFoots:
                R_target_foot = motion_seg[frame].getJointOrientationGlobal(stanceFoot)
                R_current_foot = motion_stf_stabilize[frame].getJointOrientationGlobal(stanceFoot)
                motion_stf_stabilize[frame].setJointOrientationGlobal(stanceFoot, cm.slerp(R_current_foot, R_target_foot , stf_stabilize_func(t)))
#                R_target_foot = motion_seg[frame].getJointOrientationLocal(stanceFoot)
#                R_current_foot = motion_stf_stabilize[frame].getJointOrientationLocal(stanceFoot)
#                motion_stf_stabilize[frame].setJointOrientationLocal(stanceFoot, cm.slerp(R_current_foot, R_target_foot , stf_stabilize_func(t)))

        # match stance leg 
        motion_match_stl.append(motion_stf_stabilize[frame].copy())
        motion_match_stl.goToFrame(frame)
        if MATCH_STANCE_LEG:
            if curState!=yba.GaitState.STOP:
                for i in range(len(stanceLegs)):
                    stanceLeg = stanceLegs[i]
                    stanceFoot = stanceFoots[i]
                    
#                    # motion stance leg -> character stance leg as time goes
                    R_motion = motion_match_stl[frame].getJointOrientationGlobal(stanceLeg)
                    R_character = controlModel.getJointOrientationGlobal(stanceLeg)
                    motion_match_stl[frame].setJointOrientationGlobal(stanceLeg, cm.slerp(R_motion, R_character, match_stl_func(t)))

#                    t_y = match_stl_func_y(t)
#                    t_xz = match_stl_func(t)
#                    
#                    R_motion = motion_match_stl[frame].getJointOrientationGlobal(stanceLeg)
#                    R_character = controlModel.getJointOrientationGlobal(stanceLeg)
#                    R = np.dot(R_character, R_motion.T)
#                    R_y, R_xz = mm.projectRotation((0,1,0), R)
#                    motion_match_stl[frame].mulJointOrientationGlobal(stanceLeg, mm.scaleSO3(R_xz, t_xz))
#                    motion_match_stl[frame].mulJointOrientationGlobal(stanceLeg, mm.scaleSO3(R_y, t_y))

        # swing foot placement
        motion_swf_placement.append(motion_match_stl[frame].copy())
        motion_swf_placement.goToFrame(frame)
        if SWING_FOOT_PLACEMENT:
            t_swing_foot_placement = swf_placement_func(t);
            
            if extended[0]:
                R_swp_sag = prev_R_swp[0][0]
                R_swp_cor = prev_R_swp[0][1]
            else:
                R_swp_sag = mm.I_SO3(); R_swp_cor = mm.I_SO3()
                R_swp_sag = np.dot(R_swp_sag, mm.exp(diff_dCM_sag_axis * K_swp_vel_sag * -t_swing_foot_placement))
                R_swp_cor = np.dot(R_swp_cor, mm.exp(diff_dCM_cor_axis * K_swp_vel_cor * -t_swing_foot_placement))
                if np.dot(direction, diff_CMr_sag) < 0:
                    R_swp_sag = np.dot(R_swp_sag, mm.exp(diff_CMr_sag_axis * K_swp_pos_sag * -t_swing_foot_placement))
                R_swp_cor = np.dot(R_swp_cor, mm.exp(diff_CMr_cor_axis * K_swp_pos_cor * -t_swing_foot_placement))

            for i in range(len(swingLegs)):
                swingLeg = swingLegs[i]
                swingFoot = swingFoots[i] 
                
                # save swing foot global orientation
#                R_swf = motion_swf_placement[frame].getJointOrientationGlobal(swingFoot)
                
                # rotate swing leg
                motion_swf_placement[frame].mulJointOrientationGlobal(swingLeg, R_swp_sag)
                motion_swf_placement[frame].mulJointOrientationGlobal(swingLeg, R_swp_cor)
                
                # restore swing foot global orientation
#                motion_swf_placement[frame].setJointOrientationGlobal(swingFoot, R_swf)
                
                prev_R_swp[0] = (R_swp_sag, R_swp_cor)

        # swing foot height
        motion_swf_height.append(motion_swf_placement[frame].copy())
        motion_swf_height.goToFrame(frame)
        if SWING_FOOT_HEIGHT:
            for swingFoot in swingFoots:
                stanceFoot = stanceFoots[0]

                # save foot global orientation
                R_foot = motion_swf_height[frame].getJointOrientationGlobal(swingFoot)
                R_stance_foot = motion_swf_height[frame].getJointOrientationGlobal(stanceFoot)

                height_tar = motion_swf_height[frame].getJointPositionGlobal(swingFoot)[1] - motion_swf_height[frame].getJointPositionGlobal(stanceFoot)[1]
#                motion_debug1[frame] = motion_swf_height[frame].copy()

                # rotate
                motion_swf_height[frame].rotateByTarget(controlModel.getJointOrientationGlobal(0))
#                motion_debug2[frame] = motion_swf_height[frame].copy()
#                motion_debug2[frame].translateByTarget(controlModel.getJointPositionGlobal(0))

                height_cur = motion_swf_height[frame].getJointPositionGlobal(swingFoot)[1] - motion_swf_height[frame].getJointPositionGlobal(stanceFoot)[1]

                offset_height = (height_tar - height_cur) * swf_height_func(t) * c_swf_stability
                offset_sine = c_swf_mid_offset * swf_height_sine_func(t)
                
                offset = 0.
                offset += offset_height
                offset += offset_sine

                if offset > 0.:
                    newPosition =  motion_swf_height[frame].getJointPositionGlobal(swingFoot)
                    newPosition[1] += offset
                    aik.ik_analytic(motion_swf_height[frame], swingFoot, newPosition)
                else:
                    newPosition =  motion_swf_height[frame].getJointPositionGlobal(stanceFoot)
                    newPosition[1] -= offset
                    aik.ik_analytic(motion_swf_height[frame], stanceFoot, newPosition)

                # return
#                motion_debug3[frame] = motion_swf_height[frame].copy()
#                motion_debug3[frame].translateByTarget(controlModel.getJointPositionGlobal(0))
                motion_swf_height[frame].rotateByTarget(R_root)
                
                # restore foot global orientation
                motion_swf_height[frame].setJointOrientationGlobal(swingFoot, R_foot)
                motion_swf_height[frame].setJointOrientationGlobal(stanceFoot, R_stance_foot)

                if plot!=None:
                    plot.addDataPoint('debug1', frame, height_tar)
                    plot.addDataPoint('debug2', frame, height_cur)
#                    plot.addDataPoint('diff', frame, diff)

        # swing foot orientation
        motion_swf_orientation.append(motion_swf_height[frame].copy())
        motion_swf_orientation.goToFrame(frame)
        if SWING_FOOT_ORIENTATION:
#    swf_orientation_func = yfg.concatenate([yfg.zero, yfg.hermite2nd, yfg.one], [.25, .75])
            for swingFoot in swingFoots:
                R_target_foot = motion_seg[curInterval[1]].getJointOrientationGlobal(swingFoot)
                R_current_foot = motion_swf_orientation[frame].getJointOrientationGlobal(swingFoot)
                motion_swf_orientation[frame].setJointOrientationGlobal(swingFoot, cm.slerp(R_current_foot, R_target_foot, swf_orientation_func(t)))
#    swf_stabilize_func = yfg.concatenate([yfg.hermite2nd, yfg.one], [c_taking_duration])
            # push orientation
#            for swingFoot in swingFoots:
#                R_target_foot = motion_seg[frame].getJointOrientationGlobal(swingFoot)
#                R_current_foot = motion_swf_orientation[frame].getJointOrientationGlobal(swingFoot)
#                motion_swf_orientation[frame].setJointOrientationGlobal(swingFoot, cm.slerp(R_current_foot, R_target_foot , swf_stabilize_func(t)))
            
        # stance foot push                
        motion_stf_push.append(motion_swf_orientation[frame].copy())
        motion_stf_push.goToFrame(frame)
        if STANCE_FOOT_PUSH:
            for swingFoot in swingFoots:
#                max_t = (maxStfPushFrame)/float(curInterval[1]-curInterval[0])
#                stf_push_func = yfg.concatenate([yfg.sine, yfg.zero], [max_t*2])
                stf_push_func = yfg.concatenate([yfg.sine, yfg.zero], [c_taking_duration*2])
                
                R_swp_sag = mm.I_SO3()
#                R_swp_sag = np.dot(R_swp_sag, mm.exp(diff_dCM_sag_axis * K_stp_vel * -stf_push_func(t)))
                
#                if step_length_cur[0] < step_length_tar[0]:
#                    ratio = step_length_cur[0] / step_length_tar[0]
#                    R_max = maxmaxStfPushFrame
#                    R_zero = 
                R_swp_sag = np.dot(R_swp_sag, mm.exp((step_length_tar[0] - step_length_cur[0])*step_axis[0] * K_stp_pos * -stf_push_func(t)))
                    
                motion_stf_push[frame].mulJointOrientationGlobal(swingFoot, R_swp_sag)
                
        # stance foot balancing 
        motion_stf_balancing.append(motion_stf_push[frame].copy())
        motion_stf_balancing.goToFrame(frame)
        if STANCE_FOOT_BALANCING:
            R_stb = mm.exp(diff_dCM_axis * K_stb_vel * stf_balancing_func(t))
            for stanceFoot in stanceFoots:
                if frame < 5: continue
                motion_stf_balancing[frame].mulJointOrientationGlobal(stanceFoot, R_stb)
                    
        # control trajectory
        motion_control.append(motion_stf_balancing[frame].copy())
        motion_control.goToFrame(frame)
        
        #=======================================================================
        # tracking with inverse dynamics
        #=======================================================================
        th_r = motion_control.getDOFPositions(frame)
        th = controlModel.getDOFPositions()
        dth_r = motion_control.getDOFVelocities(frame)
        dth = controlModel.getDOFVelocities()
        ddth_r = motion_control.getDOFAccelerations(frame)
        ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r, Kt, Dt)

        #=======================================================================
        # simulation
        #=======================================================================
        CP = mm.v3(0.,0.,0.)
        F = mm.v3(0.,0.,0.)
        avg_dCM[0] = mm.v3(0.,0.,0.)
        
        # external force rendering info
        del rd_forces[:]; del rd_force_points[:]
        for fi in forceInfos:
            if fi.startFrame <= frame and frame < fi.startFrame + fi.duration*(1/frameTime):
                rd_forces.append(fi.force)
                rd_force_points.append(controlModel.getBodyPositionGlobal(fi.targetBody))
                    
        for i in range(stepsPerFrame):
            
            bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds)
            vpWorld.applyPenaltyForce(bodyIDs, contactPositionLocals, contactForces)
            
            # apply external force
            for fi in forceInfos:
                if fi.startFrame <= frame and frame < fi.startFrame + fi.duration*(1/frameTime):
                    controlModel.applyBodyForceGlobal(fi.targetBody, fi.force)
            
            controlModel.setDOFAccelerations(ddth_des)
            controlModel.solveHybridDynamics()
            
            if TORQUE_PLOT:
                rhip_torques[frame] += mm.length(controlModel.getJointTorqueLocal(rUpLeg))
                rknee_torques[frame] += mm.length(controlModel.getJointTorqueLocal(rKnee))
                rankle_torques[frame] += mm.length(controlModel.getJointTorqueLocal(rFoot))
            
            rd_torques[:] = [controlModel.getJointTorqueLocal(i)/100. for i in range(skeleton.getJointNum())]
            rd_joint_positions[:] = controlModel.getJointPositionsGlobal()
        
            vpWorld.step()
#            yvu.align2D(controlModel)

            if len(contactForces) > 0:
                CP += yrp.getCP(contactPositions, contactForces)
                F += sum(contactForces)
            avg_dCM[0] += controlModel.getJointVelocityGlobal(0)
#            avg_dCM[0] += yrp.getCM(controlModel.getJointVelocitiesGlobal(), bodyMasses, upperMass, uppers)
#            avg_dCM[0] += yrp.getCM(controlModel.getJointVelocitiesGlobal(), bodyMasses, totalMass)

#            if len(stanceFoots)>0:
#                avg_stf_v[0] += controlModel.getJointVelocityGlobal(stanceFoots[0])
#                avg_stf_av[0] += controlModel.getJointAngVelocityGlobal(stanceFoots[0])
        
        CP /= stepsPerFrame
        F /= stepsPerFrame
        avg_dCM[0] /= stepsPerFrame
        
#        if len(stanceFoots)>0:
#            avg_stf_v[0] /= stepsPerFrame
#            avg_stf_av[0] /= stepsPerFrame
#            rd_vec1[0] = avg_stf_av[0]; rd_vec1[0][0] = 0.; rd_vec1[0][2] = 0.
#            rd_vecori1[0]= controlModel.getJointPositionGlobal(stanceFoots[0])

        #=======================================================================
        # segment editing
        #=======================================================================
        lastFrame = False
        
        if SEGMENT_EDITING:
            if curState==yba.GaitState.STOP:
                if frame == len(motion_seg)-1:
                    lastFrame = True
                    
            elif (curState==yba.GaitState.LSWING or curState==yba.GaitState.RSWING) and t>c_min_contact_time:
                swingID = lID if curState==yba.GaitState.LSWING else rID

                contact = False
                if swingID in bodyIDs:
                    minContactVel = 1000.
                    for i in range(len(bodyIDs)):
                        if bodyIDs[i]==swingID:
                            vel = controlModel.getBodyVelocityGlobal(swingID, contactPositionLocals[i])
                            vel[1] = 0
                            contactVel = mm.length(vel)
                            if contactVel < minContactVel: minContactVel = contactVel 
                    if minContactVel < c_min_contact_vel: contact = True
                
                extended[0] = False
                
                if contact:
#                    print frame, 'foot touch'
                    lastFrame = True
                    acc_offset[0] += frame - curInterval[1]
                    
                elif frame == len(motion_seg)-1:
                    print frame, 'extend frame', frame+1
                    
                    preserveJoints = []
#                    preserveJoints = [lFoot, rFoot]
#                    preserveJoints = [lFoot, rFoot, lKnee, rKnee]
#                    preserveJoints = [lFoot, rFoot, lKnee, rKnee, lUpLeg, rUpLeg]
                    stanceKnees = [rKnee] if curState==yba.GaitState.LSWING else [lKnee]   
                    preserveJoints = [stanceFoots[0], stanceKnees[0], stanceLegs[0]]
   
                    diff = 3
                    motion_seg_orig.extend([motion_seg_orig[-1]])
                    motion_seg.extend(ymt.extendByIntegration_root(motion_seg, 1, diff))
                    
                    motion_stitch.extend(ymt.extendByIntegration_constant(motion_stitch, 1, preserveJoints, diff))

#                    # extend for swing foot ground speed matching & swing foot height lower
##                    extendedPostures = ymt.extendByIntegration(motion_stitch, 1, preserveJoints, diff)
##                    extendedPostures = [motion_stitch[-1]] 
##
#                    extendFrameNum = frame - curInterval[1] + 1
#                    k = 1.-extendFrameNum/5.
#                    if k<0.: k=0.
#                    extendedPostures = ymt.extendByIntegrationAttenuation(motion_stitch, 1, preserveJoints, diff, k)
#
##                    if len(swingFoots)>0 and np.inner(dCM_tar, dCM)>0.:
##                        print frame, 'speed matching'
##                        R_swf = motion_stitch[-1].getJointOrientationGlobal(swingFoots[0])
##                        
##                        p_swf = motion_stitch[-1].getJointPositionGlobal(swingFoots[0])
##                        v_swf = motion_stitch.getJointVelocityGlobal(swingFoots[0], frame-diff, frame)
##                        a_swf = motion_stitch.getJointAccelerationGlobal(swingFoots[0], frame-diff, frame)
##                        p_swf += v_swf * (frameTime) + a_swf * (frameTime)*(frameTime)
##                        aik.ik_analytic(extendedPostures[0], swingFoots[0], p_swf)
##                        
##                        extendedPostures[0].setJointOrientationGlobal(swingFoots[0], R_swf)
#
#                    motion_stitch.extend(extendedPostures)
                    
                    extended[0] = True
        else:
            if frame == len(motion_seg)-1: lastFrame = True
                    
        if lastFrame:
            if segIndex < len(segments)-1:
                print '%d (%d): end of %dth seg (%s, %s)'%(frame, frame-curInterval[1],segIndex, yba.GaitState.text[curState], curInterval)
                if plot!=None: plot.addDataPoint('diff', frame, (frame-curInterval[1])*.01)
                
                if len(stanceFoots)>0 and len(swingFoots)>0:
#                    step_cur = controlModel.getJointPositionGlobal(swingFoots[0]) - controlModel.getJointPositionGlobal(stanceFoots[0])
#                    step_tar = motion_seg[curInterval[1]].getJointPositionGlobal(swingFoots[0]) - motion_seg[curInterval[1]].getJointPositionGlobal(stanceFoots[0])
                    step_cur = controlModel.getJointPositionGlobal(0) - controlModel.getJointPositionGlobal(stanceFoots[0])
                    step_tar = motion_seg[curInterval[1]].getJointPositionGlobal(0) - motion_seg[curInterval[1]].getJointPositionGlobal(stanceFoots[0])
                    
                    step_cur = mm.projectionOnPlane(step_cur, (1,0,0), (0,0,1))
                    step_tar = mm.projectionOnPlane(step_tar, (1,0,0), (0,0,1))
                    
                    step_cur_sag, step_cur_cor = mm.projectionOnVector2(step_cur, direction)
                    step_tar_sag, step_tar_cor = mm.projectionOnVector2(step_tar, direction)
                    
                    step_length_tar[0] = mm.length(step_tar_sag)
                    if np.inner(step_tar_sag, step_cur_sag) > 0:
                        step_length_cur[0] = mm.length(step_cur_sag)
                    else:
                        step_length_cur[0] = -mm.length(step_cur_sag)
                    
                    step_axis[0] = directionAxis
                    
#                    rd_vec1[0] = step_tar_sag
#                    rd_vecori1[0] = motion_seg[curInterval[1]].getJointPositionGlobal(stanceFoots[0])
#                    rd_vec2[0] = step_cur_sag
#                    rd_vecori2[0] = controlModel.getJointPositionGlobal(stanceFoots[0])

                seg_index[0] += 1
                curSeg = segments[seg_index[0]]
                stl_y_limit_num[0] = 0
                stl_xz_limit_num[0] = 0
                
                del motion_seg_orig[frame+1:]
                motion_seg_orig.extend(ymb.getAttachedNextMotion(curSeg, motion_seg_orig[-1], False, False))
                
                del motion_seg[frame+1:]
                del motion_stitch[frame+1:]
                transitionLength = len(curSeg)-1

#                motion_seg.extend(ymb.getAttachedNextMotion(curSeg, motion_seg[-1], False, False))
#                motion_stitch.extend(ymb.getStitchedNextMotion(curSeg, motion_control[-1], transitionLength, stitch_func, True, False))

                d = motion_seg[-1] - curSeg[0]
                d.rootPos[1] = 0.
                motion_seg.extend(ymb.getAttachedNextMotion(curSeg, d, True, False))
                
                if NO_FOOT_SLIDING:
                    if segIndex == len(segments)-2:
                        Rl = motion_control[-1].getJointOrientationLocal(lUpLeg)
                        Rr = motion_control[-1].getJointOrientationLocal(rUpLeg)
                        Rlk = motion_control[-1].getJointOrientationLocal(lKnee)
                        Rrk = motion_control[-1].getJointOrientationLocal(rKnee)
                        Rlf = motion_control[-1].getJointOrientationLocal(lFoot)
                        Rrf = motion_control[-1].getJointOrientationLocal(rFoot)
                        for p in curSeg:
                            p.setJointOrientationLocal(lUpLeg, Rl, False)
                            p.setJointOrientationLocal(rUpLeg, Rr, False)
                            p.setJointOrientationLocal(lKnee, Rlk, False)
                            p.setJointOrientationLocal(rKnee, Rrk, False)
                            p.setJointOrientationLocal(lFoot, Rlf, False)
                            p.setJointOrientationLocal(rFoot, Rrf, False)
                            p.updateGlobalT()                
                d = motion_control[-1] - curSeg[0]
                d.rootPos[1] = 0.
                motion_stitch.extend(ymb.getStitchedNextMotion(curSeg, d, transitionLength, stitch_func, True, False))
                
#                motion_seg.extend(ymb.getAttachedNextMotion(curSeg, motion_seg[-1], False, True))
#                motion_stitch.extend(ymb.getStitchedNextMotion(curSeg, motion_control[-1], transitionLength, stitch_func, True, True))
            else:
                motion_seg_orig.append(motion_seg_orig[-1])
                motion_seg.append(motion_seg[-1])
                motion_stitch.append(motion_control[-1])
                
                
        # rendering
        motionModel.update(motion_ori[frame])
#        motionModel.update(motion_seg[frame])
        
        if SAVE_SIMULATION:
            p_temp = ym.JointPosture(skeleton)
            p_temp.initLocalRs()
            p_temp.rootPos = controlModel.getJointPositionGlobal(0)
            p_temp.setJointOrientationsLocal(controlModel.getJointOrientationsLocal())
            motion_simulation.append(p_temp)
            
            if frame == viewer.getMaxFrame():
                saveFilePath = SAVE_DIR+'simulated_'+filename
                yf.writeBvhFile(saveFilePath, motion_simulation)
                print saveFilePath, 'saved'
Esempio n. 15
0
    def setupQP(self, frame, motion, mcfg, model, world, config, timestep):
        motionModel = cvm.VpMotionModel(world, motion[frame], mcfg)

        # constants
        invdt = 1./timestep

        # dofs and flat data structure
        totalDOF = model.getTotalDOF()
        DOFs = model.getDOFs()
        self.totalDOF = totalDOF
        self.ddth_des_flat = ype.makeFlatList(totalDOF)
        self.ddth_r_flat = ype.makeFlatList(totalDOF)
        self.dth_flat = ype.makeFlatList(totalDOF)
        self.dth_r_flat = ype.makeFlatList(totalDOF)
        self.ddth_sol = ype.makeNestedList(DOFs)

        # momentum matrix
        linkMasses = model.getBodyMasses()
        totalMass = model.getTotalMass()
        TO = ymt.make_TO(linkMasses)
        dTO = ymt.make_dTO(len(linkMasses))

        # optimization
        self.qp.clear()


        Vc_tmp = self.Vc_tmp


        # tracking
        w = self.getTrackingWeight(DOFs, motion[0].skeleton, config['weightMap'])

        th_r = motion.getDOFPositionsLocal(frame)
        th = model.getDOFPositionsLocal()
        dth_r = motion.getDOFVelocitiesLocal(frame)
        dth = model.getDOFVelocitiesLocal()
        ddth_r = motion.getDOFAccelerationsLocal(frame)
        ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r, self.Kt, self.Dt)

        linkPositions = model.getBodyPositionsGlobal()
        linkVelocities = model.getBodyVelocitiesGlobal()
        linkAngVelocities = model.getBodyAngVelocitiesGlobal()
        linkInertias = model.getBodyInertiasGlobal()

        jointPositions = model.getJointPositionsGlobal()
        jointAxeses = model.getDOFAxesesLocal()

        #linkPositions_ref = motionModel.getBodyPositionsGlobal()
        #linkVelocities_ref = motionModel.getBodyVelocitiesGlobal()
        #linkAngVelocities_ref = motionModel.getBodyAngVelocitiesGlobal()
        #linkInertias_ref = motionModel.getBodyInertiasGlobal()

        #jointPositions_ref = motionModel.getJointPositionsGlobal()
        #jointAxeses_ref = motionModel.getDOFAxesesLocal()

        ype.flatten(ddth_des, self.ddth_des_flat)
        ype.flatten(dth, self.dth_flat)
        ype.flatten(dth_r, self.dth_r_flat)
        ype.flatten(ddth_r, self.ddth_r_flat)

        # get CoM
        CM = yrp.getCM(linkPositions, linkMasses, totalMass)
        dCM = yrp.getCM(linkVelocities, linkMasses, totalMass)
        CM_plane = copy.copy(CM); CM_plane[1]=0.
        dCM_plane = copy.copy(dCM); dCM_plane[1]=0.

        P = ymt.getPureInertiaMatrix(TO, linkMasses, linkPositions, CM, linkInertias)
        dP = ymt.getPureInertiaMatrixDerivative(dTO, linkMasses, linkVelocities, dCM, linkAngVelocities, linkInertias)


        # jacobian
        Jsup = yjc.makeEmptyJacobian(DOFs, 1)
        dJsup = Jsup.copy()
        Jsys_old = None

        if self.Jsys != None:
            Jsys_old = self.Jsys.copy()

        if self.Jsys == None:
            self.Jsys = yjc.makeEmptyJacobian(DOFs, model.getBodyNum())
            self.dJsys = self.Jsys.copy()

        allLinkJointMasks = yjc.getAllLinkJointMasks(motion[0].skeleton)

        yjc.computeJacobian2(self.Jsys, DOFs, jointPositions, jointAxeses, linkPositions, allLinkJointMasks)
        if Jsys_old ==None:
            self.dJsys = self.Jsys-self.Jsys
        else:
            self.dJsys = (self.Jsys - Jsys_old)*invdt
        #yjc.computeJacobianDerivative2(self.dJsys, DOFs, jointPositions, jointAxeses, linkAngVelocities, linkPositions, allLinkJointMasks)

        #CM_ref = yrp.getCM(linkPositions_ref, linkMasses, totalMass)
        #dCM_ref = yrp.getCM(linkVelocities_ref, linkMasses, totalMass)
        #CM_ref_plane = copy.copy(CM_ref); CM_ref_plane[1]=0.
        #dCM_ref_plane = copy.copy(dCM_ref); dCM_ref_plane[1]=0.

        #P_ref = ymt.getPureInertiaMatrix(TO, linkMasses, linkPositions_ref, CM_ref, linkInertias_ref)
        #dP_ref = ymt.getPureInertiaMatrixDerivative(dTO, linkMasses, linkVelocities_ref, dCM_ref, linkAngVelocities_ref, linkInertias_ref)

        # get EoM
        totalActuator = totalDOF

        invM = np.zeros((totalActuator,totalDOF))
        invMc = np.zeros(totalDOF)
        model.getInverseEquationOfMotion(invM, invMc)
        #print invMc

        # contact detection
        Ks = 1
        Ds = 1
        supsupR = motion[0].skeleton.getJointIndex('RightLeg')
        supsupL = motion[0].skeleton.getJointIndex('LeftLeg')
        supR = motion[0].skeleton.getJointIndex('RightFoot')
        supL = motion[0].skeleton.getJointIndex('LeftFoot')
        bodyIDsToCheck = range(world.getBodyNum())
        #print bodyIDsToCheck
        #bodyIDsToCheck = [supsupR, supsupL]
        #bodyIDsToCheck = [supR, supL]
        mus = [.5]*len(bodyIDsToCheck)
        bodyIDs, contactPositions, contactPositionLocals, contactForces, contactVelocities = world.calcPenaltyForce(bodyIDsToCheck, mus, Ks, Ds)
        #bodyIDs, contactPositions, contactPositionLocals, contactForces, contactVelocities = world.calcManyPenaltyForce(self.contactPerSide, bodyIDsToCheck, mus, Ks, Ds)
        #bodyIDs, contactPositions, contactPositionLocals, contactForces, contactVelocities = world.calcOnePenaltyForce(bodyIDsToCheck, mus, Ks, Ds)

        #print bodyIDs, contactPositions

        footCenterL = model.getBodyPositionGlobal(supL)
        footCenterR = model.getBodyPositionGlobal(supR)
        footCenter = footCenterL.copy()

        footRefCenterL = motionModel.getBodyPositionGlobal(supL)
        footRefCenterR = motionModel.getBodyPositionGlobal(supR)
        #if supL in bodyIDs:
            #if supR in bodyIDs:
                #footCenter = footCenterL + (footCenterR-footCenterL)/2.
            #else:
                #footCenter = footCenterL.copy()
        #else:
            #if supR in bodyIDs:
                #footCenter = footCenterR.copy()
            #else:
                #footCenter = np.array((0,0,0))

        contactL = 1
        contactR = 1

        if footRefCenterL[1] < 0.2:
            if footRefCenterR[1] < 0.2:
                footCenter = footCenterL + (footCenterR-footCenterL)/2.
            else:
                footCenter = footCenterL.copy()
                contactR = 0
        else:
            contactL = 0
            if footRefCenterR[1] < 0.2:
                footCenter = footCenterR.copy()
            else:
                footCenter = np.array((0,0,0))
                contactR = 0
        #print(contactR, contactL)
        footCenter[1] = 0.

        # linear momentum
        CM_ref = footCenter
        #CM_ref =
        #dL_des_plane = self.Kl*totalMass*(CM_ref - CM) + self.Dl*totalMass*(dCM_ref - dCM)
        dL_des_plane = self.Kl*totalMass*(CM_ref - CM) + self.Dl*totalMass*(-dCM)
        dL_des_plane[1] = 0.

        # angular momentum
        CP_ref = footCenter
        #bodyIDs, contactPositions, contactPositionLocals, contactForces = world.calcManyPenaltyForce(bodyIDsToCheck, mus, Ks, Ds)
        #CP = yrp.getCP(contactPositions, contactForces)
        CP = yrp.getSimpleCP(contactPositions)
        if self.CP_old==None or CP==None:
            dCP = None
        else:
            dCP = (CP - self.CP_old[0])/(1/30.)
        self.CP_old = CP

        if CP!=None and dCP!=None:
            ddCP_des = self.Kh*(CP_ref - CP) - self.Dh*(dCP)
            CP_des = CP + dCP*(1/30.) + .5*ddCP_des*((1/30.)**2)
            dH_des = np.cross((CP_des - CM), (dL_des_plane + totalMass*np.array((0,-9.8,0))))
            #if contactChangeCount >0: # and contactChangeType == 'DtoS':
                ##dH_des *= (maxContactChangeCount - contactChangeCount)/(maxContactChangeCount*10)
                #dH_des *= (self.maxContactChangeCount - self.contactChangeCount)/(self.maxContactChangeCount)
                ##dH_des *= (contactChangeCount)/(maxContactChangeCount)*.9+.1
        else:
            dH_des = None
        H = np.dot(P, np.dot(self.Jsys, self.dth_flat))
        dH_des = -self.Kh*H[3:]



        # equality constraints
        JcTVc_append = np.zeros((totalDOF, 0))
        VcTJc_list = []
        VcTdJc_list = []
        dVcTJc_list = []
        ac_offset_list = []
        totalContact = 4*len(bodyIDs)
        totalProblem = totalDOF+totalActuator+totalContact

        preSup = -1
        for i in range(len(contactPositions)):
            sup = bodyIDs[i]
            supJointMasks = [yjc.getLinkJointMask(motion[0].skeleton, sup)]

            if preSup != sup:
                bodyPos = linkPositions[sup]
                bodyVel = linkVelocities[sup]
                #yjc.computeJacobian2(Jsup, DOFs, jointPositions, jointAxeses, [bodyPos], supJointMasks)
                #yjc.computeJacobianDerivative2(dJsup, DOFs, jointPositions, jointAxeses, linkAngVelocities, [bodyPos], supJointMasks)
                Jsup = getPartJacobian(self.Jsys, sup)
                dJsup = getPartJacobian(self.dJsys, sup)

            R_dAd = np.hstack( (np.vstack( (np.eye(3), mm.getCrossMatrixForm(-bodyPos)) ), np.vstack( (np.zeros((3,3)), np.eye(3)) ) ) )
            dR_dAd = np.hstack( (np.vstack( (np.eye(3), mm.getCrossMatrixForm(-bodyVel)) ), np.vstack( (np.zeros((3,3)), np.eye(3)) ) ) )
            #R_dAd = np.hstack( (np.vstack( (np.eye(3), mm.getCrossMatrixForm(-contactPositions[i])) ), np.vstack( (np.zeros((3,3)), np.eye(3)) ) ) )
            #dR_dAd = np.hstack( (np.vstack( (np.eye(3), mm.getCrossMatrixForm(-contactVelocities[i])) ), np.vstack( (np.zeros((3,3)), np.eye(3)) ) ) )

            p = contactPositions[i]
            dotp = contactVelocities[i]
            VcT_tmp = np.zeros((4,6))
            dVcT_tmp = VcT_tmp.copy()
            for ii in range(4):
                n = Vc_tmp[ii]
                pcn = np.cross(contactPositions[i], Vc_tmp[ii])
                VcT_tmp[ii][:3] =n
                VcT_tmp[ii][3:] =pcn
                dotpcn = np.cross(contactVelocities[i], Vc_tmp[ii])
                dVcT_tmp[ii][3:] = dotpcn

            Vc = np.dot(R_dAd, VcT_tmp.T)
            dVc = np.dot(R_dAd, dVcT_tmp.T) + np.dot(dR_dAd, VcT_tmp.T)

            JcTVc = np.dot( Jsup.T, Vc)
            JcTVc_append = np.hstack((JcTVc_append, JcTVc))
            VcTJc_list.append( JcTVc.T )
            VcTdJc_list.append( np.dot(Vc.T, dJsup) )
            dVcTJc_list.append( np.dot(dVc.T, Jsup) )

            #TODO:
            # when friction cones and velocity cones differ?
            #JcTVc = np.dot( Jsup.T, VcT.T)
            #JcTVc_append = np.hstack((JcTVc_append, JcTVc))
            #VcTJc_list.append( JcTVc.T )
            #VcTdJc_list.append( np.dot(VcT, dJsup) )
            #dVcTJc_list.append( np.dot(dVcT, Jsup) )

            penDepth = -0.05-contactPositions[i][1]
            if penDepth < 0.:
                penDepth = 0.
            #penDepth = 0.
            ac_offset = 1000.*penDepth*np.ones(4)
            ac_offset_list.append(ac_offset)
            preSup = sup

        extForce = np.zeros(totalActuator)
        if self.extDuration > 0:
            Jext = yjc.makeEmptyJacobian(DOFs, 1)
            extForcePos = model.getBodyPositionGlobal(self.extForceBody)
            extJointMasks = [yjc.getLinkJointMask(motion[0].skeleton, self.extForceBody)]
            yjc.computeJacobian2(Jext, DOFs, jointPositions, jointAxeses, [extForcePos], extJointMasks)
            extForce = np.dot(Jext.T, self.extForce)

            self.extDuration -= timestep
            if self.extDuration < 0:
                self.extDuration = 0

        self.addQPEqualityInverseEomConstraint(totalProblem, totalDOF, totalActuator, totalContact, invM, invMc, JcTVc_append, extForce)

        # inequality constraints

        if totalContact> 0:
            self.addQPInequalityContactForceConstraint(totalProblem, totalDOF, totalActuator, totalContact)
            self.addQPInequalityVelocityConstraint(totalProblem, totalDOF, totalActuator, totalContact, VcTJc_list, VcTdJc_list,dVcTJc_list, self.dth_flat, ac_offset_list, invdt)
            #self.addQPInequalityVelocityConstraint(totalProblem, totalDOF, totalActuator, totalContact, VcTJc_vel_list, VcTdJc_vel_list,dVcTJc_vel_list, self.dth_flat, ac_offset_list, 30.)
        torqueMax = 1000.*np.ones(totalActuator-6)
        torqueMin = -torqueMax
        self.addQPInequalityTorqueConstraint(totalProblem, totalDOF, totalActuator, totalContact, torqueMax, torqueMin)

        # objectives
        self.addQPTrackingTerms(totalProblem, 0, totalDOF, self.Bt, w, self.ddth_des_flat)
        self.addQPTorqueTerms(totalProblem, totalDOF, totalActuator, self.Btau, w)
        if totalContact > 0:
            self.addQPContactForceTerms(totalProblem, totalDOF+totalActuator, totalContact, self.Bcon)
            #if dH_des !=None:
            #	allLinkJointMasks = yjc.getAllLinkJointMasks(motion[0].skeleton)
            #	yjc.computeJacobian2(Jsys, DOFs, jointPositions, jointAxeses, linkPositions, allLinkJointMasks)
            #	yjc.computeJacobianDerivative2(dJsys, DOFs, jointPositions, jointAxeses, linkAngVelocities, linkPositions, allLinkJointMasks)
            #	self.addLinearAndAngularBalancigTerms(totalProblem, 0, totalDOF, self.Bl, self.Bh, P, self.Jsys, self.dth_flat, dP, self.dJsys, dL_des_plane, dH_des)

        # end effector
        #TODO:
        eeList = [supR, supL]
        #eeList = []

        #if totalContact > 0:
        for ee in eeList:
            eeCenter = model.getBodyPositionGlobal(ee)
            eeJointMasks = [yjc.getLinkJointMask(motion[0].skeleton, ee)]
            yjc.computeJacobian2(Jsup, DOFs, jointPositions, jointAxeses, [eeCenter], eeJointMasks)
            yjc.computeJacobianDerivative2(dJsup, DOFs, jointPositions, jointAxeses, linkAngVelocities, [eeCenter], eeJointMasks, False)
            ee_genvel_ref = np.dot(Jsup, self.dth_r_flat)
            ee_genacc_ref = np.dot(Jsup, self.ddth_r_flat) + np.dot(dJsup, self.dth_r_flat)

            ee_pos_ref = motionModel.getBodyPositionGlobal(ee)
            ee_pos = model.getBodyPositionGlobal(ee)
            ee_vel_ref = ee_genvel_ref[:3]
            ee_vel = model.getBodyVelocityGlobal(ee)
            ee_acc_ref = ee_genacc_ref[:3]
            ddp_des_pos = self.Ke*( (ee_pos_ref-th_r[0][0]) - (ee_pos-th[0][0]) )
            ddp_des_pos += self.De*(ee_vel_ref - ee_vel)
            ddp_des_pos += ee_acc_ref

            eeOri = model.getBodyOrientationGlobal(ee)
            eeAngVel = model.getBodyAngVelocityGlobal(ee)
            ee_angvel_ref = ee_genvel_ref[3:]
            ee_angacc_ref = ee_genacc_ref[3:]
            a_ori_diff = mm.logSO3(mm.getSO3FromVectors(np.dot(eeOri, np.array([0,1,0])), np.array([0,1,0])))
            ddp_des_ang = self.Ke*a_ori_diff + self.De*(-eeAngVel)
            #ddp_des_ang = self.Ke*a_ori_diff + self.De*(ee_angvel_ref-eeAngVel)
            #ddp_des_ang += ee_angacc_ref

            ddp_des = np.hstack( (ddp_des_pos, ddp_des_ang) )

            #self.addEndEffectorTerms(totalProblem, 0, totalDOF, Jsup, dJsup, self.dth_flat, ddp_des, self.Be)
            self.addEqualityEndEffectorTerms(totalProblem, 0, totalDOF, Jsup, dJsup, self.dth_flat, ddp_des, self.Be)

        return contactPositions, CP, CM, footCenter, dL_des_plane, CM_ref
Esempio n. 16
0
     lFoot = motion[0].skeleton.getJointIndex('LeftFoot')
     rFoot = motion[0].skeleton.getJointIndex('RightFoot')
 
     CM_vels = [None]*len(intervals)
     stepLengths = [None]*len(intervals)
     stepDurations = [None]*len(intervals)
 
     print('                              CM vel    step length    step duration')
     for i in range(len(intervals)):
         startFrame = intervals[i][0]
         endFrame = intervals[i][1]
         
         stepDurations[i] = (endFrame - startFrame) * 1/30.
 
         motionModel.update(motion[startFrame])
         CM0 = yrp.getCM(motionModel.getBodyPositionsGlobal(), bodyMasses, totalMass)
         motionModel.update(motion[endFrame])
         CM1 = yrp.getCM(motionModel.getBodyPositionsGlobal(), bodyMasses, totalMass)
         CM_vels[i] = mm.length((CM1 - CM0) / stepDurations[i])
 
         lSwingLength = mm.length(motion[endFrame].getJointPositionGlobal(lFoot) - motion[startFrame].getJointPositionGlobal(lFoot))
         rSwingLength = mm.length(motion[endFrame].getJointPositionGlobal(rFoot) - motion[startFrame].getJointPositionGlobal(rFoot))
         stepLengths[i] = max([lSwingLength, rSwingLength])
         
         if STEP_INFO:
             print('%2dth'%i, '%-6s'%yba.GaitState.text[states[i]], '%-10s'%intervals[i], '%2d'%(endFrame-startFrame), '%10.2f %10.2f %10.2f'%(CM_vels[i], stepLengths[i], stepDurations[i]))
 
     startSeg = 1
     endSeg = len(intervals)-2
     mean_CM_vel = sum(CM_vels[startSeg:endSeg+1]) / (endSeg - startSeg + 1)
     mean_stepLength = sum(stepLengths[startSeg:endSeg+1]) / (endSeg - startSeg + 1)
Esempio n. 17
0
    def simulateCallback(frame):

        curTime = time.time()

        if frame % 30 == 1: pt[0] = time.time()

        global g_initFlag
        global forceShowFrame
        global forceApplyFrame
        global JsysPre
        global JsupPreL
        global JsupPreR
        global JsupPre
        global softConstPoint
        global stage
        global contactRendererName
        global desCOMOffset

        #motionModel.update(motion[0])

        Kt, Kk, Kl, Kh, Ksc, Bt, Bl, Bh, B_CM, B_CMSd, B_Toe = viewer.GetParam(
        )

        Dt = 2 * (Kt**.5)
        Dk = 2 * (Kk**.5)
        Dl = 2 * (Kl**.5)
        Dh = 2 * (Kh**.5)
        Dsc = 2 * (Ksc**.5)
        '''
        if Bsc == 0.0 :
            viewer.doc.showRenderer('softConstraint', False)
            viewer.motionViewWnd.update(1, viewer.doc)
        else:
            viewer.doc.showRenderer('softConstraint', True)
            renderer1 = viewer.doc.getRenderer('softConstraint')
            renderer1.rc.setLineWidth(0.1+Bsc*3)
            viewer.motionViewWnd.update(1, viewer.doc)
        '''
        pose = motion[0].copy()

        def solveIK(desComPos,
                    desIdxs,
                    desPos,
                    desOri,
                    cmW=10.,
                    posW=1.,
                    oriW=1.):
            numItr = 100
            dt = .5
            threshold = 0.1
            for i in range(0, numItr):
                jPart_IK = []
                print '----iter num', i
                IKModel.update(pose)

                th_r_IK = pose.getDOFPositions()
                jointPositions_IK = pose.getJointPositionsGlobal()
                jointAxeses_IK = pose.getDOFAxeses()
                linkPositions_IK = IKModel.getBodyPositionsGlobal()
                linkInertias_IK = IKModel.getBodyInertiasGlobal()

                CM_IK = yrp.getCM(linkPositions_IK, linkMasses, totalMass)
                print CM_IK
                P_IK = ymt.getPureInertiaMatrix(TO, linkMasses,
                                                linkPositions_IK, CM_IK,
                                                linkInertias_IK)

                yjc.computeJacobian2(Jsys_IK, DOFs, jointPositions_IK,
                                     jointAxeses_IK, linkPositions_IK,
                                     allLinkJointMasks)

                for j in range(0, len(desIdxs)):
                    jPart_IK.append(Jsys_IK[6 * desIdxs[j]:6 * desIdxs[j] + 6])

                J_IK, JAngCom_IK = np.vsplit(np.dot(P_IK, Jsys_IK), 2)
                dv_IK = cmW * (desComPos - CM_IK)

                for j in range(0, len(desIdxs)):
                    J_IK = np.vstack((J_IK, jPart_IK[j]))
                    pos_IK = IKModel.getBodyPositionGlobal(desIdxs[j])
                    dv_IK = np.append(dv_IK, posW * (desPos[j] - pos_IK))
                    ori_IK = IKModel.getBodyOrientationGlobal(desIdxs[j])
                    dv_IK = np.append(dv_IK,
                                      oriW * mm.logSO3(desOri[j] * ori_IK.T))
                #print dv_IK[0:3]
                dth_IK_solve = npl.lstsq(J_IK, dv_IK)
                dth_IK_x = dth_IK_solve[0][:totalDOF]
                ype.nested(dth_IK_x, dth_IK)
                #print dth_IK[0][0:3]
                th_IK = yct.getIntegralDOF(th_r_IK, dth_IK, dt)
                pose.setDOFPositions(th_IK)

                if np.dot(dv_IK, dv_IK) < threshold:
                    break

        linkPositions_ref = motionModel.getBodyPositionsGlobal()
        CM_ref = yrp.getCM(linkPositions_ref, linkMasses, totalMass)
        footCenterOffset = np.array([
            viewer.objectInfoWnd.comOffsetX.value(),
            viewer.objectInfoWnd.comOffsetY.value(),
            viewer.objectInfoWnd.comOffsetZ.value()
        ])
        #CM_IK_ref = footCenter + footCenterOffset
        CM_IK_ref = CM_ref + footCenterOffset
        #CM_IK_ref[1] = CM_ref[1] + footCenterOffset[1]

        motion[0].skeleton.getJointIndex(config['supLink'])

        #IKidxs = [indexFootL[0], indexFootR[0]]
        #IKdesPos = [motionModel.getBodyPositionGlobal(indexFootL[0]), motionModel.getBodyPositionGlobal(indexFootR[0])]
        #for i in range(0, 2):
        #    #IKdesPos[i] += ModelOffset
        #    IKdesPos[i][1] = 0.069
        #IKori = [motionModel.getBodyOrientationGlobal(indexFootL[0]), motionModel.getBodyOrientationGlobal(indexFootR[0])]
        #IKdesOri = [None]*2
        #for i in range(0, 2):
        #    IKdesOri[i] = mm.I_SO3()

        IKidxs = config['Phalange'][0:1] + config['Phalange'][3:4]
        print IKidxs
        IKdesPos = [None] * len(IKidxs)
        IKdesOri = [None] * len(IKidxs)
        for i in range(0, len(IKidxs)):
            #print i
            IKdesPos[i] = motionModel.getBodyPositionGlobal(IKidxs[i])
            IKdesPos[i][1] = 0.03
            IKdesOri[i] = mm.I_SO3()
        print IKdesPos

        solveIK(CM_IK_ref, IKidxs, IKdesPos, IKdesOri)

        # tracking
        th_r_ori = motion.getDOFPositions(frame)
        th_r = copy.copy(th_r_ori)

        global leftHipTimer
        if viewer.objectInfoWnd.onLeftHip:
            leftHipTimer = 60
            viewer.objectInfoWnd.onLeftHip = False
        if leftHipTimer > 0:
            viewer.objectInfoWnd.comOffsetX.value(
                0.14 * np.sin(2 * 3.14 * leftHipTimer / 60.))
            #viewer.objectInfoWnd.comOffsetZ.value(0.04*np.cos(2*3.14*leftHipTimer/90.))
            #B_Hipd = viewer.objectInfoWnd.labelLeftHip.value()
            #newR1 = mm.exp(mm.v3(0.0,1.0,0.0), 3.14*0.5*B_Hipd/100.)
            #idx = motion[0].skeleton.getJointIndex('LeftUpLeg')
            #th_r[idx] = np.dot(th_r[idx], newR1)
            #idx = motion[0].skeleton.getJointIndex('RightUpLeg')
            #th_r[idx] = np.dot(th_r[idx], newR1)
            leftHipTimer -= 1

        timeReport[0] += time.time() - curTime
        curTime = time.time()

        th = controlModel.getDOFPositions()
        dth_r = motion.getDOFVelocities(frame)
        dth = controlModel.getDOFVelocities()
        ddth_r = motion.getDOFAccelerations(frame)
        ddth_des = yct.getDesiredDOFAccelerations(th_r, th, dth_r, dth, ddth_r,
                                                  Kt, Dt)
        ddth_c = controlModel.getDOFAccelerations()

        ype.flatten(ddth_des, ddth_des_flat)
        ype.flatten(dth, dth_flat)

        ype.flatten(ddth_c, ddth_c_flat)

        # jacobian
        refFootL = motionModel.getBodyPositionGlobal(supL)
        refFootR = motionModel.getBodyPositionGlobal(supR)

        positionFootL = [None] * footPartNum
        positionFootR = [None] * footPartNum
        for i in range(footPartNum):
            positionFootL[i] = controlModel.getBodyPositionGlobal(
                indexFootL[i])
            positionFootR[i] = controlModel.getBodyPositionGlobal(
                indexFootR[i])

        linkPositions = controlModel.getBodyPositionsGlobal()
        linkVelocities = controlModel.getBodyVelocitiesGlobal()
        linkAngVelocities = controlModel.getBodyAngVelocitiesGlobal()
        linkInertias = controlModel.getBodyInertiasGlobal()

        jointPositions = controlModel.getJointPositionsGlobal()
        jointAxeses = controlModel.getDOFAxeses()

        CM = yrp.getCM(linkPositions, linkMasses, totalMass)
        dCM = yrp.getCM(linkVelocities, linkMasses, totalMass)
        CM_plane = copy.copy(CM)
        CM_plane[1] = 0.
        dCM_plane = copy.copy(dCM)
        dCM_plane[1] = 0.

        linkPositions_ref = motionModel.getBodyPositionsGlobal()
        linkVelocities_ref = motionModel.getBodyVelocitiesGlobal()
        linkAngVelocities_ref = motionModel.getBodyAngVelocitiesGlobal()
        linkInertias_ref = motionModel.getBodyInertiasGlobal()

        CM_ref = yrp.getCM(linkPositions_ref, linkMasses, totalMass)
        CM_plane_ref = copy.copy(CM_ref)
        CM_plane_ref[1] = 0.

        P = ymt.getPureInertiaMatrix(TO, linkMasses, linkPositions, CM,
                                     linkInertias)
        dP = ymt.getPureInertiaMatrixDerivative(dTO, linkMasses,
                                                linkVelocities, dCM,
                                                linkAngVelocities,
                                                linkInertias)

        timeReport[1] += time.time() - curTime
        curTime = time.time()

        yjc.computeJacobian2(Jsys, DOFs, jointPositions, jointAxeses,
                             linkPositions, allLinkJointMasks)
        timeReport[2] += time.time() - curTime
        curTime = time.time()

        # yjc.computeJacobianDerivative2(dJsys, DOFs, jointPositions, jointAxeses, linkAngVelocities, linkPositions, allLinkJointMasks)
        if frame > 0:
            dJsys = (Jsys - JsysPre) * 30.
        else:
            dJsys = (Jsys - Jsys)
        JsysPre = Jsys.copy()

        timeReport[3] += time.time() - curTime
        curTime = time.time()

        bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(
            bodyIDsToCheck, mus, Ks, Ds)
        CP = yrp.getCP(contactPositions, contactForces)

        for i in range(len(bodyIDsToCheck)):
            controlModel.SetBodyColor(bodyIDsToCheck[i], 0, 0, 0, 255)

        contactFlagFootL = [0] * footPartNum
        contactFlagFootR = [0] * footPartNum
        partialDOFIndex = [22, 22]

        for i in range(len(bodyIDs)):
            controlModel.SetBodyColor(bodyIDs[i], 255, 105, 105, 200)
            index = controlModel.id2index(bodyIDs[i])
            for j in range(len(indexFootL)):
                if index == indexFootL[j]:
                    contactFlagFootL[j] = 1
            for j in range(len(indexFootR)):
                if index == indexFootR[j]:
                    contactFlagFootR[j] = 1

        for j in range(0, footPartNum):
            jAngFootR[j] = Jsys[6 * indexFootR[j]:6 * indexFootR[j] +
                                6][3:]  #.copy()
            jAngFootL[j] = Jsys[6 * indexFootL[j]:6 * indexFootL[j] +
                                6][3:]  #.copy()
            dJAngFootR[j] = dJsys[6 * indexFootR[j]:6 * indexFootR[j] +
                                  6][3:]  #.copy()
            dJAngFootL[j] = dJsys[6 * indexFootL[j]:6 * indexFootL[j] +
                                  6][3:]  #.copy()
            jFootR[j] = Jsys[6 * indexFootR[j]:6 * indexFootR[j] + 6]  #.copy()
            jFootL[j] = Jsys[6 * indexFootL[j]:6 * indexFootL[j] + 6]  #.copy()
            dJFootR[j] = dJsys[6 * indexFootR[j]:6 * indexFootR[j] +
                               6]  #.copy()
            dJFootL[j] = dJsys[6 * indexFootL[j]:6 * indexFootL[j] +
                               6]  #.copy()
        if footPartNum == 1:
            desFCL = (controlModel.getBodyPositionGlobal(supL))
            desFCR = (controlModel.getBodyPositionGlobal(supR))
        else:
            r = .5 + desCOMOffset
            desFCL = (controlModel.getBodyPositionGlobal(indexFootL[0]) * r +
                      controlModel.getBodyPositionGlobal(indexFootL[1]) *
                      (1.0 - r)
                      )  #controlModel.getBodyPositionGlobal(indexFootL[1])
            desFCR = (controlModel.getBodyPositionGlobal(indexFootR[0]) * r +
                      controlModel.getBodyPositionGlobal(indexFootR[1]) *
                      (1.0 - r)
                      )  #controlModel.getBodyPositionGlobal(indexFootR[1])
        desFC = desFCL + (desFCR - desFCL) / 2.0
        desFC[1] = 0
        rd_footCenter_des[0] = desFC.copy()
        curRelCMVec = CM_plane - desFC
        vecRatio = mm.length(curRelCMVec) * 0.
        #print(frame, vecRatio)
        footCenter = desFC - curRelCMVec * (vecRatio)  #/10.0

        footCenter = (
            getBodyGlobalPos(controlModel, motion, 'LeftCalcaneus_1') +
            getBodyGlobalPos(controlModel, motion, 'LeftPhalange_1') +
            getBodyGlobalPos(controlModel, motion, 'RightCalcaneus_1') +
            getBodyGlobalPos(controlModel, motion, 'RightPhalange_1')) / 4.
        #footCenter = (getBodyGlobalPos(controlModel, motion, 'LeftCalcaneus_1') + getBodyGlobalPos(controlModel, motion, 'LeftTalus_1') + getBodyGlobalPos(controlModel, motion, 'RightCalcaneus_1') + getBodyGlobalPos(controlModel, motion, 'RightTalus_1'))/4.

        footCenter_ref = refFootL + (refFootR - refFootL) / 2.0
        #footCenter_ref[1] = 0.
        footCenter[1] = 0.
        footCenterOffset = np.array([
            viewer.objectInfoWnd.comOffsetX.value(), 0,
            viewer.objectInfoWnd.comOffsetZ.value()
        ])
        #footCenter += footCenterOffset

        vecRatio = mm.length(curRelCMVec) * 0.
        softConstPointOffset = -curRelCMVec * (vecRatio)  #/10.0
        #print(frame, vecRatio, softConstPointOffset)

        desForeSupLAcc = [0, 0, 0]
        desForeSupRAcc = [0, 0, 0]

        totalNormalForce = [0, 0, 0]

        for i in range(len(contactForces)):
            totalNormalForce[0] += contactForces[i][0]
            totalNormalForce[1] += contactForces[i][1]
            totalNormalForce[2] += contactForces[i][2]

        #print((totalMass*mm.s2v(wcfg.gravity))[1])

        footCenterOffset = np.array([
            viewer.objectInfoWnd.comOffsetX.value(),
            viewer.objectInfoWnd.comOffsetY.value(),
            viewer.objectInfoWnd.comOffsetZ.value()
        ])

        ######################
        # optimization terms
        ######################

        # linear momentum
        CM_ref_plane = footCenter + footCenterOffset
        dL_des_plane = Kl * totalMass * (CM_ref_plane -
                                         CM_plane) - Dl * totalMass * dCM_plane
        dL_des_plane[1] = Kl * totalMass * (CM_ref[1] + footCenterOffset[1] -
                                            CM[1]) - Dl * totalMass * dCM[1]

        # angular momentum
        CP_ref = footCenter + footCenterOffset

        timeStep = 30.
        if CP_old[0] == None or CP == None:
            dCP = None
        else:
            dCP = (CP - CP_old[0]) / (1 / timeStep)
        CP_old[0] = CP

        if CP != None and dCP != None:
            ddCP_des = Kh * (CP_ref - CP) - Dh * (dCP)
            CP_des = CP + dCP * (1 / timeStep) + .5 * ddCP_des * (
                (1 / timeStep)**2)
            #dH_des = np.cross((CP_des - CM), (dL_des_plane + totalMass*mm.s2v(wcfg.gravity)))
            dH_des = np.cross(
                (CP_des - CM_plane),
                (dL_des_plane + totalMass * mm.s2v(wcfg.gravity)))
        else:
            dH_des = None

        # momentum matrix
        RS = np.dot(P, Jsys)
        R, S = np.vsplit(RS, 2)

        rs = np.dot((np.dot(dP, Jsys) + np.dot(P, dJsys)), dth_flat)
        r_bias, s_bias = np.hsplit(rs, 2)

        flagContact = True
        if dH_des == None or np.any(np.isnan(dH_des)) == True:
            flagContact = False
            #viewer.doc.showRenderer('rd_grf_des', False)
            #viewer.motionViewWnd.update(1, viewer.doc)
        #else:
        #viewer.doc.showRenderer('rd_grf_des', True)
        #viewer.motionViewWnd.update(1, viewer.doc)
        '''
        0 : initial
        1 : contact
        2 : fly
        3 : landing
        '''

        trackingW = w

        #if checkAll(contactFlagFootR, 0) != 1 :
        if 0:  #stage == MOTION_TRACKING:
            trackingW = w2
            #stage = POWERFUL_BALANCING
            Bt = Bt * 2

        #######################
        # optimization
        #######################

        mot.addTrackingTerms(problem, totalDOF, Bt, trackingW, ddth_des_flat)

        #if flagContact == True:
        #    mot.addLinearTerms(problem, totalDOF, Bl, dL_des_plane, R, r_bias)
        #    mot.addAngularTerms(problem, totalDOF, Bh, dH_des, S, s_bias)

        a_sup_2 = None
        Jsup_2 = None
        dJsup_2 = None

        ##############################

        #if Jsup_2 != None:
        #    mot.addConstraint(problem, totalDOF, Jsup_2, dJsup_2, dth_flat, a_sup_2)

        timeReport[4] += time.time() - curTime
        curTime = time.time()

        r = problem.solve()
        problem.clear()
        ype.nested(r['x'], ddth_sol)

        rootPos[0] = controlModel.getBodyPositionGlobal(selectedBody)
        localPos = [[0, 0, 0]]

        timeReport[5] += time.time() - curTime
        curTime = time.time()

        for i in range(stepsPerFrame):
            # apply penalty force
            bodyIDs, contactPositions, contactPositionLocals, contactForces = vpWorld.calcPenaltyForce(
                bodyIDsToCheck, mus, Ks, Ds)

            vpWorld.applyPenaltyForce(bodyIDs, contactPositionLocals,
                                      contactForces)

            extraForce[0] = viewer.GetForce()
            if (extraForce[0][0] != 0 or extraForce[0][1] != 0
                    or extraForce[0][2] != 0):
                forceApplyFrame += 1
                #vpWorld.applyPenaltyForce(selectedBodyId, localPos, extraForce)
                controlModel.applyBodyForceGlobal(selectedBody, extraForce[0])
                applyedExtraForce[0] = extraForce[0]

            if forceApplyFrame * wcfg.timeStep > 0.1:
                viewer.ResetForce()
                forceApplyFrame = 0

            controlModel.setDOFAccelerations(ddth_sol)

            controlModel.solveHybridDynamics()

            vpWorld.step()

        if frame % 30 == 0:
            print 'elapsed time for 30 frames:', time.time() - pt[0]
        # rendering

        rd_footCenter[0] = footCenter

        rd_CM[0] = CM.copy()

        rd_CM_plane[0] = CM_plane.copy()

        rd_footCenter_ref[0] = footCenter_ref
        rd_CM_plane_ref[0] = CM_ref.copy()
        rd_CM_ref[0] = CM_ref.copy()
        rd_CM_ref_vec[0] = (CM_ref - footCenter_ref) * 3.
        rd_CM_vec[0] = (CM - CM_plane)
        rd_CM_des[0] = CM_ref_plane.copy()
        rd_CM_des[0][1] = .01

        #rd_CM_plane[0][1] = 0.

        if CP != None and dCP != None:
            rd_CP[0] = CP
            rd_CP_des[0] = CP_des

        rd_dL_des_plane[0] = dL_des_plane
        rd_dH_des[0] = dH_des

        rd_grf_des[
            0] = totalNormalForce  # - totalMass*mm.s2v(wcfg.gravity)#dL_des_plane - totalMass*mm.s2v(wcfg.gravity)

        rd_exf_des[0] = applyedExtraForce[0]
        rd_root_des[0] = rootPos[0]

        rd_CMP[0] = softConstPoint

        rd_soft_const_vec[0] = controlModel.getBodyPositionGlobal(
            constBody) - softConstPoint

        #indexL = motion[0].skeleton.getJointIndex('Hips')
        #indexR = motion[0].skeleton.getJointIndex('Spine1')
        indexL = indexFootL[0]
        indexR = indexFootR[0]

        curAng = [controlModel.getBodyOrientationGlobal(indexL)]
        curAngY = np.dot(curAng, np.array([0, 0, 1]))

        rd_footL_vec[0] = np.copy(curAngY[0])
        rd_footCenterL[0] = controlModel.getBodyPositionGlobal(indexL)

        curAng = [controlModel.getBodyOrientationGlobal(indexR)]
        curAngY = np.dot(curAng, np.array([0, 0, 1]))

        rd_footR_vec[0] = np.copy(curAngY[0])
        rd_footCenterR[0] = controlModel.getBodyPositionGlobal(indexR)

        if (forceApplyFrame == 0):
            applyedExtraForce[0] = [0, 0, 0]

        timeReport[6] += time.time() - curTime