def build_from_PostIn(postorder, inorder):
    if inorder and postorder:
        index = inorder.index(postorder.pop())
        root = Node(inorder[index])
        root.right = build_from_PostIn(postorder, inorder[index + 1:])
        root.left = build_from_PostIn(postorder, inorder[:index])
        return root
 def _create_min_bst(self, array, start, end):
     if end < start:
         return None
     mid = (start + end) // 2
     node = Node(array[mid])
     node.left = self._create_min_bst(array, start, mid - 1)
     node.right = self._create_min_bst(array, mid + 1, end)
     return node
def build_from_PreIn(preorder, inorder):
    if inorder and preorder:
        index = inorder.index(preorder[0])
        root = Node(inorder[index])
        root.left = build_from_PreIn(preorder[1:index + 1], inorder[:index])
        root.right = build_from_PreIn(preorder[index + 1:],
                                      inorder[index + 1:])
        return root
Esempio n. 4
0
def test_get():
    root = Node('b', 5)
    root.left = Node('a', 3)
    root.right = Node('c', 2)
    bst = BST(root)

    assert bst.get('a') == 3
    assert bst.get('c') == 2
    assert bst.get('d') is None
Esempio n. 5
0
 def print_Trees(first, last):
     trees = []
     for i in range(first, last + 1):
         for j in print_Trees(first, i - 1):
             for y in print_Trees(i + 1, last):
                 # print("hi")
                 BT = Binary_Tree()
                 root = Node(i)
                 root.left = j
                 root.right = y
                 BT.root = root
                 trees.append(root)
     return trees or [None]
Esempio n. 6
0
from BST import Node

def inorder(root,arr):
	if root:
		inorder(root.left,arr)
		arr.append(root.key)
		inorder(root.right,arr)

def isBST(root):
	arr = []
	inorder(root,arr)
	return arr == sorted(arr)

root = Node(6)
root.left = Node(9)
root.right = Node(10)
root.left.left = Node(17)
root.left.right = Node(4)
root.right.right = Node(11)

print isBST(root)

root = Node(6)
root.left = Node(4)
root.right = Node(7)

print isBST(root)
Esempio n. 7
0
from BST import Node


def inorder(root, arr):
    if root:
        inorder(root.left, arr)
        arr.append(root.key)
        inorder(root.right, arr)


def isBST(root):
    arr = []
    inorder(root, arr)
    return arr == sorted(arr)


root = Node(6)
root.left = Node(9)
root.right = Node(10)
root.left.left = Node(17)
root.left.right = Node(4)
root.right.right = Node(11)

print isBST(root)

root = Node(6)
root.left = Node(4)
root.right = Node(7)

print isBST(root)
Esempio n. 8
0
        root = new_node
    else:
        if node.key > root.key:
            if root.right is None:
                root.right = node
            else:
                Insert_rec(root.right, node)
        else:
            if root.left is None:
                root.left = node
            else:
                Insert_rec(root.left, node)


root = Node(20)
root.left = Node(8)
root.right = Node(22)
root.left.left = Node(4)
root.left.right = Node(12)
root.left.right.left = Node(10)
root.left.right.right = Node(14)

n1 = 10
n2 = 14
t = lca(root, n1, n2)
print "LCA of %d and %d is %d" % (n1, n2, t.key)

n1 = 14
n2 = 8
t = lca(root, n1, n2)
print "LCA of %d and %d is %d" % (n1, n2, t.key)
Esempio n. 9
0
tree = BST()
tree.add(1)
tree.add(0)
tree.remove(1)
assert tree.root.key == 0
tree.remove(0)
assert tree.root is None


#################################
##  Validate BST
#################################
n1 = Node(1)
root = Node(2)
root.left = n1

def is_bst(root):
    if root is None:
        return True
    if root.left and root.left.key > root.key:
        return False
    if root.right and root.right.key < root.key:
        return False
    return is_bst(root.left) and is_bst(root.right)

assert is_bst(root) == True


fake_tree = Node(0, right=n1)
n1.left = root
Esempio n. 10
0
from BST import Node


def max_sum(root):
    if root is None:
        return 0

    l = max_sum(root.left)
    r = max_sum(root.right)
    max_single = max(max(l, r) + root.key, root.key)
    max_top = max(max_single, l + r + root.key)
    max_sum.res = max(max_sum.res, max_top)
    return max_single


def max_util(root):
    max_sum.res = float("-inf")
    max_sum(root)
    return max_sum.res


root = Node(10)
root.left = Node(2)
root.right = Node(10)
root.left.left = Node(20)
root.left.right = Node(1)
root.right.right = Node(-25)
root.right.right.left = Node(3)
root.right.right.right = Node(4)

print max_util(root)
Esempio n. 11
0
	if not root:
		root = new_node
	else:
		if node.key > root.key:
			if root.right is None:
				root.right = node
			else:
				Insert_rec(root.right,node)
		else:
			if root.left is None:
				root.left = node
			else:
				Insert_rec(root.left,node)

root = Node(20)
root.left = Node(8)
root.right = Node(22)
root.left.left = Node(4)
root.left.right = Node(12)
root.left.right.left = Node(10)
root.left.right.right = Node(14)
 
n1 = 10 ; n2 = 14
t = lca(root, n1, n2)
print "LCA of %d and %d is %d" %(n1, n2, t.key)
 
n1 = 14 ; n2 = 8
t = lca(root, n1, n2)
print "LCA of %d and %d is %d" %(n1, n2 , t.key)
 
n1 = 10 ; n2 = 22
Esempio n. 12
0
from BST import Node

def max_sum(root):
	if root is None:
		return 0

	l = max_sum(root.left)
	r = max_sum(root.right)
	max_single = max(max(l,r)+root.key,root.key)
	max_top = max(max_single,l+r+root.key)
	max_sum.res = max(max_sum.res,max_top)
	return max_single

def max_util(root):
	max_sum.res = float("-inf")
	max_sum(root)
	return max_sum.res

root = Node(10)
root.left = Node(2)
root.right   = Node(10)
root.left.left  = Node(20)
root.left.right = Node(1)
root.right.right = Node(-25)
root.right.right.left   = Node(3)
root.right.right.right  = Node(4)

print max_util(root)
Esempio n. 13
0
from BST import Node


def validate_tree(root):
    if not root or (not root.left and not root.right):
        return True
    #for an imbalanced tree, there has to be cond to check if one of the childs is none
    if (root.left and root.right and root.left.value < root.value
            and root.right.value > root.value) or (
                root.left.value < root.value
                and not root.right) or (root.right.value > root.value
                                        and not root.left):
        return validate_tree(root.left) and validate_tree(root.right)
    return False


n = Node(2)
n.left = Node(1)
n.left.left = Node(0)
n.right = Node(3)
print(validate_tree(n))