def bn_inception_train_and_eval(train_data, test_data, mean_data, num_quantization_bits=32, epoch_size=1281167, max_epochs=300, minibatch_size=None,
                         restore=True, log_to_file=None, num_mbs_per_log=100, gen_heartbeat=False, scale_up=False, profiling=False):
    _cntk_py.set_computation_network_trace_level(0)

    # NOTE: scaling up minibatch_size increases sample throughput. In 8-GPU machine,
    # ResNet110 samples-per-second is ~7x of single GPU, comparing to ~3x without scaling
    # up. However, bigger minibatch size on the same number of samples means less updates,
    # thus leads to higher training error. This is a trade-off of speed and accuracy
    if minibatch_size is None:
        mb_size = 32 * (Communicator.num_workers() if scale_up else 1)
    else:
        mb_size = minibatch_size

    progress_printer = ProgressPrinter(
        freq=num_mbs_per_log,
        tag='Training',
        log_to_file=log_to_file,
        rank=Communicator.rank(),
        gen_heartbeat=gen_heartbeat,
        num_epochs=max_epochs)

    network = create_bn_inception()
    trainer = create_trainer(network, epoch_size, max_epochs, mb_size, num_quantization_bits, progress_printer)
    train_source = create_image_mb_source(train_data, mean_data, True, total_number_of_samples=max_epochs * epoch_size)
    test_source = create_image_mb_source(test_data, mean_data, False, total_number_of_samples=FULL_DATA_SWEEP)
    train_and_test(network, trainer, train_source, test_source, mb_size, epoch_size, restore, profiling)
def bn_inception_train_and_eval(train_data, test_data, mean_data, num_quantization_bits=32, epoch_size=1281167, max_epochs=300, minibatch_size=None,
                         restore=True, log_to_file=None, num_mbs_per_log=100, gen_heartbeat=False, scale_up=False, profiling=False):
    _cntk_py.set_computation_network_trace_level(0)

    # NOTE: scaling up minibatch_size increases sample throughput. In 8-GPU machine,
    # ResNet110 samples-per-second is ~7x of single GPU, comparing to ~3x without scaling
    # up. However, bigger minimatch size on the same number of samples means less updates, 
    # thus leads to higher training error. This is a trade-off of speed and accuracy
    if minibatch_size is None:
        minibatch_size = 32 * (Communicator.num_workers() if scale_up else 1)
    else:
        mb_size = minibatch_size

    progress_printer = ProgressPrinter(
        freq=num_mbs_per_log,
        tag='Training',
        log_to_file=log_to_file,
        rank=Communicator.rank(),
        gen_heartbeat=gen_heartbeat,
        num_epochs=max_epochs)

    network = create_bn_inception()
    trainer = create_trainer(network, epoch_size, max_epochs, minibatch_size, num_quantization_bits, progress_printer)
    train_source = create_image_mb_source(train_data, mean_data, True, total_number_of_samples=max_epochs * epoch_size)
    test_source = create_image_mb_source(test_data, mean_data, False, total_number_of_samples=FULL_DATA_SWEEP)
    train_and_test(network, trainer, train_source, test_source, minibatch_size, epoch_size, restore, profiling)