def addFs(self, sd): ''' :param sd: dataframe with all necessary variables from which F can be computed :returns: same dataframe but with F column added ''' bhdvcs = BHDVCS() sd['F'] = bhdvcs.TotalUUXS( np.array(sd[['phi_x', 'k', 'QQ', 'x_b', 't', 'F1', 'F2', 'dvcs']]), np.array(sd['ReH']), np.array(sd['ReE']), np.array(sd['ReHtilde'])) return sd
class TotalUUXS(tf.keras.layers.Layer): def __init__(self): super(TotalUUXS, self).__init__(dtype='float64') self.F = BHDVCS() def call(self, inputs): return self.F.TotalUUXS(inputs[:, :8], inputs[:, 8], inputs[:, 9], inputs[:, 10])
class TotalUUXSlayer(tf.keras.layers.Layer): ''' class for incorporating TotalUUXS function into tensorflow layer ''' def __init__(self): super(TotalUUXSlayer, self).__init__(dtype='float64') self.F = BHDVCS() def call(self, inputs): return self.F.TotalUUXS(inputs[:, :8], inputs[:, 8], inputs[:, 9], inputs[:, 10])
def __init__(self): super(TotalUUXS, self).__init__(dtype='float64') self.F = BHDVCS()
import matplotlib.pyplot as plt import scipy.stats as stats from datetime import datetime import sys print(tf.__version__) print("\n \n I'm running! \n \n") # In[2]: import sys # insert at 1, 0 is the script path (or '' in REPL) sys.path.insert(1, '/home/cee9hc/ANN_GPD_Calc_Test') from BHDVCStf import BHDVCS #modified bhdvcs file bhdvcs = BHDVCS() # In[37]: df = pd.read_csv('/home/cee9hc/ANN_GPD_Calc_Test/dvcs_psuedo.csv') # In[4]: class DvcsData(object): def __init__(self, df): self.X = df.loc[:, [ 'phi_x', 'k', 'QQ', 'x_b', 't', 'F1', 'F2', 'ReH', 'ReE', 'ReHtilde', 'dvcs' ]] self.XnoCFF = df.loc[:, [