Esempio n. 1
0
def get_all_interaction_pairs(pdb_filename, print_files=True):
    """
    Takes a pdb file path and generates a folder with all the pairs of interacting chains without checking if
    there is redundant content. This simulates the user input
    :param pdb_filename:  pdb file with the structure we want to break into interactions
    :param print_files: parameter indicating if we want to output the interaction pairs to a directory.
    :return: a directory with pdb files of the interactions and a list with the first element being the list of all
    interactions, ... to finish this with adri
    """

    parser = PDBParser(PERMISSIVE=1)

    # Load pdb structure to a pdb file
    structure_id = get_structure_name(pdb_filename)
    filename = pdb_filename
    structure = parser.get_structure(structure_id, filename)

    neighbor_chains = get_neighbor_chains(structure)

    # Create a new directory with the interaction pdb files
    if print_files:
        if not os.path.exists('%s_all_interactions' % structure_id):
            os.makedirs('%s_all_interactions' % structure_id)
        else:
            for the_file in os.listdir('%s_all_interactions' % structure_id):
                file_path = os.path.join('%s_all_interactions' % structure_id,
                                         the_file)
                if os.path.isfile(file_path):
                    os.unlink(file_path)

        io = PDBIO()
        io.set_structure(structure)

        for chain in neighbor_chains:
            for other_chain in neighbor_chains[chain]:
                io.save(
                    '%s_all_interactions/%s_%s%s.pdb' %
                    (structure_id, structure_id, chain.get_id(),
                     other_chain.get_id()), ChainSelect(chain, other_chain))
    else:
        interaction_list = []
        structure_counter = 0
        for chain, neighbor in neighbor_chains.items():
            for chain2 in neighbor:
                new_str = Structure.Structure(
                    '%s_%s' % (structure_id, structure_counter))
                structure_counter += 1
                new_str.add(Model.Model(0))
                new_str[0].add(chain)
                new_str[0].add(chain2)
                interaction_list.append(new_str)

        return [interaction_list, 's%s_all_interactions' % structure_id]
Esempio n. 2
0
    def set_new_positions(self, positions):
        self.positions = positions
        new_model = Model.Model(len(self.structure.child_list), len(self.structure.child_list) + 1)
        chain = self.structure[0].child_list[0].copy()
        new_model.add(chain)

        self.structure.add(new_model)
        chain = new_model.child_list[0]
        counter = 0
        for residue in chain.get_residues():
            for atom in residue.get_atoms():
                atom.set_coord(positions[counter])
                counter += 1
Esempio n. 3
0
    def dump_pdb(self, filename):
        '''
        If the BulgeGraph has a chain created for it, dump that as well.

        @param filename: The filename of the pdb file to which the chain
                         coordinates will be written.
        '''
        if self.chain is None:
            return

        self.chain.child_list.sort()
        mod = bpm.Model(' ')
        s = bps.Structure(' ')

        mod.add(self.chain)
        s.add(mod)

        io = bp.PDBIO()
        io.set_structure(s)
        io.save(filename)
Esempio n. 4
0
def get_structure_slice_by_residues(struct: Structure, domain_name: str,
                                    chain_order: int, start: int,
                                    finish: int) -> Structure:
    """
    Return new structure that contains new model (id=1), new chain (id=1) with residues
    from 'start' to 'finish' of specified chain of input structure
    :param struct: input structure to slice
    :param chain_order: order of chain to extract residues
    :param start: start residue
    :param finish: finish residues
    :param domain_name: new structure name
    :return: new structure
    """
    new_chain = Chain.Chain(1)
    chain = list(struct.get_chains())[chain_order]
    for i in range(start, finish + 1):
        new_chain.add(chain[i])

    model = Model.Model(1)
    model.add(new_chain)
    domain = Structure.Structure(domain_name)
    domain.add(model)
    return domain
def initialize_res(residue):
    '''Creates a new structure containing a single amino acid. The type and
    geometry of the amino acid are determined by the argument, which has to be
    either a geometry object or a single-letter amino acid code.
    The amino acid will be placed into chain A of model 0.'''

    if isinstance(residue, Geo):
        geo = residue
    else:
        geo = geometry(residue)

    segID = 1
    AA = geo.residue_name
    CA_N_length = geo.CA_N_length
    CA_C_length = geo.CA_C_length
    N_CA_C_angle = geo.N_CA_C_angle

    CA_coord = [0., 0., 0.]
    C_coord = [CA_C_length, 0, 0]
    N_coord = [
        CA_N_length * math.cos(N_CA_C_angle * (math.pi / 180.0)),
        CA_N_length * math.sin(N_CA_C_angle * (math.pi / 180.0)), 0
    ]

    N = Atom("N", N_coord, 0.0, 1.0, " ", " N", 0, "N")
    CA = Atom("CA", CA_coord, 0.0, 1.0, " ", " CA", 0, "C")
    C = Atom("C", C_coord, 0.0, 1.0, " ", " C", 0, "C")

    ##Create Carbonyl atom (to be moved later)
    C_O_length = geo.C_O_length
    CA_C_O_angle = geo.CA_C_O_angle
    N_CA_C_O_diangle = geo.N_CA_C_O_diangle

    carbonyl = calculateCoordinates(N, CA, C, C_O_length, CA_C_O_angle,
                                    N_CA_C_O_diangle)
    O = Atom("O", carbonyl, 0.0, 1.0, " ", " O", 0, "O")

    if (AA == 'G'):
        res = makeGly(segID, N, CA, C, O, geo)
    elif (AA == 'A'):
        res = makeAla(segID, N, CA, C, O, geo)
    elif (AA == 'S'):
        res = makeSer(segID, N, CA, C, O, geo)
    elif (AA == 'C'):
        res = makeCys(segID, N, CA, C, O, geo)
    elif (AA == 'V'):
        res = makeVal(segID, N, CA, C, O, geo)
    elif (AA == 'I'):
        res = makeIle(segID, N, CA, C, O, geo)
    elif (AA == 'L'):
        res = makeLeu(segID, N, CA, C, O, geo)
    elif (AA == 'T'):
        res = makeThr(segID, N, CA, C, O, geo)
    elif (AA == 'R'):
        res = makeArg(segID, N, CA, C, O, geo)
    elif (AA == 'K'):
        res = makeLys(segID, N, CA, C, O, geo)
    elif (AA == 'D'):
        res = makeAsp(segID, N, CA, C, O, geo)
    elif (AA == 'E'):
        res = makeGlu(segID, N, CA, C, O, geo)
    elif (AA == 'N'):
        res = makeAsn(segID, N, CA, C, O, geo)
    elif (AA == 'Q'):
        res = makeGln(segID, N, CA, C, O, geo)
    elif (AA == 'M'):
        res = makeMet(segID, N, CA, C, O, geo)
    elif (AA == 'H'):
        res = makeHis(segID, N, CA, C, O, geo)
    elif (AA == 'P'):
        res = makePro(segID, N, CA, C, O, geo)
    elif (AA == 'F'):
        res = makePhe(segID, N, CA, C, O, geo)
    elif (AA == 'Y'):
        res = makeTyr(segID, N, CA, C, O, geo)
    elif (AA == 'W'):
        res = makeTrp(segID, N, CA, C, O, geo)
    else:
        res = makeGly(segID, N, CA, C, O, geo)

    cha = Chain('A')
    cha.add(res)

    mod = Model(0)
    mod.add(cha)

    struc = Structure('X')
    struc.add(mod)
    return struc
Esempio n. 6
0
                            invalid = True

                if invalid:
                    continue

                num_items = {"O": 0, "T": 0}
                for hit in item:
                    num_items[hit[5]] += 1

                for hit in item:

                    if len(hit[1]) > 1:

                        structure = PDBParser(QUIET=False).get_structure(
                            "dimer", path_structure + "dimer.pdb")
                        new_model = Model(2)
                        new_chain = Chain("C")
                        new_model.add(new_chain)
                        new_chain_mark = Chain("M")
                        add_markers(new_chain_mark)
                        new_model.add(new_chain_mark)
                        structure.add(new_model)

                        # mutations = {}     [sorted IDs] : [cobalt], [residues], num_HIS, clash_info_list, num, type, coords

                        res_co = Residue((" ", runtime_mark_id, " "), "Co3",
                                         " ")
                        res_co.add(hit[0])
                        new_chain.add(res_co)  # Add cobalt in its own residue

                        for res in hit[1]:  # Add rotamers
Esempio n. 7
0
def initialize_res(residue):
    '''Creates a new structure containing a single amino acid. The type and
    geometry of the amino acid are determined by the argument, which has to be
    either a geometry object or a single-letter amino acid code.
    The amino acid will be placed into chain A of model 0.'''
    
    if isinstance( residue, Geo ):
        geo = residue
    else:
        geo=geometry(residue) 
    
    segID=1
    AA= geo.residue_name
    CA_N_length=geo.CA_N_length
    CA_C_length=geo.CA_C_length
    N_CA_C_angle=geo.N_CA_C_angle
    
    CA_coord= [0.,0.,0.]
    C_coord= [CA_C_length,0,0]
    N_coord = [CA_N_length*math.cos(N_CA_C_angle*(math.pi/180.0)),CA_N_length*math.sin(N_CA_C_angle*(math.pi/180.0)),0]

    N= Atom("N", N_coord, 0.0 , 1.0, " "," N", 0, "N")
    CA=Atom("CA", CA_coord, 0.0 , 1.0, " "," CA", 0,"C")
    C= Atom("C", C_coord, 0.0, 1.0, " ", " C",0,"C")

    ##Create Carbonyl atom (to be moved later)
    C_O_length=geo.C_O_length
    CA_C_O_angle=geo.CA_C_O_angle
    N_CA_C_O_diangle=geo.N_CA_C_O_diangle
    
    carbonyl=calculateCoordinates(N, CA, C, C_O_length, CA_C_O_angle, N_CA_C_O_diangle)
    O= Atom("O",carbonyl , 0.0 , 1.0, " "," O", 0, "O")

    if(AA=='G'):
        res=makeGly(segID, N, CA, C, O, geo)
    elif(AA=='A'):
        res=makeAla(segID, N, CA, C, O, geo)
    elif(AA=='S'):
        res=makeSer(segID, N, CA, C, O, geo)
    elif(AA=='C'):
        res=makeCys(segID, N, CA, C, O, geo)
    elif(AA=='V'):
        res=makeVal(segID, N, CA, C, O, geo)
    elif(AA=='I'):
        res=makeIle(segID, N, CA, C, O, geo)
    elif(AA=='L'):
        res=makeLeu(segID, N, CA, C, O, geo)
    elif(AA=='T'):
        res=makeThr(segID, N, CA, C, O, geo)
    elif(AA=='R'):
        res=makeArg(segID, N, CA, C, O, geo)
    elif(AA=='K'):
        res=makeLys(segID, N, CA, C, O, geo)
    elif(AA=='D'):
        res=makeAsp(segID, N, CA, C, O, geo)
    elif(AA=='E'):
        res=makeGlu(segID, N, CA, C, O, geo)
    elif(AA=='N'):
        res=makeAsn(segID, N, CA, C, O, geo)
    elif(AA=='Q'):
        res=makeGln(segID, N, CA, C, O, geo)
    elif(AA=='M'):
        res=makeMet(segID, N, CA, C, O, geo)
    elif(AA=='H'):
        res=makeHis(segID, N, CA, C, O, geo)
    elif(AA=='P'):
        res=makePro(segID, N, CA, C, O, geo)
    elif(AA=='F'):
        res=makePhe(segID, N, CA, C, O, geo)
    elif(AA=='Y'):
        res=makeTyr(segID, N, CA, C, O, geo)
    elif(AA=='W'):
        res=makeTrp(segID, N, CA, C, O, geo)
    else:
        res=makeGly(segID, N, CA, C, O, geo)

    cha= Chain('A')
    cha.add(res)
    
    mod= Model(0)
    mod.add(cha)

    struc= Structure('X')
    struc.add(mod)
    return struc
Esempio n. 8
0
def compare_interactions(interaction1, interaction2):
    structure1 = Structure.Structure('1')
    structure2 = Structure.Structure('2')

    structure1.add(Model.Model(0))
    structure2.add(Model.Model(0))

    homodimer = False

    for chain in interaction1:
        if len(list(structure1[0].get_chains())) == 1 and compare_chains(
                chain,
                list(structure1[0].get_chains())[0]):
            homodimer = True

        structure1[0].add(Chain.Chain(chain.get_id()))
        res_counter = 0
        for residue in chain:
            if 'CA' in [x.get_id() for x in residue.get_atoms()]:
                atom = residue['CA']
                structure1[0][chain.get_id()].add(
                    Residue.Residue(
                        ('', res_counter, ''), residue.get_resname(),
                        residue.get_segid()))

                structure1[0][chain.get_id()][('', res_counter,
                                               '')].add(atom.copy())
                res_counter += 1

    for chain in interaction2:

        structure2[0].add(Chain.Chain(chain.get_id()))
        res_counter = 0
        for residue in chain:
            if 'CA' in [x.get_id() for x in residue.get_atoms()]:
                atom = residue['CA']
                structure2[0][chain.get_id()].add(
                    Residue.Residue(
                        ('', res_counter, ''), residue.get_resname(),
                        residue.get_segid()))

                structure2[0][chain.get_id()][('', res_counter,
                                               '')].add(atom.copy())
                res_counter += 1

    if homodimer:
        for int in [structure1[0], structure2[0]]:
            trim_to_superimpose(
                list(int.get_chains())[0],
                list(int.get_chains())[1])

    for chain1 in structure1[0]:
        for chain2 in structure2[0]:
            if chain1.get_id() != chain2.get_id():
                continue
            trim_to_superimpose(chain1, chain2)

            # print(list(chain1.get_residues())[0])
            # print(list(chain2.get_residues())[0])

    # print(list(structure1.get_chains()))
    # print(list(structure2.get_chains()))
    result = str_comparison_superimpose(structure1, structure2)

    return result
Esempio n. 9
0
 def get_chain_ids(model: Model):
     chains = model.get_chains()
     chain_list = []
     for chain in chains:
         chain_list.append(chain.get_id())
     return chain_list
Esempio n. 10
0
def assemble_multiscale_visualization(topology_fn, rmf_fn, pdb_dir,
                                      outprefix=None, chimerax=True,
                                      xl_fn=None):
    """
    Render multiscale versions of rigid bodies from PDB files + flexible
    beads from RMF files w/o mapped crosslinks.
    
    Args: 
    topology_fn (str): Topolgy file in pipe-separated-value (PSV) format
    as required in integrative modeling using IMP. For details on how
    to write a topology file, see:
    https://integrativemodeling.org/2.13.0/doc/ref/classIMP_1_1pmi_1_1topology_1_1TopologyReader.html
        
    rmf_fn (str): Name of the RMF file.
    
    pdb_dir (str): Directory containing all the PDB files for the rigid
    bodies used in modeling.
    
    outprefix (str, optional): Prefix for output files. Defaults to None.
    
    chimerax (bool, optional): If true, a Chimerax script will be written (extension ".cxc"). Defaults to True.
    
    xl_fn (str, optional): A file containing a XL dataset. Defaults to None.
    If this dataset is supplied, then it will be mapped on to the overall 
    structure with satisfied XLs drawn in blue and violated XLs drawn in red.
    A XL dataset should be supplied in a comma-separated-value (CSV) format
    containing at least the following fields
    
    protein1, residue1, protein2, residue2, sat
    
    where the last field <sat> is a boolean 1 or 0 depending on whether
    the particular XL is satisfied (in the ensemble sense) as a result of the
    integrative modeling exercise.
    """
    
    # -------------------------------------------
    # read the RMF file and extract all particles
    # -------------------------------------------
    of = RMF.open_rmf_file_read_only(rmf_fn)
    rmf_model = IMP.Model()
    hier = IMP.rmf.create_hierarchies(of, rmf_model)[0]
    IMP.rmf.load_frame(of, 0)
    particles = IMP.core.get_leaves(hier)
    rmf_ps = {}
    for p in particles:
        molname = p.get_parent().get_parent().get_parent().get_name().strip()
        name = p.get_name().strip()
        coord = IMP.core.XYZ(p).get_coordinates()
        rmf_ps[(molname, name)] = coord
        
    # --------------------------------------------------------------
    # map pdb residues to rmf particles for each rigid body pdb file
    # --------------------------------------------------------------
    # read the topology file
    t = TopologyReader(topology_fn, pdb_dir=pdb_dir)
    components = t.get_components()

    map_pdb2rmf = {}
    rigid_body_models = {}
    rigid_body_residues = {}
    chain_ids = {} # these are matched to the chimerax rmf plugin
    chain_id_count = 0
    for c in components:
        # ignore unstructured residues
        if c.pdb_file == "BEADS": continue
        mol = c.molname
        pdb_prefix = os.path.basename(c.pdb_file).split(".pdb")[0]
        chain_id = c.chain
        resrange = c.residue_range
        offset = c.pdb_offset
        
        r0 = resrange[0] + offset
        r1 = resrange[1] + 1 + offset
        
        if mol not in chain_ids:
            chain_ids[mol] = string.ascii_uppercase[chain_id_count]
            chain_id_count += 1
        
        if pdb_prefix not in map_pdb2rmf:
            map_pdb2rmf[pdb_prefix] = {}
            this_rigid_body_model = PDBParser().get_structure("x", c.pdb_file)[0]
            this_rigid_body_residues = {(r.full_id[2], r.id[1]): r for r in this_rigid_body_model.get_residues()}
            rigid_body_models[pdb_prefix] = this_rigid_body_model
            rigid_body_residues[pdb_prefix] = this_rigid_body_residues
            
        for r in range(r0, r1):
            key = (chain_id, r)
            val = (mol, r)
            if key in rigid_body_residues[pdb_prefix]:
                map_pdb2rmf[pdb_prefix][key] = val
    
    # --------------------------------
    # align all pdb files with the rmf
    # --------------------------------
    print("\nAligning all rigid body structures...")
    align = SVDSuperimposer()
    for pdb_prefix, mapper in map_pdb2rmf.items():
        pdb_coords = []
        pdb_atoms = []
        rmf_coords = []
        
        residues = rigid_body_residues[pdb_prefix]
        for (chain, pdb_res), (mol, rmf_res) in mapper.items():
            r = residues[(chain, pdb_res)]
            pdb_coords.append(r["CA"].coord)
            pdb_atoms.extend([a for a in r.get_atoms()])
            rmf_coords.append(rmf_ps[(mol, str(rmf_res))])        
                 
        pdb_coords = np.array(pdb_coords)
        rmf_coords = np.array(rmf_coords)
        align.set(rmf_coords, pdb_coords)
        align.run()
        rotmat, vec = align.get_rotran()
        [a.transform(rotmat, vec) for a in pdb_atoms]
  
    # --------------------------
    # assemble the composite pdb
    # --------------------------
    mols = set(sorted([c.molname for c in components]))
    print("\nChain IDs by molecule:")
    for k, v in chain_ids.items():
        print("molecule %s, chain ID %s" % (k, v))
    
    reslists = {mol: [] for mol in mols}
    for pdb_prefix, mapper in map_pdb2rmf.items():
        residues = rigid_body_residues[pdb_prefix]
        for (chain, pdb_res), (mol, rmf_res) in mapper.items():
            r = residues[(chain, pdb_res)] ; resid = rmf_res
            new_id = (r.id[0], resid, r.id[2])
            new_resname = r.resname
            new_segid = r.segid
            new_atoms = r.get_atoms()
            new_residue = Residue.Residue(id=new_id, resname=new_resname, segid=new_segid)
            [new_residue.add(a) for a in new_atoms]
            reslists[mol].append(new_residue)
    
    composite_model = Model.Model(0)
    for mol, chain_id in chain_ids.items():
        this_residues = sorted(reslists[mol], key=lambda r: r.id[1])
        this_chain = Chain.Chain(chain_id)
        [this_chain.add(r) for r in this_residues]
        composite_model.add(this_chain)
    
    # save the composite pdb to file
    io = PDBIO()
    io.set_structure(composite_model)
    if outprefix is None:
        outprefix = "centroid_model"
    io.save(outprefix + ".pdb")

    # -------------------------------------------------------------------
    # chimerax rendering (hide most of the rmf except unstructured beads)
    # -------------------------------------------------------------------
    if not chimerax: exit()
    print("\nWriting UCSF Chimerax script...")
    s = ""
    s += "open %s\n" % (outprefix + ".pdb")
    s += "open %s\n" % rmf_fn
    s += "hide\n"
    s += "show cartoon\n"
    s += "color #%d %s\n" % (CHIMERAX_PDB_MODEL_NUM, STRUCT_COLOR)
    s += "color #%d %s\n" % (CHIMERAX_RMF_MODEL_NUM, UNSTRUCT_COLOR)
    s += "hide #%d\n" % CHIMERAX_RMF_MODEL_NUM
    
    struct_residues = []
    for key, val in map_pdb2rmf.items():
        struct_residues.extend(list(val.values()))
    
    unstruct_atomspec = {}
    for p in rmf_ps:
        molname, particle_name = p
        rmf_chain_id = chain_ids[molname]
        if "bead" in particle_name:
            r0, r1 = particle_name.split("_")[0].split("-")
            r0 = int(r0) ; r1 = int(r1)
            this_atomspec = "#%d/%s:%d-%d" % \
                            (CHIMERAX_RMF_MODEL_NUM, rmf_chain_id, r0, r1)
            for r in range(r0, r1+1):
                unstruct_atomspec[(molname, r)] = this_atomspec
        else:
            if (molname, int(particle_name)) not in struct_residues:
                r = int(particle_name)
                this_atomspec = "#%d/%s:%d" % \
                (CHIMERAX_RMF_MODEL_NUM, rmf_chain_id, r)
                unstruct_atomspec[(molname, r)] = this_atomspec
                
    s += "show %s\n" % (" ".join(set(unstruct_atomspec.values())))

    # ----------------------------------------------------------
    # if crosslink data is supplied, write out a pseudobond file
    # ----------------------------------------------------------
    if xl_fn is not None:
        # parse XL data
        df = pd.read_csv(os.path.abspath(xl_fn))
        xls = []
        for i in range(len(df)):
            this_df = df.iloc[i]
            p1 = this_df["protein1"] ; r1 = this_df["residue1"]
            p2 = this_df["protein2"] ; r2 = this_df["residue2"]
            sat = this_df["sat"]
            xls.append((p1, r1, p2, r2, sat))
        
        # get lists of struct atomspecs
        atomspec = {}
        for (mol, particle_name) in rmf_ps:
            if "bead" in particle_name: continue
            if (mol, int(particle_name)) in unstruct_atomspec: continue
            chain_id = chain_ids[mol]
            resid = int(particle_name)
            atomspec[(mol, resid)] = "#%d/%s:%d@CA" % \
                                     (CHIMERAX_PDB_MODEL_NUM, chain_id, resid)
        
        # now add in all the unstruct atomspecs
        atomspec.update(unstruct_atomspec)

        # write pseudobond script
        s_pb = ""
        s_pb += "; radius = %2.2f\n" % XL_RADIUS
        s_pb += "; dashes = 0\n"
        for xl in xls:
            p1, r1, p2, r2, sat = xl
            atomspec_1 = atomspec[(p1, r1)]
            atomspec_2 = atomspec[(p2, r2)]
            if atomspec_1 == atomspec_2:
                continue
            color = SAT_XL_COLOR if sat else VIOL_XL_COLOR
            s_pb += "%s %s %s\n" % (atomspec_1, atomspec_2, color)
        s_pb += "\n"
        pb_fn = outprefix + "_XLs.pb"
        with open(pb_fn, "w") as of:
            of.write(s_pb)        
        s += "open %s\n" % pb_fn
            
    s += "preset 'overall look' publication\n"
    chimerax_out_fn = outprefix + ".cxc"
    with open(chimerax_out_fn, "w") as of:
        of.write(s)
Esempio n. 11
0
def generate_pairwise_subunits_from_pdb(pdb_file_path, templates_path,
                                        file_type, verbose):
    """Take an existing complex and fragment it into each of the pairwise interactions between subunits.

    Keyword arguments:
    pdb_file_path -- path where the complex PDB is
    templates_path -- folder where the resulting folders will be saved
    file_type -- type of file
    verbose -- if a log of the program execution is saved

    Considerations:
    Does not consider nucleic acid sequences, it is only for testing the program on different complexes"""

    num_file = 0

    if file_type == 'PDB':
        parser = pdb.PDBParser(PERMISSIVE=1)
    else:
        parser = pdb.MMCIFParser()

    structure = parser.get_structure('pdb_name', pdb_file_path)

    # give unique chain identifiers to a structure, it has to be similar to the ids of the chains used in build_complex, to be able to use further the structure_in_created_structures() function
    id_nch = 0
    for chain in structure.get_chains():
        actual_id = chain.id
        chain.id = (complete_chain_alphabet[id_nch] + '_', actual_id)
        id_nch += 1

    # free the ./templates_path/
    os.system('rm -rf ' + templates_path + '*')

    # initialize the saved pairs and structures
    saved_pairs = set()
    saved_structures = []

    # loop through all possible pairwise files

    for chain1 in structure.get_chains():

        for chain2 in structure.get_chains():

            # the following strings define the pairs already saved
            comb = tuple(list(chain1.id) + list(chain2.id))
            comb_rev = tuple(list(chain2.id) + list(chain1.id))

            if chain1 is not chain2 and comb not in saved_pairs:

                # save the combination
                saved_pairs.add(comb)
                saved_pairs.add(comb_rev)

                # ask if any of the residues is interacting, if so save the PDB

                chains_interacting = False

                for residue1 in chain1:
                    if chains_interacting is True:
                        break
                    for residue2 in chain2:
                        if residue1 != residue2:

                            # define which is the important residue of each chain:
                            atoms1 = [x.id for x in residue1.get_atoms()]
                            atoms2 = [x.id for x in residue2.get_atoms()]

                            important_atom1 = None
                            if 'CA' in atoms1:
                                important_atom1 = residue1['CA']
                            elif 'P' in atoms1:
                                important_atom1 = residue1['P']

                            important_atom2 = None
                            if 'CA' in atoms2:
                                important_atom2 = residue2['CA']
                            elif 'P' in atoms2:
                                important_atom2 = residue2['P']

                            # compute the distance:
                            if important_atom1 is not None and important_atom2 is not None:
                                distance = important_atom1 - important_atom2
                            else:
                                continue

                            if distance < 7:
                                chains_interacting = True
                                break

                if chains_interacting is True:

                    # create a structure object
                    ID = str(num_file)
                    num_file += 1
                    new_structure = pdb_struct.Structure(ID)

                    new_model = pdb_model.Model(0)
                    new_model.add(chain1.copy())
                    new_model.add(chain2.copy())

                    new_structure.add(new_model)

                    # move the coordinates of the structure to simulate what would happen if they were coming from different files
                    rotation = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
                    translation = np.array((0, 0, 1), 'f')
                    for atom in new_structure.get_atoms():
                        atom.transform(rotation, translation)

                    # write to new pdb:
                    if structure_in_created_structures(
                            new_structure, saved_structures) is False:

                        # record as a saved structure:
                        saved_structures.append(new_structure.copy())

                        # give unique chains to a structure (A and B)
                        id_nch = 0
                        for chain in new_structure.get_chains():
                            chain.id = chain_alphabet[id_nch]
                            id_nch += 1

                        if verbose:
                            print(
                                'writing PDB file with the interaction of %s and %s into %s.pdb'
                                % (chain1.id[1], chain2.id[1], ID))

                        # write using our customized writer
                        io = pdb.PDBIO()
                        io.set_structure(new_structure)
                        io.save(templates_path + ID + '.pdb')