def rounds(self): if self.current_file_index >= len(self.files): return # print("===> Now Operate on File: " + str(self.files[self.current_file_index])) self.round_no += 1 train_data = load_data(self.files[self.current_file_index]) self.current_file_index += 1 ROUND_BATCH = int(len(train_data) * 0.1) DATA_LENGTH = len(train_data) next_line = 0 while next_line < DATA_LENGTH: self.process_one_round(train_data, next_line, ROUND_BATCH) next_line += ROUND_BATCH self.merge_CS() self.make_CS() # self.merge_CS() # Change to Merge First Than Make self.information_summary() displaySet(self.DS_set) self.rounds() # Trigger next round
def initialisation(self): # print("===> Now Operate on File: " + str(self.files[self.current_file_index])) self.round_no += 1 train_data = load_data(self.files[self.current_file_index]) self.current_file_index += 1 train_data, sample = sample_data(train_data, self.sample_ratio, self.beta) ROUND_BATCH = int(len(train_data) * 0.1) DATA_LENGTH = len(train_data) X = sample keamns = _KMeans(K=self.K, tol=1, compulsory=True, n_init=15) Y = keamns.fit(X) self.DS_set = initialise_DS(X, Y, self.K) # print("**** Initialisation Begin ****") displaySet(self.DS_set) next_line = 0 while next_line < DATA_LENGTH: self.process_one_round(train_data, next_line, ROUND_BATCH) next_line += ROUND_BATCH # Save self.make_CS() self.information_summary()
y -- true labels p -- predictions """ a = p + y mislabeled_indices = np.asarray(np.where(a == 1)) plt.rcParams['figure.figsize'] = (40.0, 40.0) # set default size of plots num_images = len(mislabeled_indices[0]) for i in range(num_images): index = mislabeled_indices[1][i] plt.subplot(2, num_images, i + 1) plt.imshow(X[:,index].reshape(64,64,3), interpolation='nearest') plt.axis('off') plt.title("Prediction: " + classes[int(p[0,index])].decode("utf-8") + " \n Class: " + classes[y[0,index]].decode("utf-8")) train_x_orig, train_y, test_x_orig, test_y, classes = load_data() # Reshape the training and test examples train_x_flatten = train_x_orig.reshape(train_x_orig.shape[0], -1).T # The "-1" makes reshape flatten the remaining dimensions test_x_flatten = test_x_orig.reshape(test_x_orig.shape[0], -1).T # Standardize data to have feature values between 0 and 1. train_x = train_x_flatten/255. test_x = test_x_flatten/255. layers_dims = [12288, 7, 7, 5, 1] parameters = L_layer_model(train_x, train_y, layers_dims, num_iterations = 5000, print_cost = True, model_name = 'model_v1', save = True) predictions_train = predict(train_x, train_y, parameters)
def load_all_data(paths): train_data = [] for input_file_path in paths: train_data = train_data + load_data(input_file_path) return train_data