def Mel_Generate(path, top_db=60): sig = librosa.core.load(path, sr=hp_Dict['Sound']['Sample_Rate'])[0] sig = preemphasis(sig) sig = librosa.effects.trim( sig, top_db=top_db, frame_length=32, hop_length=16)[0] * 0.99 return np.transpose( melspectrogram(y=sig, num_freq=hp_Dict['Sound']['Spectrogram_Dim'], hop_length=hp_Dict['Sound']['Frame_Shift'], win_length=hp_Dict['Sound']['Frame_Length'], num_mels=hp_Dict['Sound']['Mel_Dim'], sample_rate=hp_Dict['Sound']['Sample_Rate'], max_abs_value=hp_Dict['Sound']['Max_Abs_Mel']).astype( np.float32))
def Spectrogram_Generate(path, top_db=60, range_Ignore=False): sig = librosa.core.load(path, sr=hp_Dict['Sound']['Sample_Rate'])[0] sig = preemphasis(sig) sig = librosa.effects.trim( sig, top_db=top_db, frame_length=32, hop_length=16)[0] * 0.99 sig = inv_preemphasis(sig) sig_Length = sig.shape[0] / hp_Dict['Sound']['Sample_Rate'] * 1000 #ms if not range_Ignore and (sig_Length < hp_Dict['Train']['Min_Wav_Length'] or sig_Length > hp_Dict['Train']['Max_Wav_Length']): return None return np.transpose( spectrogram(y=sig, num_freq=hp_Dict['Sound']['Spectrogram_Dim'], frame_shift_ms=hp_Dict['Sound']['Frame_Shift'], frame_length_ms=hp_Dict['Sound']['Frame_Length'], sample_rate=hp_Dict['Sound']['Sample_Rate']).astype( np.float32))