def _default_parse_func(file, shape, sep, encoding):
        data = []
        nr, nc = shape
        rxc = nr * nc
        with open(file, "r", encoding=encoding) as fh:
            for line in fh:
                splitted = line.replace("\n", "").split(sep)[2:]
                if (len(splitted) == rxc):
                    data.append(splitted)

        if not data:
            raise AsRuntimeError(
                """DataParser: parse failed, no any valid line found
make sure data file is in correct format""")
        if (len(data) % 2):
            raise AsRuntimeError(
                """DataParser: parse failed, uneven GFP and OD sections
make sure data file is in correct format""")

        data = numpy.asarray(data, dtype=object)
        sz_d1 = len(data) // 2

        # replace overflow with 100000
        data[data == "OVRFLW"] = 100000
        OD = data[1:sz_d1, :].reshape(-1, nr, nc).astype(float)
        GFP = data[sz_d1 + 1:].reshape(-1, nr, nc).astype(int)
        MASK = (GFP != 100000)

        return _PlateData(OD, GFP, MASK)
 def analyze(self):
     # analyze P
     for sample in self.samples:
         sample.run_P_analysis()
     # analyze I
     if (self.untreated_sample() is None):
         raise AsRuntimeError(
             "cannot canculate I with no assign of untreated sample")
     untreated_P = self.untreated_sample().P()
     for sample in self.get_samples_except_untreated():
         sample.run_XELI_analysis(untreated_P)
def _blank_correction(self):
    where_blank = self.layout.mask_by_category(self._blank)
    if not where_blank.any():
        raise AsRuntimeError(
            "background correction requires at least one 'BLANK' category in layout"
        )
    OD_blank = self.OD()[:, where_blank].mean(axis=1, keepdims=True)
    self.OD()[:] = self.OD() - OD_blank

    GFP_blank = self.GFP()[:, where_blank].mean(axis=1, keepdims=True)
    self.GFP()[:] = self.GFP() - GFP_blank

    m = ">%s:BLANK_CORRECTION\n%s\n"
    return m % (self.name(), self.cat_OD_GFP_tables())
Esempio n. 4
0
	def _parse_maps(gene_map, cate_map):
		coords_list, genes_list, cates_list = [], [], []
		for row_id, row in enumerate(gene_map):
			for col_id, gene in enumerate(row):
				cate = cate_map[row_id][col_id]
				if (gene and cate):
					coords_list.append([row_id, col_id])
					genes_list.append(gene)
					cates_list.append(cate)
				elif not (gene or cate):
					continue
				else:
					e = "'gene' or 'category' missing at (row %d, col %d)"
					raise AsRuntimeError(e % (row_id, col_id))
		coords = numpy.asarray(coords_list, dtype = int)
		genes = numpy.asarray(genes_list, dtype = str)
		cates = numpy.asarray(cates_list, dtype = str)
		return coords, genes, cates
def _eline_correction(self):
    eline_where = self.layout.mask_by_category(self._eline)
    if not eline_where.any():
        raise AsRuntimeError(
            "e-line correction requires at least one 'ELINE' category in layout"
        )
    OD_el = self.OD()[:, eline_where]
    GFP_el = self.GFP()[:, eline_where]
    MASK_el = self.MASK()[:, eline_where]

    # use a linear model for eline correction
    # the background gfp signal is estimated to be (slope * OD + intercept)

    slope, inter, inter_sd, msg = self.eline_corre.feed(OD_el, GFP_el, MASK_el)
    self.model_slope = slope
    self.model_inter = inter
    self.model_inter_sd = inter_sd

    m = ">%s:ELINE_CORRECTION\n%s\n"
    return m % (self.name(), msg)
Esempio n. 6
0
    def select_slope_and_intercept(self, nr, nc, all_regs):
        # select slope and intercept by interactive selector
        # however if only one, no need for interactive select
        # you have to use that
        n = len(all_regs)
        if n == 1:
            slope_i, inter_i = [0], [0]
        else:
            slope_i, inter_i = self.selector.launch(n, nr, nc, self.plot_path,
                                                    self.sample_name)

        if not slope_i:
            raise NoValueSelectedError("slopes cannot be null selection")
        if not inter_i:
            raise NoValueSelectedError("intercepts cannot be null selection")

        slopes = all_regs[slope_i, 0]
        inters = all_regs[inter_i, 1]
        if len(inters) == 1:
            raise AsRuntimeError(
                "must be at least 2 intercepts (this exception is thrown due to not implemented yet)"
            )

        slope = slopes.mean()
        inter = inters.mean()
        inter_sd = inters.std()

        ret_msg = """Raw regressions:
Slope\tIntercept\tr^2\tp\tStd.err
%s
Selected:
Slopes: %s
Intercepts: %s
Final:
Slope: %f
Intercept: %f
Inter.SD: %f""" % (array2d2string_by_row(
            all_regs.tolist(), "%f\t%f\t%f\t%.8e\t%f"), vector2string(slopes),
                   vector2string(inters), slope, inter, inter_sd)

        return slope, inter, inter_sd, ret_msg
 def add_sample(self,
                SampleClass,
                name,
                layout=None,
                offset=None,
                untreated=False,
                **kw):
     # internal _id is same as the position in the self.samples array
     _id = len(self.samples)
     sample = SampleClass(name=name,
                          layout=layout or self.shared_layout,
                          log=self.log(),
                          assay_data=self.data(),
                          outdir=self.output_dir(),
                          offset=offset,
                          _id=len(self.samples),
                          **kw)
     self.samples.append(sample)
     if untreated:
         if not (self._control is None):
             raise AsRuntimeError(
                 "assign more than one sample as untreated is not allowed")
         self._control = sample
 def create_output_dir(self, outdir, overwrite=False, **kw):
     if os.path.exists(outdir):
         if not overwrite:
             raise AsRuntimeError("output dir '%s' already exists" % outdir)
     else:
         os.makedirs(outdir)
Esempio n. 9
0
	def _check_shape(f1, f2):
		if (len(f1) != len(f2)):
			raise AsRuntimeError("map files must be in exact same shape")
		for s1, s2 in zip(f1, f2):
			if (len(s1) != len(s2)):
				raise AsRuntimeError("map files must be in exact same shape")