def BSSN_constraints__generate_symbolic_expressions( enable_stress_energy_source_terms=False, leave_Ricci_symbolic=True, output_H_only=False): ###################################### # START: GENERATE SYMBOLIC EXPRESSIONS starttime = print_msg_with_timing("BSSN constraints", msg="Symbolic", startstop="start") # Define the Hamiltonian constraint and output the optimized C code. par.set_parval_from_str("BSSN.BSSN_quantities::LeaveRicciSymbolic", str(leave_Ricci_symbolic)) import BSSN.BSSN_constraints as bssncon # Returns None if enable_stress_energy_source_terms==False; otherwise returns symb expressions for T4UU T4UU = register_stress_energy_source_terms_return_T4UU( enable_stress_energy_source_terms) bssncon.BSSN_constraints( add_T4UUmunu_source_terms=False, output_H_only=output_H_only) # We'll add them below if desired. if enable_stress_energy_source_terms: import BSSN.BSSN_stress_energy_source_terms as Bsest Bsest.BSSN_source_terms_for_BSSN_constraints(T4UU) bssncon.H += Bsest.sourceterm_H for i in range(3): bssncon.MU[i] += Bsest.sourceterm_MU[i] BSSN_constraints_SymbExpressions = [ lhrh(lhs=gri.gfaccess("aux_gfs", "H"), rhs=bssncon.H) ] if not output_H_only: BSSN_constraints_SymbExpressions += [ lhrh(lhs=gri.gfaccess("aux_gfs", "MU0"), rhs=bssncon.MU[0]), lhrh(lhs=gri.gfaccess("aux_gfs", "MU1"), rhs=bssncon.MU[1]), lhrh(lhs=gri.gfaccess("aux_gfs", "MU2"), rhs=bssncon.MU[2]) ] par.set_parval_from_str("BSSN.BSSN_quantities::LeaveRicciSymbolic", "False") print_msg_with_timing("BSSN constraints", msg="Symbolic", startstop="stop", starttime=starttime) # END: GENERATE SYMBOLIC EXPRESSIONS ###################################### return BSSN_constraints_SymbExpressions
def BSSN_constraints__generate_symbolic_expressions_and_C_code(): ###################################### # START: GENERATE SYMBOLIC EXPRESSIONS # Define the Hamiltonian constraint and output the optimized C code. import BSSN.BSSN_constraints as bssncon bssncon.BSSN_constraints(add_T4UUmunu_source_terms=False) if T4UU != None: import BSSN.BSSN_stress_energy_source_terms as Bsest Bsest.BSSN_source_terms_for_BSSN_RHSs(T4UU) Bsest.BSSN_source_terms_for_BSSN_constraints(T4UU) bssncon.H += Bsest.sourceterm_H for i in range(3): bssncon.MU[i] += Bsest.sourceterm_MU[i] # END: GENERATE SYMBOLIC EXPRESSIONS ###################################### # Store original finite-differencing order: FD_order_orig = par.parval_from_str("finite_difference::FD_CENTDERIVS_ORDER") # Set new finite-differencing order: par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER", FD_order) start = time.time() print("Generating optimized C code for Ham. & mom. constraints. May take a while, depending on CoordSystem.") Ham_mom_string = fin.FD_outputC("returnstring", [lhrh(lhs=gri.gfaccess("aux_gfs", "H"), rhs=bssncon.H), lhrh(lhs=gri.gfaccess("aux_gfs", "MU0"), rhs=bssncon.MU[0]), lhrh(lhs=gri.gfaccess("aux_gfs", "MU1"), rhs=bssncon.MU[1]), lhrh(lhs=gri.gfaccess("aux_gfs", "MU2"), rhs=bssncon.MU[2])], params="outCverbose=False") with open(os.path.join(outdir,"BSSN_constraints_enable_Tmunu_"+str(enable_stress_energy_source_terms)+"_FD_order_"+str(FD_order)+".h"), "w") as file: file.write(lp.loop(["i2","i1","i0"],["cctk_nghostzones[2]","cctk_nghostzones[1]","cctk_nghostzones[0]"], ["cctk_lsh[2]-cctk_nghostzones[2]","cctk_lsh[1]-cctk_nghostzones[1]","cctk_lsh[0]-cctk_nghostzones[0]"], ["1","1","1"],["#pragma omp parallel for","",""], "", Ham_mom_string)) # Restore original finite-differencing order: par.set_parval_from_str("finite_difference::FD_CENTDERIVS_ORDER", FD_order_orig) end = time.time() print("(BENCH) Finished Hamiltonian & momentum constraint C codegen (FD_order="+str(FD_order)+",Tmunu="+str(enable_stress_energy_source_terms)+") in " + str(end - start) + " seconds.")
def test_example_BSSN(): parse_latex(r""" \begin{align} % keydef basis [x, y, z] % ignore "\\%", "\qquad" % vardef -kron 'deltaDD' % parse \hat{\gamma}_{ij} = \delta_{ij} % assign -diff_type=symbolic -metric 'gammahatDD' % vardef -diff_type=dD -symmetry=sym01 'hDD' % parse \bar{\gamma}_{ij} = h_{ij} + \hat{\gamma}_{ij} % assign -diff_type=dD -metric 'gammabarDD' % srepl "\beta" -> "\text{vet}" % vardef -diff_type=dD 'vetU' %% upwind pattern inside Lie derivative expansion % srepl -persist "\text{vet}^{<1>} \partial_{<1>}" -> "\text{vet}^{<1>} \vphantom{dupD} \partial_{<1>}" %% substitute tensor identity (see appropriate BSSN notebook) % srepl "\bar{D}_k \text{vet}^k" -> "(\partial_k \text{vet}^k + \frac{\partial_k \text{gammahatdet} \text{vet}^k}{2 \text{gammahatdet}})" % srepl "\bar{A}" -> "\text{a}" % vardef -diff_type=dD -symmetry=sym01 'aDD' % assign -metric='gammabar' 'aDD' % srepl "\partial_t \bar{\gamma}" -> "\text{h_rhs}" \partial_t \bar{\gamma}_{ij} &= \mathcal{L}_\beta \bar{\gamma}_{ij} + \frac{2}{3} \bar{\gamma}_{ij} \left(\alpha \bar{A}^k{}_k - \bar{D}_k \beta^k\right) - 2 \alpha \bar{A}_{ij} \\ % srepl "K" -> "\text{trK}" % vardef -diff_type=dD 'cf', 'trK' %% replace 'phi' with conformal factor cf = W = e^{-2\phi} % srepl "e^{-4\phi}" -> "\text{cf}^2" % srepl "\partial_t \phi = <1..> \\" -> "\text{cf_rhs} = -2 \text{cf} (<1..>) \\" % srepl -persist "\partial_{<1>} \phi" -> "\partial_{<1>} \text{cf} \frac{-1}{2 \text{cf}}" % srepl "\partial_<1> \phi" -> "\partial_<1> \text{cf} \frac{-1}{2 \text{cf}}" \partial_t \phi &= \mathcal{L}_\beta \phi + \frac{1}{6} \left(\bar{D}_k \beta^k - \alpha K \right) \\ % vardef -diff_type=dD 'alpha' % srepl "\partial_t \text{trK}" -> "\text{trK_rhs}" \partial_t K &= \mathcal{L}_\beta K + \frac{1}{3} \alpha K^2 + \alpha \bar{A}_{ij} \bar{A}^{ij} - e^{-4\phi} \left(\bar{D}_i \bar{D}^i \alpha + 2 \bar{D}^i \alpha \bar{D}_i \phi\right) \\ % srepl "\bar{\Lambda}" -> "\text{lambda}" % vardef -diff_type=dD 'lambdaU' % parse \Delta^k_{ij} = \bar{\Gamma}^k_{ij} - \hat{\Gamma}^k_{ij} % assign -metric='gammabar' 'DeltaUDD' % parse \Delta^k = \bar{\gamma}^{ij} \Delta^k_{ij} % srepl "\partial_t \text{lambda}" -> "\text{Lambdabar_rhs}" \partial_t \bar{\Lambda}^i &= \mathcal{L}_\beta \bar{\Lambda}^i + \bar{\gamma}^{jk} \hat{D}_j \hat{D}_k \beta^i + \frac{2}{3} \Delta^i \bar{D}_k \beta^k + \frac{1}{3} \bar{D}^i \bar{D}_k \beta^k \\% &\qquad- 2 \bar{A}^{ij} \left(\partial_j \alpha - 6 \alpha \partial_j \phi\right) + 2 \alpha \bar{A}^{jk} \Delta^i_{jk} - \frac{4}{3} \alpha \bar{\gamma}^{ij} \partial_j K \\ % vardef -diff_type=dD -symmetry=sym01 'RbarDD' X_{ij} &= -2 \alpha \bar{D}_i \bar{D}_j \phi + 4 \alpha \bar{D}_i \phi \bar{D}_j \phi + 2 \bar{D}_i \alpha \bar{D}_j \phi + 2 \bar{D}_j \alpha \bar{D}_i \phi - \bar{D}_i \bar{D}_j \alpha + \alpha \bar{R}_{ij} \\ \hat{X}_{ij} &= X_{ij} - \frac{1}{3} \bar{\gamma}_{ij} \bar{\gamma}^{kl} X_{kl} \\ % srepl "\partial_t \text{a}" -> "\text{a_rhs}" \partial_t \bar{A}_{ij} &= \mathcal{L}_\beta \bar{A}_{ij} - \frac{2}{3} \bar{A}_{ij} \bar{D}_k \beta^k - 2 \alpha \bar{A}_{ik} \bar{A}^k_j + \alpha \bar{A}_{ij} K + e^{-4\phi} \hat{X}_{ij} \\ % srepl "\partial_t \alpha" -> "\text{alpha_rhs}" \partial_t \alpha &= \mathcal{L}_\beta \alpha - 2 \alpha K \\ % srepl "B" -> "\text{bet}" % vardef -diff_type=dD 'betU' % srepl "\partial_t \text{vet}" -> "\text{vet_rhs}" \partial_t \beta^i &= \left[\beta^j \vphantom{dupD} \bar{D}_j \beta^i\right] + B^i \\ % vardef -const 'eta' % srepl "\partial_t \text{bet}" -> "\text{bet_rhs}" \partial_t B^i &= \left[\beta^j \vphantom{dupD} \bar{D}_j B^i\right] + \frac{3}{4} \left(\partial_t \bar{\Lambda}^i - \left[\beta^j \vphantom{dupD} \bar{D}_j \bar{\Lambda}^i\right]\right) - \eta B^i \\ % parse \bar{R} = \bar{\gamma}^{ij} \bar{R}_{ij} % srepl "\bar{D}^2" -> "\bar{D}^i \bar{D}_i", "\mathcal{<1>}" -> "<1>" \mathcal{H} &= \frac{2}{3} K^2 - \bar{A}_{ij} \bar{A}^{ij} + e^{-4\phi} \left(\bar{R} - 8 \bar{D}^i \phi \bar{D}_i \phi - 8 \bar{D}^2 \phi\right) \\ \mathcal{M}^i &= e^{-4\phi} \left(\bar{D}_j \bar{A}^{ij} + 6 \bar{A}^{ij} \partial_j \phi - \frac{2}{3} \bar{\gamma}^{ij} \partial_j K\right) \\ \bar{R}_{ij} &= -\frac{1}{2} \bar{\gamma}^{kl} \hat{D}_k \hat{D}_l \bar{\gamma}_{ij} + \frac{1}{2} \left(\bar{\gamma}_{ki} \hat{D}_j \bar{\Lambda}^k + \bar{\gamma}_{kj} \hat{D}_i \bar{\Lambda}^k\right) + \frac{1}{2} \Delta^k \left(\Delta_{ijk} + \Delta_{jik}\right) \\% &\qquad+ \bar{\gamma}^{kl} \left(\Delta^m_{ki} \Delta_{jml} + \Delta^m_{kj} \Delta_{iml} + \Delta^m_{ik} \Delta_{mjl}\right) \end{align} """, ignore_warning=True) par.set_parval_from_str('reference_metric::CoordSystem', 'Cartesian') par.set_parval_from_str('BSSN.BSSN_quantities::LeaveRicciSymbolic', 'True') rfm.reference_metric() Brhs.BSSN_RHSs() gaugerhs.BSSN_gauge_RHSs() bssncon.BSSN_constraints() par.set_parval_from_str('BSSN.BSSN_quantities::LeaveRicciSymbolic', 'False') Bq.RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU() assert_equal( { 'h_rhsDD': h_rhsDD, 'cf_rhs': cf_rhs, 'trK_rhs': trK_rhs, 'Lambdabar_rhsU': Lambdabar_rhsU, 'a_rhsDD': a_rhsDD, 'alpha_rhs': alpha_rhs, 'vet_rhsU': vet_rhsU, 'bet_rhsU': bet_rhsU, 'H': H, 'MU': MU, 'RbarDD': RbarDD }, { 'h_rhsDD': Brhs.h_rhsDD, 'cf_rhs': Brhs.cf_rhs, 'trK_rhs': Brhs.trK_rhs, 'Lambdabar_rhsU': Brhs.Lambdabar_rhsU, 'a_rhsDD': Brhs.a_rhsDD, 'alpha_rhs': gaugerhs.alpha_rhs, 'vet_rhsU': gaugerhs.vet_rhsU, 'bet_rhsU': gaugerhs.bet_rhsU, 'H': bssncon.H, 'MU': bssncon.MU, 'RbarDD': Bq.RbarDD }, suppress_message=True)