Esempio n. 1
0
def BSSN_RHSs():
    # Step 1.c: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    global have_already_called_BSSN_RHSs_function  # setting to global enables other modules to see updated value.
    have_already_called_BSSN_RHSs_function = True

    # Step 1.d: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.e: Import all basic (unrescaled) BSSN scalars & tensors
    import BSSN.BSSN_quantities as Bq
    Bq.BSSN_basic_tensors()
    gammabarDD = Bq.gammabarDD
    AbarDD = Bq.AbarDD
    LambdabarU = Bq.LambdabarU
    trK = Bq.trK
    alpha = Bq.alpha
    betaU = Bq.betaU

    # Step 1.f: Import all neeeded rescaled BSSN tensors:
    aDD = Bq.aDD
    cf = Bq.cf
    lambdaU = Bq.lambdaU

    # Step 2.a.i: Import derivative expressions for betaU defined in the BSSN.BSSN_quantities module:
    Bq.betaU_derivs()
    betaU_dD = Bq.betaU_dD
    betaU_dDD = Bq.betaU_dDD
    # Step 2.a.ii: Import derivative expression for gammabarDD
    Bq.gammabar__inverse_and_derivs()
    gammabarDD_dupD = Bq.gammabarDD_dupD

    # Step 2.a.iii: First term of \partial_t \bar{\gamma}_{i j} right-hand side:
    # \beta^k \bar{\gamma}_{ij,k} + \beta^k_{,i} \bar{\gamma}_{kj} + \beta^k_{,j} \bar{\gamma}_{ik}
    gammabar_rhsDD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                gammabar_rhsDD[i][j] += betaU[k] * gammabarDD_dupD[i][j][k] + betaU_dD[k][i] * gammabarDD[k][j] \
                                        + betaU_dD[k][j] * gammabarDD[i][k]

    # Step 2.b.i: First import \bar{A}_{ij} = AbarDD[i][j], and its contraction trAbar = \bar{A}^k_k
    #           from BSSN.BSSN_quantities
    Bq.AbarUU_AbarUD_trAbar_AbarDD_dD()
    trAbar = Bq.trAbar

    # Step 2.b.ii: Import detgammabar quantities from BSSN.BSSN_quantities:
    Bq.detgammabar_and_derivs()
    detgammabar = Bq.detgammabar
    detgammabar_dD = Bq.detgammabar_dD

    # Step 2.b.ii: Compute the contraction \bar{D}_k \beta^k = \beta^k_{,k} + \frac{\beta^k \bar{\gamma}_{,k}}{2 \bar{\gamma}}
    Dbarbetacontraction = sp.sympify(0)
    for k in range(DIM):
        Dbarbetacontraction += betaU_dD[k][
            k] + betaU[k] * detgammabar_dD[k] / (2 * detgammabar)

    # Step 2.b.iii: Second term of \partial_t \bar{\gamma}_{i j} right-hand side:
    # \frac{2}{3} \bar{\gamma}_{i j} \left (\alpha \bar{A}_{k}^{k} - \bar{D}_{k} \beta^{k}\right )
    for i in range(DIM):
        for j in range(DIM):
            gammabar_rhsDD[i][j] += sp.Rational(2, 3) * gammabarDD[i][j] * (
                alpha * trAbar - Dbarbetacontraction)

    # Step 2.c: Third term of \partial_t \bar{\gamma}_{i j} right-hand side:
    # -2 \alpha \bar{A}_{ij}
    for i in range(DIM):
        for j in range(DIM):
            gammabar_rhsDD[i][j] += -2 * alpha * AbarDD[i][j]

    # Step 3.a: First term of \partial_t \bar{A}_{i j}:
    # \beta^k \partial_k \bar{A}_{ij} + \partial_i \beta^k \bar{A}_{kj} + \partial_j \beta^k \bar{A}_{ik}

    # First define AbarDD_dupD:
    AbarDD_dupD = Bq.AbarDD_dupD  # From Bq.AbarUU_AbarUD_trAbar_AbarDD_dD()

    Abar_rhsDD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                Abar_rhsDD[i][j] += betaU[k] * AbarDD_dupD[i][j][k] + betaU_dD[k][i] * AbarDD[k][j] \
                                    + betaU_dD[k][j] * AbarDD[i][k]

    # Step 3.b: Second term of \partial_t \bar{A}_{i j}:
    # - (2/3) \bar{A}_{i j} \bar{D}_{k} \beta^{k} - 2 \alpha \bar{A}_{i k} {\bar{A}^{k}}_{j} + \alpha \bar{A}_{i j} K
    gammabarUU = Bq.gammabarUU  # From Bq.gammabar__inverse_and_derivs()
    AbarUD = Bq.AbarUD  # From Bq.AbarUU_AbarUD_trAbar()
    for i in range(DIM):
        for j in range(DIM):
            Abar_rhsDD[i][j] += -sp.Rational(2, 3) * AbarDD[i][
                j] * Dbarbetacontraction + alpha * AbarDD[i][j] * trK
            for k in range(DIM):
                Abar_rhsDD[i][j] += -2 * alpha * AbarDD[i][k] * AbarUD[k][j]

    # Step 3.c.i: Define partial derivatives of \phi in terms of evolved quantity "cf":
    Bq.phi_and_derivs()
    phi_dD = Bq.phi_dD
    phi_dupD = Bq.phi_dupD
    phi_dDD = Bq.phi_dDD
    exp_m4phi = Bq.exp_m4phi
    phi_dBarD = Bq.phi_dBarD  # phi_dBarD = Dbar_i phi = phi_dD (since phi is a scalar)
    phi_dBarDD = Bq.phi_dBarDD  # phi_dBarDD = Dbar_i Dbar_j phi (covariant derivative)

    # Step 3.c.ii: Define RbarDD
    Bq.RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU()
    RbarDD = Bq.RbarDD

    # Step 3.c.iii: Define first and second derivatives of \alpha, as well as
    #         \bar{D}_i \bar{D}_j \alpha, which is defined just like phi
    alpha_dD = ixp.declarerank1("alpha_dD")
    alpha_dDD = ixp.declarerank2("alpha_dDD", "sym01")
    alpha_dBarD = alpha_dD
    alpha_dBarDD = ixp.zerorank2()
    GammabarUDD = Bq.GammabarUDD  # Defined in Bq.gammabar__inverse_and_derivs()
    for i in range(DIM):
        for j in range(DIM):
            alpha_dBarDD[i][j] = alpha_dDD[i][j]
            for k in range(DIM):
                alpha_dBarDD[i][j] += -GammabarUDD[k][i][j] * alpha_dD[k]

    # Step 3.c.iv: Define the terms in curly braces:
    curlybrackettermsDD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            curlybrackettermsDD[i][j] = -2 * alpha * phi_dBarDD[i][j] + 4 * alpha * phi_dBarD[i] * phi_dBarD[j] \
                                        + 2 * alpha_dBarD[i] * phi_dBarD[j] \
                                        + 2 * alpha_dBarD[j] * phi_dBarD[i] \
                                        - alpha_dBarDD[i][j] + alpha * RbarDD[i][j]

    # Step 3.c.v: Compute the trace:
    curlybracketterms_trace = sp.sympify(0)
    for i in range(DIM):
        for j in range(DIM):
            curlybracketterms_trace += gammabarUU[i][j] * curlybrackettermsDD[
                i][j]

    # Step 3.c.vi: Third and final term of Abar_rhsDD[i][j]:
    for i in range(DIM):
        for j in range(DIM):
            Abar_rhsDD[i][j] += exp_m4phi * (
                curlybrackettermsDD[i][j] -
                sp.Rational(1, 3) * gammabarDD[i][j] * curlybracketterms_trace)

    # Step 4: Right-hand side of conformal factor variable "cf". Supported
    #          options include: cf=phi, cf=W=e^(-2*phi) (default), and cf=chi=e^(-4*phi)
    # \partial_t phi = \left[\beta^k \partial_k \phi \right] <- TERM 1
    #                  + \frac{1}{6} \left (\bar{D}_{k} \beta^{k} - \alpha K \right ) <- TERM 2
    global cf_rhs
    cf_rhs = sp.Rational(1, 6) * (Dbarbetacontraction - alpha * trK)  # Term 2
    for k in range(DIM):
        cf_rhs += betaU[k] * phi_dupD[k]  # Term 1

    # Next multiply to convert phi_rhs to cf_rhs.
    if par.parval_from_str(
            "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "phi":
        pass  # do nothing; cf_rhs = phi_rhs
    elif par.parval_from_str(
            "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "W":
        cf_rhs *= -2 * cf  # cf_rhs = -2*cf*phi_rhs
    elif par.parval_from_str(
            "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "chi":
        cf_rhs *= -4 * cf  # cf_rhs = -4*cf*phi_rhs
    else:
        print("Error: EvolvedConformalFactor_cf == " + par.parval_from_str(
            "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") +
              " unsupported!")
        exit(1)

    # Step 5: right-hand side of trK (trace of extrinsic curvature):
    # \partial_t K = \beta^k \partial_k K <- TERM 1
    #           + \frac{1}{3} \alpha K^{2} <- TERM 2
    #           + \alpha \bar{A}_{i j} \bar{A}^{i j} <- TERM 3
    #           - - e^{-4 \phi} (\bar{D}_{i} \bar{D}^{i} \alpha + 2 \bar{D}^{i} \alpha \bar{D}_{i} \phi ) <- TERM 4
    global trK_rhs
    # TERM 2:
    trK_rhs = sp.Rational(1, 3) * alpha * trK * trK
    trK_dupD = ixp.declarerank1("trK_dupD")
    for i in range(DIM):
        # TERM 1:
        trK_rhs += betaU[i] * trK_dupD[i]
    for i in range(DIM):
        for j in range(DIM):
            # TERM 4:
            trK_rhs += -exp_m4phi * gammabarUU[i][j] * (
                alpha_dBarDD[i][j] + 2 * alpha_dBarD[j] * phi_dBarD[i])
    AbarUU = Bq.AbarUU  # From Bq.AbarUU_AbarUD_trAbar()
    for i in range(DIM):
        for j in range(DIM):
            # TERM 3:
            trK_rhs += alpha * AbarDD[i][j] * AbarUU[i][j]

    # Step 6: right-hand side of \partial_t \bar{\Lambda}^i:
    # \partial_t \bar{\Lambda}^i = \beta^k \partial_k \bar{\Lambda}^i - \partial_k \beta^i \bar{\Lambda}^k <- TERM 1
    #                            + \bar{\gamma}^{j k} \hat{D}_{j} \hat{D}_{k} \beta^{i} <- TERM 2
    #                            + \frac{2}{3} \Delta^{i} \bar{D}_{j} \beta^{j} <- TERM 3
    #                            + \frac{1}{3} \bar{D}^{i} \bar{D}_{j} \beta^{j} <- TERM 4
    #                            - 2 \bar{A}^{i j} (\partial_{j} \alpha - 6 \partial_{j} \phi) <- TERM 5
    #                            + 2 \alpha \bar{A}^{j k} \Delta_{j k}^{i} <- TERM 6
    #                            - \frac{4}{3} \alpha \bar{\gamma}^{i j} \partial_{j} K <- TERM 7

    # Step 6.a: Term 1 of \partial_t \bar{\Lambda}^i: \beta^k \partial_k \bar{\Lambda}^i - \partial_k \beta^i \bar{\Lambda}^k
    # First we declare \bar{\Lambda}^i and \bar{\Lambda}^i_{,j} in terms of \lambda^i and \lambda^i_{,j}
    global LambdabarU_dupD  # Used on the RHS of the Gamma-driving shift conditions
    LambdabarU_dupD = ixp.zerorank2()
    lambdaU_dupD = ixp.declarerank2("lambdaU_dupD", "nosym")
    for i in range(DIM):
        for j in range(DIM):
            LambdabarU_dupD[i][j] = lambdaU_dupD[i][j] * rfm.ReU[i] + lambdaU[
                i] * rfm.ReUdD[i][j]

    global Lambdabar_rhsU  # Used on the RHS of the Gamma-driving shift conditions
    Lambdabar_rhsU = ixp.zerorank1()
    for i in range(DIM):
        for k in range(DIM):
            Lambdabar_rhsU[i] += betaU[k] * LambdabarU_dupD[i][k] - betaU_dD[
                i][k] * LambdabarU[k]  # Term 1

    # Step 6.b: Term 2 of \partial_t \bar{\Lambda}^i = \bar{\gamma}^{jk} (Term 2a + Term 2b + Term 2c)
    # Term 2a: \bar{\gamma}^{jk} \beta^i_{,kj}
    Term2aUDD = ixp.zerorank3()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                Term2aUDD[i][j][k] += betaU_dDD[i][k][j]
    # Term 2b: \hat{\Gamma}^i_{mk,j} \beta^m + \hat{\Gamma}^i_{mk} \beta^m_{,j}
    #          + \hat{\Gamma}^i_{dj}\beta^d_{,k} - \hat{\Gamma}^d_{kj} \beta^i_{,d}
    Term2bUDD = ixp.zerorank3()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for m in range(DIM):
                    Term2bUDD[i][j][k] += rfm.GammahatUDDdD[i][m][k][j] * betaU[m] \
                                          + rfm.GammahatUDD[i][m][k] * betaU_dD[m][j] \
                                          + rfm.GammahatUDD[i][m][j] * betaU_dD[m][k] \
                                          - rfm.GammahatUDD[m][k][j] * betaU_dD[i][m]
    # Term 2c: \hat{\Gamma}^i_{dj}\hat{\Gamma}^d_{mk} \beta^m - \hat{\Gamma}^d_{kj} \hat{\Gamma}^i_{md} \beta^m
    Term2cUDD = ixp.zerorank3()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for m in range(DIM):
                    for d in range(DIM):
                        Term2cUDD[i][j][k] += (rfm.GammahatUDD[i][d][j] * rfm.GammahatUDD[d][m][k] \
                                               - rfm.GammahatUDD[d][k][j] * rfm.GammahatUDD[i][m][d]) * betaU[m]

    Lambdabar_rhsUpieceU = ixp.zerorank1()

    # Put it all together to get Term 2:
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                Lambdabar_rhsU[i] += gammabarUU[j][k] * (Term2aUDD[i][j][k] +
                                                         Term2bUDD[i][j][k] +
                                                         Term2cUDD[i][j][k])
                Lambdabar_rhsUpieceU[i] += gammabarUU[j][k] * (
                    Term2aUDD[i][j][k] + Term2bUDD[i][j][k] +
                    Term2cUDD[i][j][k])

    # Step 6.c: Term 3 of \partial_t \bar{\Lambda}^i:
    #    \frac{2}{3} \Delta^{i} \bar{D}_{j} \beta^{j}
    DGammaU = Bq.DGammaU  # From Bq.RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU()
    for i in range(DIM):
        Lambdabar_rhsU[i] += sp.Rational(
            2, 3) * DGammaU[i] * Dbarbetacontraction  # Term 3

    # Step 6.d: Term 4 of \partial_t \bar{\Lambda}^i:
    #           \frac{1}{3} \bar{D}^{i} \bar{D}_{j} \beta^{j}
    detgammabar_dDD = Bq.detgammabar_dDD  # From Bq.detgammabar_and_derivs()
    Dbarbetacontraction_dBarD = ixp.zerorank1()
    for k in range(DIM):
        for m in range(DIM):
            Dbarbetacontraction_dBarD[m] += betaU_dDD[k][k][m] + \
                                            (betaU_dD[k][m] * detgammabar_dD[k] +
                                             betaU[k] * detgammabar_dDD[k][m]) / (2 * detgammabar) \
                                            - betaU[k] * detgammabar_dD[k] * detgammabar_dD[m] / (
                                                        2 * detgammabar * detgammabar)
    for i in range(DIM):
        for m in range(DIM):
            Lambdabar_rhsU[i] += sp.Rational(
                1, 3) * gammabarUU[i][m] * Dbarbetacontraction_dBarD[m]

    # Step 6.e: Term 5 of \partial_t \bar{\Lambda}^i:
    #           - 2 \bar{A}^{i j} (\partial_{j} \alpha - 6 \alpha \partial_{j} \phi)
    for i in range(DIM):
        for j in range(DIM):
            Lambdabar_rhsU[i] += -2 * AbarUU[i][j] * (alpha_dD[j] -
                                                      6 * alpha * phi_dD[j])

    # Step 6.f: Term 6 of \partial_t \bar{\Lambda}^i:
    #           2 \alpha \bar{A}^{j k} \Delta^{i}_{j k}
    DGammaUDD = Bq.DGammaUDD  # From RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                Lambdabar_rhsU[
                    i] += 2 * alpha * AbarUU[j][k] * DGammaUDD[i][j][k]

    # Step 6.g: Term 7 of \partial_t \bar{\Lambda}^i:
    #           -\frac{4}{3} \alpha \bar{\gamma}^{i j} \partial_{j} K
    trK_dD = ixp.declarerank1("trK_dD")
    for i in range(DIM):
        for j in range(DIM):
            Lambdabar_rhsU[i] += -sp.Rational(
                4, 3) * alpha * gammabarUU[i][j] * trK_dD[j]

    # Step 7: Rescale the RHS quantities so that the evolved
    #         variables are smooth across coord singularities
    global h_rhsDD, a_rhsDD, lambda_rhsU
    h_rhsDD = ixp.zerorank2()
    a_rhsDD = ixp.zerorank2()
    lambda_rhsU = ixp.zerorank1()
    for i in range(DIM):
        lambda_rhsU[i] = Lambdabar_rhsU[i] / rfm.ReU[i]
        for j in range(DIM):
            h_rhsDD[i][j] = gammabar_rhsDD[i][j] / rfm.ReDD[i][j]
            a_rhsDD[i][j] = Abar_rhsDD[i][j] / rfm.ReDD[i][j]
def BSSN_constraints(add_T4UUmunu_source_terms=False):
    # Step 1.a: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.b: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 2: Hamiltonian constraint.
    # First declare all needed variables
    Bq.declare_BSSN_gridfunctions_if_not_declared_already()  # Sets trK
    Bq.BSSN_basic_tensors()  # Sets AbarDD
    Bq.gammabar__inverse_and_derivs()  # Sets gammabarUU
    Bq.AbarUU_AbarUD_trAbar_AbarDD_dD()  # Sets AbarUU and AbarDD_dD
    Bq.RicciBar__gammabarDD_dHatD__DGammaUDD__DGammaU()  # Sets RbarDD
    Bq.phi_and_derivs()  # Sets phi_dBarD & phi_dBarDD

    ###############################
    ###############################
    #  HAMILTONIAN CONSTRAINT
    ###############################
    ###############################

    # Term 1: 2/3 K^2
    global H
    H = sp.Rational(2, 3) * Bq.trK**2

    # Term 2: -A_{ij} A^{ij}
    for i in range(DIM):
        for j in range(DIM):
            H += -Bq.AbarDD[i][j] * Bq.AbarUU[i][j]

    # Term 3a: trace(Rbar)
    Rbartrace = sp.sympify(0)
    for i in range(DIM):
        for j in range(DIM):
            Rbartrace += Bq.gammabarUU[i][j] * Bq.RbarDD[i][j]

    # Term 3b: -8 \bar{\gamma}^{ij} \bar{D}_i \phi \bar{D}_j \phi = -8*phi_dBar_times_phi_dBar
    # Term 3c: -8 \bar{\gamma}^{ij} \bar{D}_i \bar{D}_j \phi      = -8*phi_dBarDD_contraction
    phi_dBar_times_phi_dBar = sp.sympify(0)  # Term 3b
    phi_dBarDD_contraction = sp.sympify(0)  # Term 3c
    for i in range(DIM):
        for j in range(DIM):
            phi_dBar_times_phi_dBar += Bq.gammabarUU[i][j] * Bq.phi_dBarD[
                i] * Bq.phi_dBarD[j]
            phi_dBarDD_contraction += Bq.gammabarUU[i][j] * Bq.phi_dBarDD[i][j]

    # Add Term 3:
    H += Bq.exp_m4phi * (Rbartrace - 8 *
                         (phi_dBar_times_phi_dBar + phi_dBarDD_contraction))

    if add_T4UUmunu_source_terms:
        M_PI = par.Cparameters("#define", thismodule, "M_PI",
                               "")  # M_PI is pi as defined in C
        BTmunu.define_BSSN_T4UUmunu_rescaled_source_terms()
        rho = BTmunu.rho
        H += -16 * M_PI * rho

    # FIXME: ADD T4UUmunu SOURCE TERMS TO MOMENTUM CONSTRAINT!

    # Step 3: M^i, the momentum constraint

    ###############################
    ###############################
    #  MOMENTUM CONSTRAINT
    ###############################
    ###############################

    # SEE Tutorial-BSSN_constraints.ipynb for full documentation.
    global MU
    MU = ixp.zerorank1()

    # Term 2: 6 A^{ij} \partial_j \phi:
    for i in range(DIM):
        for j in range(DIM):
            MU[i] += 6 * Bq.AbarUU[i][j] * Bq.phi_dD[j]

    # Term 3: -2/3 \bar{\gamma}^{ij} K_{,j}
    trK_dD = ixp.declarerank1(
        "trK_dD")  # Not defined in BSSN_RHSs; only trK_dupD is defined there.
    for i in range(DIM):
        for j in range(DIM):
            MU[i] += -sp.Rational(2, 3) * Bq.gammabarUU[i][j] * trK_dD[j]

    # First define aDD_dD:
    aDD_dD = ixp.declarerank3("aDD_dD", "sym01")

    # Then evaluate the conformal covariant derivative \bar{D}_j \bar{A}_{lm}
    AbarDD_dBarD = ixp.zerorank3()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                AbarDD_dBarD[i][j][k] = Bq.AbarDD_dD[i][j][k]
                for l in range(DIM):
                    AbarDD_dBarD[i][j][
                        k] += -Bq.GammabarUDD[l][k][i] * Bq.AbarDD[l][j]
                    AbarDD_dBarD[i][j][
                        k] += -Bq.GammabarUDD[l][k][j] * Bq.AbarDD[i][l]

    # Term 1: Contract twice with the metric to make \bar{D}_{j} \bar{A}^{ij}
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for l in range(DIM):
                    MU[i] += Bq.gammabarUU[i][k] * Bq.gammabarUU[j][
                        l] * AbarDD_dBarD[k][l][j]

    # Finally, we multiply by e^{-4 phi} and rescale the momentum constraint:
    for i in range(DIM):
        MU[i] *= Bq.exp_m4phi / rfm.ReU[i]
Esempio n. 3
0
def ADM_in_terms_of_BSSN():
    global gammaDD, gammaDDdD, gammaDDdDD, gammaUU, detgamma, GammaUDD, KDD, KDDdD
    # Step 1.c: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 1.d: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.e: Import all basic (unrescaled) BSSN scalars & tensors
    import BSSN.BSSN_quantities as Bq
    Bq.BSSN_basic_tensors()
    gammabarDD = Bq.gammabarDD
    cf         = Bq.cf
    AbarDD     = Bq.AbarDD
    trK        = Bq.trK

    Bq.gammabar__inverse_and_derivs()
    gammabarDD_dD  = Bq.gammabarDD_dD
    gammabarDD_dDD = Bq.gammabarDD_dDD

    Bq.AbarUU_AbarUD_trAbar_AbarDD_dD()
    AbarDD_dD = Bq.AbarDD_dD

    # Step 2: The ADM three-metric gammaDD and its
    #         derivatives in terms of BSSN quantities.
    gammaDD = ixp.zerorank2()

    exp4phi = sp.sympify(0)
    if par.parval_from_str("EvolvedConformalFactor_cf") == "phi":
        exp4phi = sp.exp(4 * cf)
    elif par.parval_from_str("EvolvedConformalFactor_cf") == "chi":
        exp4phi = (1 / cf)
    elif par.parval_from_str("EvolvedConformalFactor_cf") == "W":
        exp4phi = (1 / cf ** 2)
    else:
        print("Error EvolvedConformalFactor_cf type = \"" + par.parval_from_str("EvolvedConformalFactor_cf") + "\" unknown.")
        sys.exit(1)

    for i in range(DIM):
        for j in range(DIM):
            gammaDD[i][j] = exp4phi * gammabarDD[i][j]

    # Step 2.a: Derivatives of $e^{4\phi}$
    phidD = ixp.zerorank1()
    phidDD = ixp.zerorank2()
    cf_dD  = ixp.declarerank1("cf_dD")
    cf_dDD = ixp.declarerank2("cf_dDD","sym01")
    if par.parval_from_str("EvolvedConformalFactor_cf") == "phi":
        for i in range(DIM):
            phidD[i]  = cf_dD[i]
            for j in range(DIM):
                phidDD[i][j] = cf_dDD[i][j]
    elif par.parval_from_str("EvolvedConformalFactor_cf") == "chi":
        for i in range(DIM):
            phidD[i]  = -sp.Rational(1,4)*exp4phi*cf_dD[i]
            for j in range(DIM):
                phidDD[i][j] = sp.Rational(1,4)*( exp4phi**2*cf_dD[i]*cf_dD[j] - exp4phi*cf_dDD[i][j] )
    elif par.parval_from_str("EvolvedConformalFactor_cf") == "W":
        exp2phi = (1 / cf)
        for i in range(DIM):
            phidD[i]  = -sp.Rational(1,2)*exp2phi*cf_dD[i]
            for j in range(DIM):
                phidDD[i][j] = sp.Rational(1,2)*( exp4phi*cf_dD[i]*cf_dD[j] - exp2phi*cf_dDD[i][j] )
    else:
        print("Error EvolvedConformalFactor_cf type = \""+par.parval_from_str("EvolvedConformalFactor_cf")+"\" unknown.")
        sys.exit(1)

    exp4phidD  = ixp.zerorank1()
    exp4phidDD = ixp.zerorank2()
    for i in range(DIM):
        exp4phidD[i] = 4*exp4phi*phidD[i]
        for j in range(DIM):
            exp4phidDD[i][j] = 16*exp4phi*phidD[i]*phidD[j] + 4*exp4phi*phidDD[i][j]

    # Step 2.b: Derivatives of gammaDD, the ADM three-metric
    gammaDDdD = ixp.zerorank3()
    gammaDDdDD = ixp.zerorank4()

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                gammaDDdD[i][j][k] = exp4phidD[k] * gammabarDD[i][j] + exp4phi * gammabarDD_dD[i][j][k]
                for l in range(DIM):
                    gammaDDdDD[i][j][k][l] = exp4phidDD[k][l] * gammabarDD[i][j] + \
                                             exp4phidD[k] * gammabarDD_dD[i][j][l] + \
                                             exp4phidD[l] * gammabarDD_dD[i][j][k] + \
                                             exp4phi * gammabarDD_dDD[i][j][k][l]

    # Step 2.c: 3-Christoffel symbols associated with ADM 3-metric gammaDD
    # Step 2.c.i: First compute the inverse 3-metric gammaUU:
    gammaUU, detgamma = ixp.symm_matrix_inverter3x3(gammaDD)

    GammaUDD = ixp.zerorank3()

    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                for l in range(DIM):
                    GammaUDD[i][j][k] += sp.Rational(1,2)*gammaUU[i][l]* \
                                    (gammaDDdD[l][j][k] + gammaDDdD[l][k][j] - gammaDDdD[j][k][l])
                    
    # Step 3: Define ADM extrinsic curvature KDD and
    #         its first spatial derivatives KDDdD
    #         in terms of BSSN quantities
    KDD = ixp.zerorank2()

    for i in range(DIM):
        for j in range(DIM):
            KDD[i][j] = exp4phi * AbarDD[i][j] + sp.Rational(1, 3) * gammaDD[i][j] * trK

    KDDdD = ixp.zerorank3()
    trK_dD = ixp.declarerank1("trK_dD")
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                KDDdD[i][j][k] = exp4phidD[k] * AbarDD[i][j] + exp4phi * AbarDD_dD[i][j][k] + \
                                 sp.Rational(1, 3) * (gammaDDdD[i][j][k] * trK + gammaDD[i][j] * trK_dD[k])
Esempio n. 4
0
def ScalarField_RHSs():

    # Step B.4: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step B.5: Import all basic (unrescaled) BSSN scalars & tensors
    Bq.BSSN_basic_tensors()
    trK = Bq.trK
    alpha = Bq.alpha
    betaU = Bq.betaU
    Bq.gammabar__inverse_and_derivs()
    gammabarUU = Bq.gammabarUU

    global sf_rhs, sfM_rhs

    # Step B.5.a: Declare grid functions for varphi and Pi
    sf, sfM = sfgfs.declare_scalar_field_gridfunctions_if_not_declared_already(
    )

    # Step 2.a: Add Term 1 to sf_rhs: -alpha*Pi
    sf_rhs = -alpha * sfM

    # Step 2.b: Add Term 2 to sf_rhs: beta^{i}\partial_{i}\varphi
    sf_dupD = ixp.declarerank1("sf_dupD")
    for i in range(DIM):
        sf_rhs += betaU[i] * sf_dupD[i]

    # Step 3a: Add Term 1 to sfM_rhs: alpha * K * Pi
    sfM_rhs = alpha * trK * sfM

    # Step 3b: Add Term 2 to sfM_rhs: beta^{i}\partial_{i}Pi
    sfM_dupD = ixp.declarerank1("sfM_dupD")
    for i in range(DIM):
        sfM_rhs += betaU[i] * sfM_dupD[i]

    # Step 3c: Adding Term 3 to sfM_rhs
    # Step 3c.i: Term 3a: gammabar^{ij}\partial_{i}\alpha\partial_{j}\varphi
    alpha_dD = ixp.declarerank1("alpha_dD")
    sf_dD = ixp.declarerank1("sf_dD")
    sfMrhsTerm3 = sp.sympify(0)
    for i in range(DIM):
        for j in range(DIM):
            sfMrhsTerm3 += -gammabarUU[i][j] * alpha_dD[i] * sf_dD[j]

    # Step 3c.ii: Term 3b: \alpha*gammabar^{ij}\partial_{i}\partial_{j}\varphi
    sf_dDD = ixp.declarerank2("sf_dDD", "sym01")
    for i in range(DIM):
        for j in range(DIM):
            sfMrhsTerm3 += -alpha * gammabarUU[i][j] * sf_dDD[i][j]

    # Step 3c.iii: Term 3c: 2*alpha*gammabar^{ij}\partial_{j}\varphi\partial_{i}\phi
    Bq.phi_and_derivs(
    )  # sets exp^{-4phi} = exp_m4phi and \partial_{i}phi = phi_dD[i]
    for i in range(DIM):
        for j in range(DIM):
            sfMrhsTerm3 += -2 * alpha * gammabarUU[i][j] * sf_dD[
                j] * Bq.phi_dD[i]

    # Step 3c.iv: Multiplying Term 3 by e^{-4phi} and adding it to sfM_rhs
    sfMrhsTerm3 *= Bq.exp_m4phi
    sfM_rhs += sfMrhsTerm3

    # Step 3d: Adding Term 4 to sfM_rhs
    # Step 3d.i: Term 4a: \alpha \bar\Lambda^{i}\partial_{i}\varphi
    LambdabarU = Bq.LambdabarU
    sfMrhsTerm4 = sp.sympify(0)
    for i in range(DIM):
        sfMrhsTerm4 += alpha * LambdabarU[i] * sf_dD[i]

    # Step 3d.ii: Evaluating \bar\gamma^{ij}\hat\Gamma^{k}_{ij}
    GammahatUDD = rfm.GammahatUDD
    gammabarGammahatContractionU = ixp.zerorank1()
    for k in range(DIM):
        for i in range(DIM):
            for j in range(DIM):
                gammabarGammahatContractionU[
                    k] += gammabarUU[i][j] * GammahatUDD[k][i][j]

    # Step 3d.iii: Term 4b: \alpha \bar\gamma^{ij}\hat\Gamma^{k}_{ij}\partial_{k}\varphi
    for i in range(DIM):
        sfMrhsTerm4 += alpha * gammabarGammahatContractionU[i] * sf_dD[i]

    # Step 3d.iii: Multplying Term 4 by e^{-4phi} and adding it to sfM_rhs
    sfMrhsTerm4 *= Bq.exp_m4phi
    sfM_rhs += sfMrhsTerm4

    return
def Convert_Spherical_or_Cartesian_ADM_to_BSSN_curvilinear(CoordType_in, ADM_input_function_name,
                                                           Ccodesdir = "BSSN", pointer_to_ID_inputs=False,loopopts=",oldloops"):
    # The ADM & BSSN formalisms only work in 3D; they are 3+1 decompositions of Einstein's equations.
    #    To implement axisymmetry or spherical symmetry, simply set all spatial derivatives in
    #    the relevant angular directions to zero; DO NOT SET DIM TO ANYTHING BUT 3.

    # Step 0: Set spatial dimension (must be 3 for BSSN)
    DIM = 3

    # Step 1: All ADM initial data quantities are now functions of xx0,xx1,xx2, but
    #         they are still in the Spherical or Cartesian basis. We can now directly apply
    #         Jacobian transformations to get them in the correct xx0,xx1,xx2 basis:

    #         All input quantities are in terms of r,th,ph or x,y,z. We want them in terms
    #         of xx0,xx1,xx2, so here we call sympify_integers__replace_rthph() to replace
    #         r,th,ph or x,y,z, respectively, with the appropriate functions of xx0,xx1,xx2
    #         as defined for this particular reference metric in reference_metric.py's
    #         xxSph[] or xx_to_Cart[], respectively:

    # Define the input variables:
    gammaSphorCartDD = ixp.declarerank2("gammaSphorCartDD", "sym01")
    KSphorCartDD = ixp.declarerank2("KSphorCartDD", "sym01")
    alphaSphorCart = sp.symbols("alphaSphorCart")
    betaSphorCartU = ixp.declarerank1("betaSphorCartU")
    BSphorCartU = ixp.declarerank1("BSphorCartU")

    # Make sure that rfm.reference_metric() has been called.
    #    We'll need the variables it defines throughout this module.
    if rfm.have_already_called_reference_metric_function == False:
        print("Error. Called Convert_Spherical_ADM_to_BSSN_curvilinear() without")
        print("       first setting up reference metric, by calling rfm.reference_metric().")
        sys.exit(1)

    r_th_ph_or_Cart_xyz_oID_xx = []
    if CoordType_in == "Spherical":
        r_th_ph_or_Cart_xyz_oID_xx = rfm.xxSph
    elif CoordType_in == "Cartesian":
        r_th_ph_or_Cart_xyz_oID_xx = rfm.xx_to_Cart
    else:
        print("Error: Can only convert ADM Cartesian or Spherical initial data to BSSN Curvilinear coords.")
        sys.exit(1)

    # Step 2: All ADM initial data quantities are now functions of xx0,xx1,xx2, but
    #         they are still in the Spherical or Cartesian basis. We can now directly apply
    #         Jacobian transformations to get them in the correct xx0,xx1,xx2 basis:

    # alpha is a scalar, so no Jacobian transformation is necessary.
    alpha = alphaSphorCart

    Jac_dUSphorCart_dDrfmUD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            Jac_dUSphorCart_dDrfmUD[i][j] = sp.diff(r_th_ph_or_Cart_xyz_oID_xx[i], rfm.xx[j])

    Jac_dUrfm_dDSphorCartUD, dummyDET = ixp.generic_matrix_inverter3x3(Jac_dUSphorCart_dDrfmUD)

    betaU = ixp.zerorank1()
    BU = ixp.zerorank1()
    gammaDD = ixp.zerorank2()
    KDD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            betaU[i] += Jac_dUrfm_dDSphorCartUD[i][j] * betaSphorCartU[j]
            BU[i] += Jac_dUrfm_dDSphorCartUD[i][j] * BSphorCartU[j]
            for k in range(DIM):
                for l in range(DIM):
                    gammaDD[i][j] += Jac_dUSphorCart_dDrfmUD[k][i] * Jac_dUSphorCart_dDrfmUD[l][j] * \
                                     gammaSphorCartDD[k][l]
                    KDD[i][j] += Jac_dUSphorCart_dDrfmUD[k][i] * Jac_dUSphorCart_dDrfmUD[l][j] * KSphorCartDD[k][l]

    # Step 3: All ADM quantities were input into this function in the Spherical or Cartesian
    #         basis, as functions of r,th,ph or x,y,z, respectively. In Steps 1 and 2 above,
    #         we converted them to the xx0,xx1,xx2 basis, and as functions of xx0,xx1,xx2.
    #         Here we convert ADM quantities in the "rfm" basis to their BSSN Curvilinear
    #         counterparts, for all BSSN quantities *except* lambda^i:
    import BSSN.BSSN_in_terms_of_ADM as BitoA
    BitoA.gammabarDD_hDD(gammaDD)
    BitoA.trK_AbarDD_aDD(gammaDD, KDD)
    BitoA.cf_from_gammaDD(gammaDD)
    BitoA.betU_vetU(betaU, BU)
    hDD = BitoA.hDD
    trK = BitoA.trK
    aDD = BitoA.aDD
    cf = BitoA.cf
    vetU = BitoA.vetU
    betU = BitoA.betU

    # Step 4: Compute $\bar{\Lambda}^i$ (Eqs. 4 and 5 of
    #         [Baumgarte *et al.*](https://arxiv.org/pdf/1211.6632.pdf)),
    #         from finite-difference derivatives of rescaled metric
    #         quantities $h_{ij}$:

    # \bar{\Lambda}^i = \bar{\gamma}^{jk}\left(\bar{\Gamma}^i_{jk} - \hat{\Gamma}^i_{jk}\right).

    # The reference_metric.py module provides us with analytic expressions for
    #         $\hat{\Gamma}^i_{jk}$, so here we need only compute
    #         finite-difference expressions for $\bar{\Gamma}^i_{jk}$, based on
    #         the values for $h_{ij}$ provided in the initial data. Once
    #         $\bar{\Lambda}^i$ has been computed, we apply the usual rescaling
    #         procedure:

    # \lambda^i = \bar{\Lambda}^i/\text{ReU[i]},

    # and then output the result to a C file using the NRPy+
    #         finite-difference C output routine.

    # We will need all BSSN gridfunctions to be defined, as well as
    #     expressions for gammabarDD_dD in terms of exact derivatives of
    #     the rescaling matrix and finite-difference derivatives of
    #     hDD's. This functionality is provided by BSSN.BSSN_unrescaled_and_barred_vars,
    #     which we call here to overwrite above definitions of gammabarDD,gammabarUU, etc.
    Bq.gammabar__inverse_and_derivs() # Provides gammabarUU and GammabarUDD
    gammabarUU    = Bq.gammabarUU
    GammabarUDD   = Bq.GammabarUDD

    # Next evaluate \bar{\Lambda}^i, based on GammabarUDD above and GammahatUDD
    #       (from the reference metric):
    LambdabarU = ixp.zerorank1()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                LambdabarU[i] += gammabarUU[j][k] * (GammabarUDD[i][j][k] - rfm.GammahatUDD[i][j][k])

    # Finally apply rescaling:
    # lambda^i = Lambdabar^i/\text{ReU[i]}
    lambdaU = ixp.zerorank1()
    for i in range(DIM):
        lambdaU[i] = LambdabarU[i] / rfm.ReU[i]

    if ADM_input_function_name == "DoNotOutputADMInputFunction":
        return hDD,aDD,trK,vetU,betU,alpha,cf,lambdaU

    # Step 5.A: Output files containing finite-differenced lambdas.
    outCparams = "preindent=1,outCfileaccess=a,outCverbose=False,includebraces=False"
    lambdaU_expressions = [lhrh(lhs=gri.gfaccess("in_gfs", "lambdaU0"), rhs=lambdaU[0]),
                           lhrh(lhs=gri.gfaccess("in_gfs", "lambdaU1"), rhs=lambdaU[1]),
                           lhrh(lhs=gri.gfaccess("in_gfs", "lambdaU2"), rhs=lambdaU[2])]

    desc = "Output lambdaU[i] for BSSN, built using finite-difference derivatives."
    name = "ID_BSSN_lambdas"
    params = "const paramstruct *restrict params,REAL *restrict xx[3],REAL *restrict in_gfs"
    preloop = ""
    enableCparameters=True
    if "oldloops" in loopopts:
        params = "const int Nxx[3],const int Nxx_plus_2NGHOSTS[3],REAL *xx[3],const REAL dxx[3],REAL *in_gfs"
        enableCparameters=False
        preloop = """
const REAL invdx0 = 1.0/dxx[0];
const REAL invdx1 = 1.0/dxx[1];
const REAL invdx2 = 1.0/dxx[2];
"""
    outCfunction(
        outfile=os.path.join(Ccodesdir, name + ".h"), desc=desc, name=name, params=params,
        preloop=preloop,
        body=fin.FD_outputC("returnstring", lambdaU_expressions, outCparams),
        loopopts="InteriorPoints,Read_xxs"+loopopts, enableCparameters=enableCparameters)

    # Step 5: Output all ADM-to-BSSN expressions to a C function. This function
    #         must first call the ID_ADM_SphorCart() defined above. Using these
    #         Spherical or Cartesian data, it sets up all quantities needed for
    #         BSSNCurvilinear initial data, *except* $\lambda^i$, which must be
    #         computed from numerical data using finite-difference derivatives.
    ID_inputs_param = "ID_inputs other_inputs,"
    if pointer_to_ID_inputs == True:
        ID_inputs_param = "ID_inputs *other_inputs,"

    desc = "Write BSSN variables in terms of ADM variables at a given point xx0,xx1,xx2"
    name = "ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs"
    enableCparameters=True
    params = "const paramstruct *restrict params, "
    if "oldloops" in loopopts:
        enableCparameters=False
        params = ""
    params += "const int i0i1i2[3], const REAL xx0xx1xx2[3]," + ID_inputs_param + """
                    REAL *hDD00,REAL *hDD01,REAL *hDD02,REAL *hDD11,REAL *hDD12,REAL *hDD22,
                    REAL *aDD00,REAL *aDD01,REAL *aDD02,REAL *aDD11,REAL *aDD12,REAL *aDD22,
                    REAL *trK,
                    REAL *vetU0,REAL *vetU1,REAL *vetU2,
                    REAL *betU0,REAL *betU1,REAL *betU2,
                    REAL *alpha,  REAL *cf"""
    outCparams = "preindent=1,outCverbose=False,includebraces=False"
    outCfunction(
        outfile=os.path.join(Ccodesdir, name + ".h"), desc=desc, name=name, params=params,
        body="""
      REAL gammaSphorCartDD00,gammaSphorCartDD01,gammaSphorCartDD02,
           gammaSphorCartDD11,gammaSphorCartDD12,gammaSphorCartDD22;
      REAL KSphorCartDD00,KSphorCartDD01,KSphorCartDD02,
           KSphorCartDD11,KSphorCartDD12,KSphorCartDD22;
      REAL alphaSphorCart,betaSphorCartU0,betaSphorCartU1,betaSphorCartU2;
      REAL BSphorCartU0,BSphorCartU1,BSphorCartU2;
      const REAL xx0 = xx0xx1xx2[0];
      const REAL xx1 = xx0xx1xx2[1];
      const REAL xx2 = xx0xx1xx2[2];
      REAL xyz_or_rthph[3];\n""" +
             outputC(r_th_ph_or_Cart_xyz_oID_xx[0:3], ["xyz_or_rthph[0]", "xyz_or_rthph[1]", "xyz_or_rthph[2]"],
                     "returnstring",
                     outCparams + ",CSE_enable=False") + "      " + ADM_input_function_name + """(params,i0i1i2, xyz_or_rthph, other_inputs,
                       &gammaSphorCartDD00,&gammaSphorCartDD01,&gammaSphorCartDD02,
                       &gammaSphorCartDD11,&gammaSphorCartDD12,&gammaSphorCartDD22,
                       &KSphorCartDD00,&KSphorCartDD01,&KSphorCartDD02,
                       &KSphorCartDD11,&KSphorCartDD12,&KSphorCartDD22,
                       &alphaSphorCart,&betaSphorCartU0,&betaSphorCartU1,&betaSphorCartU2,
                       &BSphorCartU0,&BSphorCartU1,&BSphorCartU2);
      // Next compute all rescaled BSSN curvilinear quantities:\n""" +
             outputC([hDD[0][0], hDD[0][1], hDD[0][2], hDD[1][1], hDD[1][2], hDD[2][2],
                      aDD[0][0], aDD[0][1], aDD[0][2], aDD[1][1], aDD[1][2], aDD[2][2],
                      trK, vetU[0], vetU[1], vetU[2], betU[0], betU[1], betU[2],
                      alpha, cf],
                     ["*hDD00", "*hDD01", "*hDD02", "*hDD11", "*hDD12", "*hDD22",
                      "*aDD00", "*aDD01", "*aDD02", "*aDD11", "*aDD12", "*aDD22",
                      "*trK", "*vetU0", "*vetU1", "*vetU2", "*betU0", "*betU1", "*betU2",
                      "*alpha", "*cf"], "returnstring", params=outCparams),
        enableCparameters=enableCparameters)

    # Step 5.a: Output the driver function for the above
    #           function ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs()
    # Next write the driver function for ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs():
    desc = """Driver function for ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs(),
which writes BSSN variables in terms of ADM variables at a given point xx0,xx1,xx2"""
    name = "ID_BSSN__ALL_BUT_LAMBDAs"
    params = "const paramstruct *restrict params,REAL *restrict xx[3]," + ID_inputs_param + "REAL *in_gfs"
    enableCparameters = True
    funccallparams = "params, "
    idx3replace   = "IDX3S"
    idx4ptreplace = "IDX4ptS"
    if "oldloops" in loopopts:
        params = "const int Nxx_plus_2NGHOSTS[3],REAL *xx[3]," + ID_inputs_param + "REAL *in_gfs"
        enableCparameters = False
        funccallparams = ""
        idx3replace   = "IDX3"
        idx4ptreplace = "IDX4pt"
    outCfunction(
        outfile=os.path.join(Ccodesdir, name + ".h"), desc=desc, name=name, params=params,
        body="""
const int idx = IDX3(i0,i1,i2);
const int i0i1i2[3] = {i0,i1,i2};
const REAL xx0xx1xx2[3] = {xx0,xx1,xx2};
ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs(""".replace("IDX3",idx3replace)+funccallparams+"""i0i1i2,xx0xx1xx2,other_inputs,
                    &in_gfs[IDX4pt(HDD00GF,idx)],&in_gfs[IDX4pt(HDD01GF,idx)],&in_gfs[IDX4pt(HDD02GF,idx)],
                    &in_gfs[IDX4pt(HDD11GF,idx)],&in_gfs[IDX4pt(HDD12GF,idx)],&in_gfs[IDX4pt(HDD22GF,idx)],
                    &in_gfs[IDX4pt(ADD00GF,idx)],&in_gfs[IDX4pt(ADD01GF,idx)],&in_gfs[IDX4pt(ADD02GF,idx)],
                    &in_gfs[IDX4pt(ADD11GF,idx)],&in_gfs[IDX4pt(ADD12GF,idx)],&in_gfs[IDX4pt(ADD22GF,idx)],
                    &in_gfs[IDX4pt(TRKGF,idx)],
                    &in_gfs[IDX4pt(VETU0GF,idx)],&in_gfs[IDX4pt(VETU1GF,idx)],&in_gfs[IDX4pt(VETU2GF,idx)],
                    &in_gfs[IDX4pt(BETU0GF,idx)],&in_gfs[IDX4pt(BETU1GF,idx)],&in_gfs[IDX4pt(BETU2GF,idx)],
                    &in_gfs[IDX4pt(ALPHAGF,idx)],&in_gfs[IDX4pt(CFGF,idx)]);
""".replace("IDX4pt",idx4ptreplace),
        loopopts="AllPoints,Read_xxs"+loopopts, enableCparameters=enableCparameters)
Esempio n. 6
0
def BSSN_gauge_RHSs():
    # Step 1.d: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.e: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 1.f: Define needed BSSN quantities:
    # Declare scalars & tensors (in terms of rescaled BSSN quantities)
    Bq.BSSN_basic_tensors()
    Bq.betaU_derivs()
    # Declare BSSN_RHSs (excluding the time evolution equations for the gauge conditions),
    #    if they haven't already been declared.
    if Brhs.have_already_called_BSSN_RHSs_function == False:
        print(
            "BSSN_gauge_RHSs() Error: You must call BSSN_RHSs() before calling BSSN_gauge_RHSs()."
        )
        sys.exit(1)

    # Step 2: Lapse conditions
    LapseEvolOption = par.parval_from_str(thismodule +
                                          "::LapseEvolutionOption")

    # Step 2.a: The 1+log lapse condition:
    #   \partial_t \alpha = \beta^i \alpha_{,i} - 2*\alpha*K
    # First import expressions from BSSN_quantities
    cf = Bq.cf
    trK = Bq.trK
    alpha = Bq.alpha
    betaU = Bq.betaU

    # Implement the 1+log lapse condition
    global alpha_rhs
    alpha_rhs = sp.sympify(0)
    if LapseEvolOption == "OnePlusLog":
        alpha_rhs = -2 * alpha * trK
        alpha_dupD = ixp.declarerank1("alpha_dupD")
        for i in range(DIM):
            alpha_rhs += betaU[i] * alpha_dupD[i]

    # Step 2.b: Implement the harmonic slicing lapse condition
    elif LapseEvolOption == "HarmonicSlicing":
        if par.parval_from_str(
                "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "W":
            alpha_rhs = -3 * cf**(-4) * Brhs.cf_rhs
        elif par.parval_from_str(
                "BSSN.BSSN_quantities::EvolvedConformalFactor_cf") == "phi":
            alpha_rhs = 6 * sp.exp(6 * cf) * Brhs.cf_rhs
        else:
            print(
                "Error LapseEvolutionOption==HarmonicSlicing unsupported for EvolvedConformalFactor_cf!=(W or phi)"
            )
            sys.exit(1)

    # Step 2.c: Frozen lapse
    #    \partial_t \alpha = 0
    elif LapseEvolOption == "Frozen":
        alpha_rhs = sp.sympify(0)

    else:
        print("Error: " + thismodule + "::LapseEvolutionOption == " +
              LapseEvolOption + " not supported!")
        sys.exit(1)

    # Step 3.a: Set \partial_t \beta^i
    # First check that ShiftEvolutionOption parameter choice is supported.
    ShiftEvolOption = par.parval_from_str(thismodule +
                                          "::ShiftEvolutionOption")
    if ShiftEvolOption != "Frozen" and \
        ShiftEvolOption != "GammaDriving2ndOrder_NoCovariant" and \
        ShiftEvolOption != "GammaDriving2ndOrder_Covariant"  and \
        ShiftEvolOption != "GammaDriving2ndOrder_Covariant__Hatted" and \
        ShiftEvolOption != "GammaDriving1stOrder_Covariant" and \
        ShiftEvolOption != "GammaDriving1stOrder_Covariant__Hatted":
        print("Error: ShiftEvolutionOption == " + ShiftEvolOption +
              " unsupported!")
        sys.exit(1)

    # Next import expressions from BSSN_quantities
    BU = Bq.BU
    betU = Bq.betU
    betaU_dupD = Bq.betaU_dupD
    # Define needed quantities
    beta_rhsU = ixp.zerorank1()
    B_rhsU = ixp.zerorank1()

    # In the case of Frozen shift condition, we
    #    explicitly set the betaU and BU RHS's to zero
    #    instead of relying on the ixp.zerorank1()'s above,
    #    for safety.
    if ShiftEvolOption == "Frozen":
        for i in range(DIM):
            beta_rhsU[i] = sp.sympify(0)
            BU[i] = sp.sympify(0)

    if ShiftEvolOption == "GammaDriving2ndOrder_NoCovariant":
        # Step 3.a.i: Compute right-hand side of beta^i
        # *  \partial_t \beta^i = \beta^j \beta^i_{,j} + B^i
        for i in range(DIM):
            beta_rhsU[i] += BU[i]
            for j in range(DIM):
                beta_rhsU[i] += betaU[j] * betaU_dupD[i][j]
        # Compute right-hand side of B^i:
        eta = par.Cparameters("REAL", thismodule, ["eta"], 2.0)

        # Step 3.a.ii: Compute right-hand side of B^i
        # *  \partial_t B^i     = \beta^j B^i_{,j} + 3/4 * \partial_0 \Lambda^i - eta B^i
        # Step 3.a.iii: Define BU_dupD, in terms of derivative of rescaled variable \bet^i
        BU_dupD = ixp.zerorank2()
        betU_dupD = ixp.declarerank2("betU_dupD", "nosym")
        for i in range(DIM):
            for j in range(DIM):
                BU_dupD[i][j] = betU_dupD[i][j] * rfm.ReU[i] + betU[
                    i] * rfm.ReUdD[i][j]

        # Step 3.a.iv: Compute \partial_0 \bar{\Lambda}^i = (\partial_t - \beta^i \partial_i) \bar{\Lambda}^j
        Lambdabar_partial0 = ixp.zerorank1()
        for i in range(DIM):
            Lambdabar_partial0[i] = Brhs.Lambdabar_rhsU[i]
        for i in range(DIM):
            for j in range(DIM):
                Lambdabar_partial0[j] += -betaU[i] * Brhs.LambdabarU_dupD[j][i]

        # Step 3.a.v: Evaluate RHS of B^i:
        for i in range(DIM):
            B_rhsU[i] += sp.Rational(3,
                                     4) * Lambdabar_partial0[i] - eta * BU[i]
            for j in range(DIM):
                B_rhsU[i] += betaU[j] * BU_dupD[i][j]

    # Step 3.b: The right-hand side of the \partial_t \beta^i equation
    if "GammaDriving2ndOrder_Covariant" in ShiftEvolOption:
        # Step 3.b Option 2: \partial_t \beta^i = \left[\beta^j \bar{D}_j \beta^i\right] + B^{i}
        # First we need GammabarUDD, defined in Bq.gammabar__inverse_and_derivs()
        Bq.gammabar__inverse_and_derivs()
        ConnectionUDD = Bq.GammabarUDD
        # If instead we wish to use the Hatted covariant derivative, we replace
        #    ConnectionUDD with GammahatUDD:
        if ShiftEvolOption == "GammaDriving2ndOrder_Covariant__Hatted":
            ConnectionUDD = rfm.GammahatUDD
        # Then compute right-hand side:
        # Term 1: \beta^j \beta^i_{,j}
        for i in range(DIM):
            for j in range(DIM):
                beta_rhsU[i] += betaU[j] * betaU_dupD[i][j]

        # Term 2: \beta^j \bar{\Gamma}^i_{mj} \beta^m
        for i in range(DIM):
            for j in range(DIM):
                for m in range(DIM):
                    beta_rhsU[
                        i] += betaU[j] * ConnectionUDD[i][m][j] * betaU[m]
        # Term 3: B^i
        for i in range(DIM):
            beta_rhsU[i] += BU[i]

    if "GammaDriving2ndOrder_Covariant" in ShiftEvolOption:
        ConnectionUDD = Bq.GammabarUDD
        # If instead we wish to use the Hatted covariant derivative, we replace
        #    ConnectionUDD with GammahatUDD:
        if ShiftEvolOption == "GammaDriving2ndOrder_Covariant__Hatted":
            ConnectionUDD = rfm.GammahatUDD

        # Step 3.c: Covariant option:
        #  \partial_t B^i = \beta^j \bar{D}_j B^i
        #               + \frac{3}{4} ( \partial_t \bar{\Lambda}^{i} - \beta^j \bar{D}_j \bar{\Lambda}^{i} )
        #               - \eta B^{i}
        #                 = \beta^j B^i_{,j} + \beta^j \bar{\Gamma}^i_{mj} B^m
        #               + \frac{3}{4}[ \partial_t \bar{\Lambda}^{i}
        #                            - \beta^j (\bar{\Lambda}^i_{,j} + \bar{\Gamma}^i_{mj} \bar{\Lambda}^m)]
        #               - \eta B^{i}
        # Term 1, part a: First compute B^i_{,j} using upwinded derivative
        BU_dupD = ixp.zerorank2()
        betU_dupD = ixp.declarerank2("betU_dupD", "nosym")
        for i in range(DIM):
            for j in range(DIM):
                BU_dupD[i][j] = betU_dupD[i][j] * rfm.ReU[i] + betU[
                    i] * rfm.ReUdD[i][j]
        # Term 1: \beta^j B^i_{,j}
        for i in range(DIM):
            for j in range(DIM):
                B_rhsU[i] += betaU[j] * BU_dupD[i][j]
        # Term 2: \beta^j \bar{\Gamma}^i_{mj} B^m
        for i in range(DIM):
            for j in range(DIM):
                for m in range(DIM):
                    B_rhsU[i] += betaU[j] * ConnectionUDD[i][m][j] * BU[m]
        # Term 3: \frac{3}{4}\partial_t \bar{\Lambda}^{i}
        for i in range(DIM):
            B_rhsU[i] += sp.Rational(3, 4) * Brhs.Lambdabar_rhsU[i]
        # Term 4: -\frac{3}{4}\beta^j \bar{\Lambda}^i_{,j}
        for i in range(DIM):
            for j in range(DIM):
                B_rhsU[i] += -sp.Rational(
                    3, 4) * betaU[j] * Brhs.LambdabarU_dupD[i][j]
        # Term 5: -\frac{3}{4}\beta^j \bar{\Gamma}^i_{mj} \bar{\Lambda}^m
        for i in range(DIM):
            for j in range(DIM):
                for m in range(DIM):
                    B_rhsU[i] += -sp.Rational(3, 4) * betaU[j] * ConnectionUDD[
                        i][m][j] * Bq.LambdabarU[m]
        # Term 6: - \eta B^i
        # eta is a free parameter; we declare it here:
        eta = par.Cparameters("REAL", thismodule, ["eta"], 2.0)
        for i in range(DIM):
            B_rhsU[i] += -eta * BU[i]

    if "GammaDriving1stOrder_Covariant" in ShiftEvolOption:
        # Step 3.c: \partial_t \beta^i = \left[\beta^j \bar{D}_j \beta^i\right] + 3/4 Lambdabar^i - eta*beta^i

        # First set \partial_t B^i = 0:
        B_rhsU = ixp.zerorank1()  # \partial_t B^i = 0

        # Second, set \partial_t beta^i RHS:

        # Compute covariant advection term:
        #  We need GammabarUDD, defined in Bq.gammabar__inverse_and_derivs()
        Bq.gammabar__inverse_and_derivs()
        ConnectionUDD = Bq.GammabarUDD
        # If instead we wish to use the Hatted covariant derivative, we replace
        #    ConnectionUDD with GammahatUDD:
        if ShiftEvolOption == "GammaDriving1stOrder_Covariant__Hatted":
            ConnectionUDD = rfm.GammahatUDD

        # Term 1: \beta^j \beta^i_{,j}
        for i in range(DIM):
            for j in range(DIM):
                beta_rhsU[i] += betaU[j] * betaU_dupD[i][j]

        # Term 2: \beta^j \bar{\Gamma}^i_{mj} \beta^m
        for i in range(DIM):
            for j in range(DIM):
                for m in range(DIM):
                    beta_rhsU[
                        i] += betaU[j] * ConnectionUDD[i][m][j] * betaU[m]

        # Term 3: 3/4 Lambdabar^i - eta*beta^i
        eta = par.Cparameters("REAL", thismodule, ["eta"], 2.0)
        for i in range(DIM):
            beta_rhsU[i] += sp.Rational(3,
                                        4) * Bq.LambdabarU[i] - eta * betaU[i]

    # Step 4: Rescale the BSSN gauge RHS quantities so that the evolved
    #         variables may remain smooth across coord singularities
    global vet_rhsU, bet_rhsU
    vet_rhsU = ixp.zerorank1()
    bet_rhsU = ixp.zerorank1()
    for i in range(DIM):
        vet_rhsU[i] = beta_rhsU[i] / rfm.ReU[i]
        bet_rhsU[i] = B_rhsU[i] / rfm.ReU[i]
Esempio n. 7
0
def BSSN_gauge_RHSs():
    # Step 1.d: Set spatial dimension (must be 3 for BSSN, as BSSN is
    #           a 3+1-dimensional decomposition of the general
    #           relativistic field equations)
    DIM = 3

    # Step 1.e: Given the chosen coordinate system, set up
    #           corresponding reference metric and needed
    #           reference metric quantities
    # The following function call sets up the reference metric
    #    and related quantities, including rescaling matrices ReDD,
    #    ReU, and hatted quantities.
    rfm.reference_metric()

    # Step 1.f: Define needed BSSN quantities:
    # Declare scalars & tensors (in terms of rescaled BSSN quantities)
    Bq.BSSN_basic_tensors()
    Bq.betaU_derivs()
    # Declare BSSN_RHSs (excluding the time evolution equations for the gauge conditions)
    Brhs.BSSN_RHSs()

    # Step 2.a: The 1+log lapse condition:
    #   \partial_t \alpha = \beta^i \alpha_{,i} - 2*\alpha*K
    # First import expressions from BSSN_quantities
    cf = Bq.cf
    trK = Bq.trK
    alpha = Bq.alpha
    betaU = Bq.betaU

    # Implement the 1+log lapse condition
    global alpha_rhs
    alpha_rhs = sp.sympify(0)
    if par.parval_from_str(thismodule +
                           "::LapseEvolutionOption") == "OnePlusLog":
        alpha_rhs = -2 * alpha * trK
        alpha_dupD = ixp.declarerank1("alpha_dupD")
        for i in range(DIM):
            alpha_rhs += betaU[i] * alpha_dupD[i]

    # Implement the harmonic slicing lapse condition
    elif par.parval_from_str(thismodule +
                             "::LapseEvolutionOption") == "HarmonicSlicing":
        if par.parval_from_str("BSSN.BSSN_quantities::ConformalFactor") == "W":
            alpha_rhs = -3 * cf**(-4) * Brhs.cf_rhs
        elif par.parval_from_str(
                "BSSN.BSSN_quantities::ConformalFactor") == "phi":
            alpha_rhs = 6 * sp.exp(6 * cf) * Brhs.cf_rhs
        else:
            print(
                "Error LapseEvolutionOption==HarmonicSlicing unsupported for ConformalFactor!=(W or phi)"
            )
            exit(1)

    # Step 2.c: Frozen lapse
    #    \partial_t \alpha = 0
    elif par.parval_from_str(thismodule +
                             "::LapseEvolutionOption") == "Frozen":
        alpha_rhs = sp.sympify(0)

    else:
        print("Error: " + thismodule + "::LapseEvolutionOption == " +
              par.parval_from_str(thismodule + "::LapseEvolutionOption") +
              " not supported!")
        exit(1)

    # Step 3.a: Set \partial_t \beta^i
    # First import expressions from BSSN_quantities
    BU = Bq.BU
    betU = Bq.betU
    betaU_dupD = Bq.betaU_dupD
    # Define needed quantities
    beta_rhsU = ixp.zerorank1()
    B_rhsU = ixp.zerorank1()
    if par.parval_from_str(
            thismodule +
            "::ShiftEvolutionOption") == "GammaDriving2ndOrder_NoCovariant":
        # Step 3.a.i: Compute right-hand side of beta^i
        # *  \partial_t \beta^i = \beta^j \beta^i_{,j} + B^i
        for i in range(DIM):
            beta_rhsU[i] += BU[i]
            for j in range(DIM):
                beta_rhsU[i] += betaU[j] * betaU_dupD[i][j]
        # Compute right-hand side of B^i:
        eta = par.Cparameters("REAL", thismodule, ["eta"])

        # Step 3.a.ii: Compute right-hand side of B^i
        # *  \partial_t B^i     = \beta^j B^i_{,j} + 3/4 * \partial_0 \Lambda^i - eta B^i
        # Step 15b: Define BU_dupD, in terms of derivative of rescaled variable \bet^i
        BU_dupD = ixp.zerorank2()
        betU_dupD = ixp.declarerank2("betU_dupD", "nosym")
        for i in range(DIM):
            for j in range(DIM):
                BU_dupD[i][j] = betU_dupD[i][j] * rfm.ReU[i] + betU[
                    i] * rfm.ReUdD[i][j]

        # Step 15c: Compute \partial_0 \bar{\Lambda}^i = (\partial_t - \beta^i \partial_i) \bar{\Lambda}^j
        Lambdabar_partial0 = ixp.zerorank1()
        for i in range(DIM):
            Lambdabar_partial0[i] = Brhs.Lambdabar_rhsU[i]
        for i in range(DIM):
            for j in range(DIM):
                Lambdabar_partial0[j] += -betaU[i] * Brhs.LambdabarU_dupD[j][i]

        # Step 15d: Evaluate RHS of B^i:
        for i in range(DIM):
            B_rhsU[i] += sp.Rational(3,
                                     4) * Lambdabar_partial0[i] - eta * BU[i]
            for j in range(DIM):
                B_rhsU[i] += betaU[j] * BU_dupD[i][j]

    if par.parval_from_str(
            thismodule +
            "::ShiftEvolutionOption") == "GammaDriving2ndOrder_Covariant":
        # Step 14 Option 2: \partial_t \beta^i = \left[\beta^j \bar{D}_j \beta^i\right] + B^{i}
        # First we need GammabarUDD, defined in Bq.gammabar__inverse_and_derivs()
        Bq.gammabar__inverse_and_derivs()
        GammabarUDD = Bq.GammabarUDD
        # Then compute right-hand side:
        # Term 1: \beta^j \beta^i_{,j}
        for i in range(DIM):
            for j in range(DIM):
                beta_rhsU[i] += betaU[j] * betaU_dupD[i][j]

        # Term 2: \beta^j \bar{\Gamma}^i_{mj} \beta^m
        for i in range(DIM):
            for j in range(DIM):
                for m in range(DIM):
                    beta_rhsU[i] += betaU[j] * GammabarUDD[i][m][j] * betaU[m]
        # Term 3: B^i
        for i in range(DIM):
            beta_rhsU[i] += BU[i]

    if par.parval_from_str(
            thismodule +
            "::ShiftEvolutionOption") == "GammaDriving2ndOrder_Covariant":
        # Step 15: Covariant option:
        #  \partial_t B^i = \beta^j \bar{D}_j B^i
        #               + \frac{3}{4} ( \partial_t \bar{\Lambda}^{i} - \beta^j \bar{D}_j \bar{\Lambda}^{i} )
        #               - \eta B^{i}
        #                 = \beta^j B^i_{,j} + \beta^j \bar{\Gamma}^i_{mj} B^m
        #               + \frac{3}{4}[ \partial_t \bar{\Lambda}^{i}
        #                            - \beta^j (\bar{\Lambda}^i_{,j} + \bar{\Gamma}^i_{mj} \bar{\Lambda}^m)]
        #               - \eta B^{i}
        # Term 1, part a: First compute B^i_{,j} using upwinded derivative
        BU_dupD = ixp.zerorank2()
        betU_dupD = ixp.declarerank2("betU_dupD", "nosym")
        for i in range(DIM):
            for j in range(DIM):
                BU_dupD[i][j] = betU_dupD[i][j] * rfm.ReU[i] + betU[
                    i] * rfm.ReUdD[i][j]
        # Term 1: \beta^j B^i_{,j}
        for i in range(DIM):
            for j in range(DIM):
                B_rhsU[i] += betaU[j] * BU_dupD[i][j]
        # Term 2: \beta^j \bar{\Gamma}^i_{mj} B^m
        for i in range(DIM):
            for j in range(DIM):
                for m in range(DIM):
                    B_rhsU[i] += betaU[j] * GammabarUDD[i][m][j] * BU[m]
        # Term 3: \frac{3}{4}\partial_t \bar{\Lambda}^{i}
        for i in range(DIM):
            B_rhsU[i] += sp.Rational(3, 4) * Brhs.Lambdabar_rhsU[i]
        # Term 4: -\frac{3}{4}\beta^j \bar{\Lambda}^i_{,j}
        for i in range(DIM):
            for j in range(DIM):
                B_rhsU[i] += -sp.Rational(
                    3, 4) * betaU[j] * Brhs.LambdabarU_dupD[i][j]
        # Term 5: -\frac{3}{4}\beta^j \bar{\Gamma}^i_{mj} \bar{\Lambda}^m
        for i in range(DIM):
            for j in range(DIM):
                for m in range(DIM):
                    B_rhsU[i] += -sp.Rational(3, 4) * betaU[j] * GammabarUDD[
                        i][m][j] * Bq.LambdabarU[m]
        # Term 6: - \eta B^i
        # eta is a free parameter; we declare it here:
        eta = par.Cparameters("REAL", thismodule, ["eta"])
        for i in range(DIM):
            B_rhsU[i] += -eta * BU[i]

    # Step 4: Rescale the BSSN gauge RHS quantities so that the evolved
    #         variables may remain smooth across coord singularities
    global vet_rhsU, bet_rhsU
    vet_rhsU = ixp.zerorank1()
    bet_rhsU = ixp.zerorank1()
    for i in range(DIM):
        vet_rhsU[i] = beta_rhsU[i] / rfm.ReU[i]
        bet_rhsU[i] = B_rhsU[i] / rfm.ReU[i]
def Convert_Spherical_or_Cartesian_ADM_to_BSSN_curvilinear(
        CoordType_in, ADM_input_function_name, pointer_to_ID_inputs=False):
    # The ADM & BSSN formalisms only work in 3D; they are 3+1 decompositions of Einstein's equations.
    #    To implement axisymmetry or spherical symmetry, simply set all spatial derivatives in
    #    the relevant angular directions to zero; DO NOT SET DIM TO ANYTHING BUT 3.

    # Step 0: Set spatial dimension (must be 3 for BSSN)
    DIM = 3

    # Step 1: All ADM initial data quantities are now functions of xx0,xx1,xx2, but
    #         they are still in the Spherical or Cartesian basis. We can now directly apply
    #         Jacobian transformations to get them in the correct xx0,xx1,xx2 basis:
    # Step 1: All input quantities are in terms of r,th,ph or x,y,z. We want them in terms
    #         of xx0,xx1,xx2, so here we call sympify_integers__replace_rthph() to replace
    #         r,th,ph or x,y,z, respectively, with the appropriate functions of xx0,xx1,xx2
    #         as defined for this particular reference metric in reference_metric.py's
    #         xxSph[] or xxCart[], respectively:

    # Define the input variables:
    gammaSphorCartDD = ixp.declarerank2("gammaSphorCartDD", "sym01")
    KSphorCartDD = ixp.declarerank2("KSphorCartDD", "sym01")
    alphaSphorCart = sp.symbols("alphaSphorCart")
    betaSphorCartU = ixp.declarerank1("betaSphorCartU")
    BSphorCartU = ixp.declarerank1("BSphorCartU")

    # Make sure that rfm.reference_metric() has been called.
    #    We'll need the variables it defines throughout this module.
    if rfm.have_already_called_reference_metric_function == False:
        print(
            "Error. Called Convert_Spherical_ADM_to_BSSN_curvilinear() without"
        )
        print(
            "       first setting up reference metric, by calling rfm.reference_metric()."
        )
        exit(1)

    r_th_ph_or_Cart_xyz_oID_xx = []
    if CoordType_in == "Spherical":
        r_th_ph_or_Cart_xyz_oID_xx = rfm.xxSph
    elif CoordType_in == "Cartesian":
        r_th_ph_or_Cart_xyz_oID_xx = rfm.xxCart
    else:
        print(
            "Error: Can only convert ADM Cartesian or Spherical initial data to BSSN Curvilinear coords."
        )
        exit(1)

    # Next apply Jacobian transformations to convert into the (xx0,xx1,xx2) basis

    # alpha is a scalar, so no Jacobian transformation is necessary.
    alpha = alphaSphorCart

    Jac_dUSphorCart_dDrfmUD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            Jac_dUSphorCart_dDrfmUD[i][j] = sp.diff(
                r_th_ph_or_Cart_xyz_oID_xx[i], rfm.xx[j])

    Jac_dUrfm_dDSphorCartUD, dummyDET = ixp.generic_matrix_inverter3x3(
        Jac_dUSphorCart_dDrfmUD)

    betaU = ixp.zerorank1()
    BU = ixp.zerorank1()
    gammaDD = ixp.zerorank2()
    KDD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            betaU[i] += Jac_dUrfm_dDSphorCartUD[i][j] * betaSphorCartU[j]
            BU[i] += Jac_dUrfm_dDSphorCartUD[i][j] * BSphorCartU[j]
            for k in range(DIM):
                for l in range(DIM):
                    gammaDD[i][j] += Jac_dUSphorCart_dDrfmUD[k][i] * Jac_dUSphorCart_dDrfmUD[l][j] * \
                                     gammaSphorCartDD[k][l]
                    KDD[i][j] += Jac_dUSphorCart_dDrfmUD[k][
                        i] * Jac_dUSphorCart_dDrfmUD[l][j] * KSphorCartDD[k][l]

    # Step 3: All ADM quantities were input into this function in the Spherical or Cartesian
    #         basis, as functions of r,th,ph or x,y,z, respectively. In Steps 1 and 2 above,
    #         we converted them to the xx0,xx1,xx2 basis, and as functions of xx0,xx1,xx2.
    #         Here we convert ADM quantities to their BSSN Curvilinear counterparts:

    # Step 3.1: Convert ADM $\gamma_{ij}$ to BSSN $\bar{\gamma}_{ij}$:
    #   We have (Eqs. 2 and 3 of [Ruchlin *et al.*](https://arxiv.org/pdf/1712.07658.pdf)):
    # \bar{\gamma}_{i j} = \left(\frac{\bar{\gamma}}{\gamma}\right)^{1/3} \gamma_{ij}.
    gammaUU, gammaDET = ixp.symm_matrix_inverter3x3(gammaDD)
    gammabarDD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            gammabarDD[i][j] = (rfm.detgammahat / gammaDET)**(sp.Rational(
                1, 3)) * gammaDD[i][j]

    # Step 3.2: Convert the extrinsic curvature $K_{ij}$ to the trace-free extrinsic
    #           curvature $\bar{A}_{ij}$, plus the trace of the extrinsic curvature $K$,
    #           where (Eq. 3 of [Baumgarte *et al.*](https://arxiv.org/pdf/1211.6632.pdf)):

    # K = \gamma^{ij} K_{ij}, and
    # \bar{A}_{ij} &= \left(\frac{\bar{\gamma}}{\gamma}\right)^{1/3} \left(K_{ij} - \frac{1}{3} \gamma_{ij} K \right)
    trK = sp.sympify(0)
    for i in range(DIM):
        for j in range(DIM):
            trK += gammaUU[i][j] * KDD[i][j]

    AbarDD = ixp.zerorank2()
    for i in range(DIM):
        for j in range(DIM):
            AbarDD[i][j] = (rfm.detgammahat / gammaDET)**(sp.Rational(
                1, 3)) * (KDD[i][j] - sp.Rational(1, 3) * gammaDD[i][j] * trK)

    # Step 3.3: Set the conformal factor variable $\texttt{cf}$, which is set
    #           by the "BSSN_unrescaled_and_barred_vars::EvolvedConformalFactor_cf" parameter. For example if
    #           "EvolvedConformalFactor_cf" is set to "phi", we can use Eq. 3 of
    #           [Ruchlin *et al.*](https://arxiv.org/pdf/1712.07658.pdf),
    #           which in arbitrary coordinates is written:

    # \phi = \frac{1}{12} \log\left(\frac{\gamma}{\bar{\gamma}}\right).

    # Alternatively if "BSSN_unrescaled_and_barred_vars::EvolvedConformalFactor_cf" is set to "chi", then

    # \chi = e^{-4 \phi} = \exp\left(-4 \frac{1}{12} \left(\frac{\gamma}{\bar{\gamma}}\right)\right)
    #      = \exp\left(-\frac{1}{3} \log\left(\frac{\gamma}{\bar{\gamma}}\right)\right) = \left(\frac{\gamma}{\bar{\gamma}}\right)^{-1/3}.
    #
    # Finally if "BSSN_unrescaled_and_barred_vars::EvolvedConformalFactor_cf" is set to "W", then

    # W = e^{-2 \phi} = \exp\left(-2 \frac{1}{12} \log\left(\frac{\gamma}{\bar{\gamma}}\right)\right) =
    # \exp\left(-\frac{1}{6} \log\left(\frac{\gamma}{\bar{\gamma}}\right)\right) =
    # \left(\frac{\gamma}{\bar{\gamma}}\right)^{-1/6}.

    # First compute gammabarDET:
    gammabarUU, gammabarDET = ixp.symm_matrix_inverter3x3(gammabarDD)

    cf = sp.sympify(0)

    if par.parval_from_str("EvolvedConformalFactor_cf") == "phi":
        cf = sp.Rational(1, 12) * sp.log(gammaDET / gammabarDET)
    elif par.parval_from_str("EvolvedConformalFactor_cf") == "chi":
        cf = (gammaDET / gammabarDET)**(-sp.Rational(1, 3))
    elif par.parval_from_str("EvolvedConformalFactor_cf") == "W":
        cf = (gammaDET / gammabarDET)**(-sp.Rational(1, 6))
    else:
        print("Error EvolvedConformalFactor_cf type = \"" +
              par.parval_from_str("EvolvedConformalFactor_cf") + "\" unknown.")
        exit(1)

    # Step 4: Rescale tensorial quantities according to the prescription described in
    #         the [BSSN in curvilinear coordinates tutorial module](Tutorial-BSSNCurvilinear.ipynb)
    #         (also [Ruchlin *et al.*](https://arxiv.org/pdf/1712.07658.pdf)):
    #
    # h_{ij} &= (\bar{\gamma}_{ij} - \hat{\gamma}_{ij})/\text{ReDD[i][j]}\\
    # a_{ij} &= \bar{A}_{ij}/\text{ReDD[i][j]}\\
    # \lambda^i &= \bar{\Lambda}^i/\text{ReU[i]}\\
    # \mathcal{V}^i &= \beta^i/\text{ReU[i]}\\
    # \mathcal{B}^i &= B^i/\text{ReU[i]}\\
    hDD = ixp.zerorank2()
    aDD = ixp.zerorank2()
    vetU = ixp.zerorank1()
    betU = ixp.zerorank1()
    for i in range(DIM):
        vetU[i] = betaU[i] / rfm.ReU[i]
        betU[i] = BU[i] / rfm.ReU[i]
        for j in range(DIM):
            hDD[i][j] = (gammabarDD[i][j] - rfm.ghatDD[i][j]) / rfm.ReDD[i][j]
            aDD[i][j] = AbarDD[i][j] / rfm.ReDD[i][j]

    # Step 5: Output all ADM-to-BSSN expressions to a C function. This function
    #         must first call the ID_ADM_SphorCart() defined above. Using these
    #         Spherical or Cartesian data, it sets up all quantities needed for
    #         BSSNCurvilinear initial data, *except* $\lambda^i$, which must be
    #         computed from numerical data using finite-difference derivatives.
    with open("BSSN/ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs.h",
              "w") as file:
        file.write(
            "void ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs(const REAL xx0xx1xx2[3],"
        )
        if pointer_to_ID_inputs == True:
            file.write("ID_inputs *other_inputs,")
        else:
            file.write("ID_inputs other_inputs,")
        file.write("""
                    REAL *hDD00,REAL *hDD01,REAL *hDD02,REAL *hDD11,REAL *hDD12,REAL *hDD22,
                    REAL *aDD00,REAL *aDD01,REAL *aDD02,REAL *aDD11,REAL *aDD12,REAL *aDD22,
                    REAL *trK, 
                    REAL *vetU0,REAL *vetU1,REAL *vetU2,
                    REAL *betU0,REAL *betU1,REAL *betU2,
                    REAL *alpha,  REAL *cf) {
      REAL gammaSphorCartDD00,gammaSphorCartDD01,gammaSphorCartDD02,
           gammaSphorCartDD11,gammaSphorCartDD12,gammaSphorCartDD22;
      REAL KSphorCartDD00,KSphorCartDD01,KSphorCartDD02,
           KSphorCartDD11,KSphorCartDD12,KSphorCartDD22;
      REAL alphaSphorCart,betaSphorCartU0,betaSphorCartU1,betaSphorCartU2;
      REAL BSphorCartU0,BSphorCartU1,BSphorCartU2;
      const REAL xx0 = xx0xx1xx2[0];
      const REAL xx1 = xx0xx1xx2[1];
      const REAL xx2 = xx0xx1xx2[2];
      REAL xyz_or_rthph[3];\n""")
    outCparams = "preindent=1,outCfileaccess=a,outCverbose=False,includebraces=False"
    outputC(r_th_ph_or_Cart_xyz_oID_xx[0:3],
            ["xyz_or_rthph[0]", "xyz_or_rthph[1]", "xyz_or_rthph[2]"],
            "BSSN/ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs.h",
            outCparams + ",CSE_enable=False")
    with open("BSSN/ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs.h",
              "a") as file:
        file.write("      " + ADM_input_function_name +
                   """(xyz_or_rthph, other_inputs,
                      &gammaSphorCartDD00,&gammaSphorCartDD01,&gammaSphorCartDD02,
                      &gammaSphorCartDD11,&gammaSphorCartDD12,&gammaSphorCartDD22,
                      &KSphorCartDD00,&KSphorCartDD01,&KSphorCartDD02,
                      &KSphorCartDD11,&KSphorCartDD12,&KSphorCartDD22,
                      &alphaSphorCart,&betaSphorCartU0,&betaSphorCartU1,&betaSphorCartU2,
                      &BSphorCartU0,&BSphorCartU1,&BSphorCartU2);
        // Next compute all rescaled BSSN curvilinear quantities:\n""")
    outCparams = "preindent=1,outCfileaccess=a,outCverbose=False,includebraces=False"
    outputC([
        hDD[0][0], hDD[0][1], hDD[0][2], hDD[1][1], hDD[1][2], hDD[2][2],
        aDD[0][0], aDD[0][1], aDD[0][2], aDD[1][1], aDD[1][2], aDD[2][2], trK,
        vetU[0], vetU[1], vetU[2], betU[0], betU[1], betU[2], alpha, cf
    ], [
        "*hDD00", "*hDD01", "*hDD02", "*hDD11", "*hDD12", "*hDD22", "*aDD00",
        "*aDD01", "*aDD02", "*aDD11", "*aDD12", "*aDD22", "*trK", "*vetU0",
        "*vetU1", "*vetU2", "*betU0", "*betU1", "*betU2", "*alpha", "*cf"
    ],
            "BSSN/ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs.h",
            params=outCparams)
    with open("BSSN/ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs.h",
              "a") as file:
        file.write("}\n")

    # Step 5.A: Output the driver function for the above
    #           function ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs()
    # Next write the driver function for ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs():
    with open("BSSN/ID_BSSN__ALL_BUT_LAMBDAs.h", "w") as file:
        file.write(
            "void ID_BSSN__ALL_BUT_LAMBDAs(const int Nxx_plus_2NGHOSTS[3],REAL *xx[3],"
        )
        if pointer_to_ID_inputs == True:
            file.write("ID_inputs *other_inputs,")
        else:
            file.write("ID_inputs other_inputs,")
        file.write("REAL *in_gfs) {\n")
        file.write(
            lp.loop(["i2", "i1", "i0"], ["0", "0", "0"], [
                "Nxx_plus_2NGHOSTS[2]", "Nxx_plus_2NGHOSTS[1]",
                "Nxx_plus_2NGHOSTS[0]"
            ], ["1", "1", "1"], [
                "#pragma omp parallel for", "    const REAL xx2 = xx[2][i2];",
                "        const REAL xx1 = xx[1][i1];"
            ], "", """const REAL xx0 = xx[0][i0];
const int idx = IDX3(i0,i1,i2);
const REAL xx0xx1xx2[3] = {xx0,xx1,xx2};
ID_ADM_xx0xx1xx2_to_BSSN_xx0xx1xx2__ALL_BUT_LAMBDAs(xx0xx1xx2,other_inputs,
                    &in_gfs[IDX4pt(HDD00GF,idx)],&in_gfs[IDX4pt(HDD01GF,idx)],&in_gfs[IDX4pt(HDD02GF,idx)],
                    &in_gfs[IDX4pt(HDD11GF,idx)],&in_gfs[IDX4pt(HDD12GF,idx)],&in_gfs[IDX4pt(HDD22GF,idx)],
                    &in_gfs[IDX4pt(ADD00GF,idx)],&in_gfs[IDX4pt(ADD01GF,idx)],&in_gfs[IDX4pt(ADD02GF,idx)],
                    &in_gfs[IDX4pt(ADD11GF,idx)],&in_gfs[IDX4pt(ADD12GF,idx)],&in_gfs[IDX4pt(ADD22GF,idx)],
                    &in_gfs[IDX4pt(TRKGF,idx)],
                    &in_gfs[IDX4pt(VETU0GF,idx)],&in_gfs[IDX4pt(VETU1GF,idx)],&in_gfs[IDX4pt(VETU2GF,idx)],
                    &in_gfs[IDX4pt(BETU0GF,idx)],&in_gfs[IDX4pt(BETU1GF,idx)],&in_gfs[IDX4pt(BETU2GF,idx)],
                    &in_gfs[IDX4pt(ALPHAGF,idx)],&in_gfs[IDX4pt(CFGF,idx)]);
"""))
        file.write("}\n")

    # Step 6: Compute $\bar{\Lambda}^i$ (Eqs. 4 and 5 of
    #         [Baumgarte *et al.*](https://arxiv.org/pdf/1211.6632.pdf)),
    #         from finite-difference derivatives of rescaled metric
    #         quantities $h_{ij}$:

    # \bar{\Lambda}^i = \bar{\gamma}^{jk}\left(\bar{\Gamma}^i_{jk} - \hat{\Gamma}^i_{jk}\right).

    # The reference_metric.py module provides us with analytic expressions for
    #         $\hat{\Gamma}^i_{jk}$, so here we need only compute
    #         finite-difference expressions for $\bar{\Gamma}^i_{jk}$, based on
    #         the values for $h_{ij}$ provided in the initial data. Once
    #         $\bar{\Lambda}^i$ has been computed, we apply the usual rescaling
    #         procedure:

    # \lambda^i = \bar{\Lambda}^i/\text{ReU[i]},

    # and then output the result to a C file using the NRPy+
    #         finite-difference C output routine.

    # We will need all BSSN gridfunctions to be defined, as well as
    #     expressions for gammabarDD_dD in terms of exact derivatives of
    #     the rescaling matrix and finite-difference derivatives of
    #     hDD's. This functionality is provided by BSSN.BSSN_unrescaled_and_barred_vars,
    #     which we call here to overwrite above definitions of gammabarDD,gammabarUU, etc.
    Bq.gammabar__inverse_and_derivs()  # Provides gammabarUU and GammabarUDD
    gammabarUU = Bq.gammabarUU
    GammabarUDD = Bq.GammabarUDD

    # Next evaluate \bar{\Lambda}^i, based on GammabarUDD above and GammahatUDD
    #       (from the reference metric):
    LambdabarU = ixp.zerorank1()
    for i in range(DIM):
        for j in range(DIM):
            for k in range(DIM):
                LambdabarU[i] += gammabarUU[j][k] * (GammabarUDD[i][j][k] -
                                                     rfm.GammahatUDD[i][j][k])

    # Finally apply rescaling:
    # lambda^i = Lambdabar^i/\text{ReU[i]}
    lambdaU = ixp.zerorank1()
    for i in range(DIM):
        lambdaU[i] = LambdabarU[i] / rfm.ReU[i]

    outCparams = "preindent=1,outCfileaccess=a,outCverbose=False,includebraces=False"
    lambdaU_expressions = [
        lhrh(lhs=gri.gfaccess("in_gfs", "lambdaU0"), rhs=lambdaU[0]),
        lhrh(lhs=gri.gfaccess("in_gfs", "lambdaU1"), rhs=lambdaU[1]),
        lhrh(lhs=gri.gfaccess("in_gfs", "lambdaU2"), rhs=lambdaU[2])
    ]
    lambdaU_expressions_FDout = fin.FD_outputC("returnstring",
                                               lambdaU_expressions, outCparams)

    with open("BSSN/ID_BSSN_lambdas.h", "w") as file:
        file.write("""
void ID_BSSN_lambdas(const int Nxx[3],const int Nxx_plus_2NGHOSTS[3],REAL *xx[3],const REAL dxx[3],REAL *in_gfs) {\n"""
                   )
        file.write(
            lp.loop(["i2", "i1", "i0"], ["NGHOSTS", "NGHOSTS", "NGHOSTS"],
                    ["NGHOSTS+Nxx[2]", "NGHOSTS+Nxx[1]", "NGHOSTS+Nxx[0]"],
                    ["1", "1", "1"], [
                        "const REAL invdx0 = 1.0/dxx[0];\n" +
                        "const REAL invdx1 = 1.0/dxx[1];\n" +
                        "const REAL invdx2 = 1.0/dxx[2];\n" +
                        "#pragma omp parallel for",
                        "    const REAL xx2 = xx[2][i2];",
                        "        const REAL xx1 = xx[1][i1];"
                    ], "", "const REAL xx0 = xx[0][i0];\n" +
                    lambdaU_expressions_FDout))
        file.write("}\n")