def plot_inclusion(self, burn=None, inclusion_threshold=0, unit_scale=True, number_of_variables=None, ax=None, **kwargs): """A barplot showing the marginal inclusion probability of each variable. """ inc = self.inclusion_probs(burn=burn) pos = self.coefficient_positive_probability(burn=burn) colors = np.array([str(x) for x in pos]) index = np.argsort(inc.values)[::-1] if number_of_variables is None: number_of_variables = np.sum(inc >= inclusion_threshold) inc = inc[index[:number_of_variables]] pos = pos[index[:number_of_variables]] colors = colors[index[:number_of_variables]] foo = R.barplot(inc, ax=ax, color=colors[::-1], linewidth=.25, edgecolor="black", xlab="Marginal Inclusion Probability", ylab="Variable", **kwargs) return foo
def plot_inclusion_probs(coefficients, burn, xnames, inclusion_threshold=0, unit_scale=True, number_of_variables=None, ax=None, **kwargs): """ """ coef = coefficients[burn:, :] inc = compute_inclusion_probabilities(coef) pos = coefficient_positive_probability(coef) colors = np.array([str(x) for x in pos]) index = np.argsort(inc.values)[::-1] if number_of_variables is None: number_of_variables = np.sum(inc >= inclusion_threshold) inc = inc[index[:number_of_variables]] pos = pos[index[:number_of_variables]] colors = colors[index[:number_of_variables]] ans = R.barplot(inc, ax=ax, color=colors[::-1], linewidth=.25, edgecolor="black", xlab="Marginal Inclusion Probability", ylab="Variable", **kwargs) return ans