def make_pipeline(imageset_path, output_dir): """returns an augmentation pipeline for a given image set""" p = Pipeline(imageset_path, output_dir) p.random_distortion(probability=0.7, grid_width=4, grid_height=4, magnitude=8) p.flip_left_right(probability=0.5) p.flip_top_bottom(probability=0.5) p.zoom(probability=0.3, min_factor=1.1, max_factor=1.4) p.rotate(probability=0.5, max_left_rotation=10, max_right_rotation=10) return p
# In[10]: print(os.listdir()) # In[11]: from Augmentor import Pipeline # In[12]: augmentor = Pipeline('/home/asherif844/sparkNotebooks/Ch03/MNIST/images') # In[13]: augmentor.rotate(probability=0.9, max_left_rotation=25, max_right_rotation=25) # In[14]: for i in range(1, 3): augmentor.sample(10) # In[15]: xtrain = data.train.images ytrain = np.asarray(data.train.labels) xtest = data.test.images ytest = np.asarray(data.test.labels) # In[16]: