Esempio n. 1
0
def main():
    r1_paths = dict(
        off=get_astri_2019("d2019-05-08_ledflashers_dynrange/Run13268_r1.tio"),
        on_50=get_astri_2019("d2019-05-08_ledflashers_dynrange/Run13272_r1.tio"),
        on_3=get_astri_2019("d2019-05-08_ledflashers_dynrange/Run13267_r1.tio")
    )
    output = get_data("d190520_charge_extraction/data/charge.h5")
    poi = 2004

    reader = ReaderR1(list(r1_paths.values())[0])
    kw = dict(
        n_pixels=reader.n_pixels,
        n_samples=reader.n_samples,
        mapping=reader.mapping,
        reference_pulse_path=reader.reference_pulse_path,
    )
    extractors = dict(
        cc_nn=(CrossCorrelationNeighbour(**kw), 'charge_cc_nn'),
    )
    for width in range(1, 15):
        extractors[f'sliding_{width}'] = (
            SlidingWindowNeighbour(**kw, window_size=width),
            "charge_sliding_nn"
        )

        for shift in range(-3, 8):
            extractors[f'peak_{width}_{shift}'] = (
                CtapipeNeighbourPeakIntegrator(
                    **kw, window_size=width, window_shift=shift
                ), "charge_nn"
            )

    with HDF5Writer(output) as writer:
        for key, path in r1_paths.items():
            reader = ReaderR1(path, max_events=500)
            baseline_subtractor = BaselineSubtractor(reader)
            time_calibrator = TimeCalibrator()

            desc = "Looping over file"
            for wfs in tqdm(reader, total=reader.n_events, desc=desc):
                iev = wfs.iev
                if reader.stale.any():
                    continue

                wfs = time_calibrator(wfs)
                wfs = baseline_subtractor.subtract(wfs)

                global_params = dict(
                    key=key,
                    iev=iev,
                    pixel=poi,
                )

                for name, (extractor, column) in extractors.items():
                    params = global_params.copy()
                    params['extractor'] = name
                    params['charge'] = extractor.process(wfs)[column][poi]
                    df = pd.DataFrame(params, index=[0])
                    writer.append(df, key='data')
def main():
    # paths = glob(get_astri_2019("d2019-04-23_nudges/mc/*.simtel.gz"))
    # output = get_astri_2019("d2019-04-23_nudges/mc/charge.h5")
    paths = glob(get_astri_2019("d2019-04-23_nudges/mc_191011/*.simtel.gz"))
    output = get_astri_2019("d2019-04-23_nudges/mc_191011/charge.h5")

    with HDF5Writer(output) as writer:
        for path in paths:
            reader = SimtelReader(path)

            kw = dict(
                n_pixels=reader.n_pixels,
                n_samples=reader.n_samples,
                mapping=reader.mapping,
                reference_pulse_path=reader.reference_pulse_path,
            )
            baseline_subtractor = BaselineSubtractor(reader)
            extractor_onsky = OnskyExtractor(**kw)
            common = Common(**kw, _disable_by_default=True, waveform_max=True)

            pixel_array = np.arange(reader.n_pixels)

            desc = "Looping over file"
            for wfs in tqdm(reader, total=reader.n_events, desc=desc):
                iev = wfs.iev
                wfs = baseline_subtractor.subtract(wfs)

                params = dict(
                    iev=iev,
                    pixel=pixel_array,
                    onsky=extractor_onsky.process(wfs)['charge_onsky'],
                    waveform_max=common.process(wfs)['waveform_max'],
                    mc_true=wfs.mc_true,
                )

                df = pd.DataFrame(params)
                writer.append(df, key='data')
Esempio n. 3
0
    def __init__(self, reader, config_path):
        self.source = "CHECLabPy"
        self.reader = reader
        self.pixel_array = np.arange(self.reader.n_pixels)

        self.time_calibrator = None
        if not self.reader.is_mc:
            self.time_calibrator = TimeCalibrator()

        self.reducer_kwargs = dict(
            n_pixels=self.reader.n_pixels,
            n_samples=self.reader.n_samples,
            mapping=self.reader.mapping,
            reference_pulse_path=self.reader.reference_pulse_path,
            config_path=config_path,
        )
        self.chain = WaveformReducerChain(**self.reducer_kwargs)
        self.baseline_subtractor = BaselineSubtractor(self.reader)

        # Module metadata dicts
        self.config = self.chain.config.copy()
        self.config.pop('mapping', None)
        self.sn = {}
        self.sipm_temp = {}
        self.primary_temp = {}
        self.dac = {}
        self.hvon = {}
        for tm in range(self.reader.n_modules):
            tm_str = f'TM{tm:02}'
            self.sn[tm_str] = self.reader.get_sn(tm)
            self.sipm_temp[tm_str] = self.reader.get_sipm_temp(tm)
            self.primary_temp[tm_str] = self.reader.get_primary_temp(tm)
            for sp in range(self.reader.n_superpixels_per_module):
                tm_sp_str = f'TM{tm:02}_SP{sp:02}'
                self.dac[tm_sp_str] = self.reader.get_sp_dac(tm, sp)
                self.hvon[tm_sp_str] = self.reader.get_sp_hvon(tm, sp)
Esempio n. 4
0
def main():
    paths = glob("/Users/Jason/Data/d2019-04-23_nudges/mc/*.simtel.gz")
    output = get_data("d190520_charge_extraction/mc/charge.h5")

    # Use first run to initialise extractors
    reader = SimtelReader(paths[0])
    pixel_array = np.arange(reader.n_pixels)
    kw = dict(
        n_pixels=reader.n_pixels,
        n_samples=reader.n_samples,
        mapping=reader.mapping,
        reference_pulse_path=reader.reference_pulse_path,
    )
    extractors = dict(
        cc_local=(
            CrossCorrelationLocal(**kw), "charge_cc_local"
        ),
        cc_nn=(
            CrossCorrelationNeighbour(**kw), "charge_cc_nn"
        ),
        local_4_2=(
            CtapipeLocalPeakIntegrator(
                **kw, window_size=4, window_shift=2
            ), "charge_local"
        ),
        local_8_4=(
            CtapipeLocalPeakIntegrator(
                **kw, window_size=8, window_shift=4
            ), "charge_local"
        ),
        local_6_3=(
            CtapipeLocalPeakIntegrator(
                **kw, window_size=6, window_shift=3
            ), "charge_local"
        ),
        nn_4_2=(
            CtapipeNeighbourPeakIntegrator(
                **kw, window_size=4, window_shift=2
            ), "charge_nn"
        ),
        nn_8_4=(
            CtapipeNeighbourPeakIntegrator(
                **kw, window_size=8, window_shift=4
            ), "charge_nn"
        ),
        nn_6_3=(
            CtapipeNeighbourPeakIntegrator(
                **kw, window_size=6, window_shift=3
            ), "charge_nn"
        ),
        sliding_local_4=(
            SlidingWindowLocal(**kw, window_size=4), "charge_sliding_local"
        ),
        sliding_local_8=(
            SlidingWindowLocal(**kw, window_size=8), "charge_sliding_local"
        ),
        sliding_local_6=(
            SlidingWindowLocal(**kw, window_size=6), "charge_sliding_local"
        ),
        sliding_nn_4=(
            SlidingWindowNeighbour(**kw, window_size=4), "charge_sliding_nn"
        ),
        sliding_nn_8=(
            SlidingWindowNeighbour(**kw, window_size=8), "charge_sliding_nn"
        ),
        sliding_nn_6=(
            SlidingWindowNeighbour(**kw, window_size=6), "charge_sliding_nn"
        ),
    )

    with HDF5Writer(output) as writer:
        for ipath, path in enumerate(paths):
            print(f"Processing file {ipath+1}/{len(paths)}")
            reader = SimtelReader(path)
            baseline_subtractor = BaselineSubtractor(reader)
            n_events = reader.n_events
            for waveforms in tqdm(reader, total=n_events):
                params = dict()
                # TODO: Baseline subtraction
                waveforms = baseline_subtractor.subtract(waveforms)

                for key, (extractor, column) in extractors.items():
                    params[key] = extractor.process(waveforms)[column]

                params['iobs'] = ipath
                params['iev'] = waveforms.iev
                params['pixel'] = pixel_array
                params['true'] = waveforms.mc_true

                writer.append(pd.DataFrame(params), key='data')
Esempio n. 5
0
def main():
    description = ('Reduce a waveform file into a *_dl1.h5 file containing '
                   'various parameters extracted from the waveforms')
    parser = argparse.ArgumentParser(description=description,
                                     formatter_class=Formatter)
    parser.add_argument('-f',
                        '--files',
                        dest='input_paths',
                        nargs='+',
                        help='path to the file containing waveforms '
                        '(TIO or simtel)')
    parser.add_argument('-o',
                        '--output',
                        dest='output_path',
                        action='store',
                        help='path to store the output HDF5 dl1 file '
                        '(OPTIONAL, will be automatically set if '
                        'not specified)')
    parser.add_argument('-n',
                        '--maxevents',
                        dest='max_events',
                        action='store',
                        help='Number of events to process',
                        type=int)
    parser.add_argument('-c',
                        '--config',
                        dest='config_path',
                        help="Path to config file. If no path is given, "
                        "then the default columns will be stored.")
    args = parser.parse_args()

    time_calibrator = TimeCalibrator()

    input_paths = args.input_paths
    n_files = len(input_paths)
    for i_path, input_path in enumerate(input_paths):
        print("PROGRESS: Reducing file {}/{}".format(i_path + 1, n_files))
        reader = WaveformReader.from_path(input_path, args.max_events)
        n_events = reader.n_events
        n_modules = reader.n_modules
        n_pixels = reader.n_pixels
        n_superpixels_per_module = reader.n_superpixels_per_module
        n_samples = reader.n_samples
        pixel_array = np.arange(n_pixels)

        is_mc = isinstance(reader, SimtelReader)

        kwargs = dict(
            n_pixels=n_pixels,
            n_samples=n_samples,
            mapping=reader.mapping,
            reference_pulse_path=reader.reference_pulse_path,
            config_path=args.config_path,
        )
        chain = WaveformReducerChain(**kwargs)
        baseline_subtractor = BaselineSubtractor(reader)

        input_path = reader.path
        output_path = args.output_path
        if not output_path:
            output_path = (input_path.replace('_r1',
                                              '_dl1').replace('.tio', '.h5'))
            if is_mc:
                output_path = input_path.replace('.simtel.gz', '_dl1.h5')

        with DL1Writer(output_path) as writer:
            t_cpu = 0
            start_time = 0
            n_events_dl1 = 0
            n_events_stale = 0
            desc = "Processing events"
            for waveforms in tqdm(reader, total=n_events, desc=desc):
                iev = reader.index
                t_cpu = reader.t_cpu

                stale = reader.stale.any()
                if stale:
                    n_events_stale += 1
                    continue

                if not start_time:
                    start_time = t_cpu

                shifted = time_calibrator(waveforms)
                waveforms_bs = baseline_subtractor.subtract(shifted)
                bs = baseline_subtractor.baseline

                params = dict(
                    iev=iev,
                    pixel=pixel_array,
                    t_cpu=t_cpu,
                    t_tack=reader.current_tack,
                    first_cell_id=reader.first_cell_ids,
                    baseline_subtracted=bs,
                    **chain.process(waveforms_bs),
                )
                if is_mc:
                    params['mc_true'] = reader.mc_true

                writer.append(pd.DataFrame(params),
                              key='data',
                              expectedrows=n_events * n_pixels)
                if is_mc:
                    writer.append(pd.DataFrame([reader.mc]),
                                  key='mc',
                                  expectedrows=n_events)
                    writer.append(pd.DataFrame([reader.pointing]),
                                  key='pointing',
                                  expectedrows=n_events)
                n_events_dl1 += 1

            sn_dict = {}
            sipm_temp_dict = {}
            primary_temp_dict = {}
            dac_dict = {}
            hvon_dict = {}
            for tm in range(n_modules):
                tm_str = f'TM{tm:02}'
                sn_dict[tm_str] = reader.get_sn(tm)
                sipm_temp_dict[tm_str] = reader.get_sipm_temp(tm)
                primary_temp_dict[tm_str] = reader.get_primary_temp(tm)
                for sp in range(n_superpixels_per_module):
                    tm_sp_str = f'TM{tm:02}_SP{sp:02}'
                    dac_dict[tm_sp_str] = reader.get_sp_dac(tm, sp)
                    hvon_dict[tm_sp_str] = reader.get_sp_hvon(tm, sp)

            metadata = dict(
                source="CHECLabPy",
                run_id=reader.run_id,
                is_mc=is_mc,
                date_generated=pd.datetime.now(),
                input_path=input_path,
                n_events=n_events_dl1,
                n_modules=n_modules,
                n_pixels=n_pixels,
                n_superpixels_per_module=n_superpixels_per_module,
                n_samples=n_samples,
                start_time=start_time,
                end_time=t_cpu,
                camera_version=reader.camera_version,
                n_cells=reader.n_cells,
                n_stale=n_events_stale,
            )
            config = chain.config
            config.pop('mapping', None)

            writer.add_mapping(reader.mapping)
            writer.add_metadata(name='metadata', **metadata)
            writer.add_metadata(name='config', **config)
            writer.add_metadata(name='sn', **sn_dict)
            writer.add_metadata(name='sipm_temp', **sipm_temp_dict)
            writer.add_metadata(name='primary_temp', **sipm_temp_dict)
            writer.add_metadata(name='dac', **dac_dict)
            writer.add_metadata(name='hvon', **hvon_dict)
            if is_mc:
                writer.add_metadata(key='mc',
                                    name='mcheader',
                                    **reader.mcheader)
def main():
    description = ('Reduce a *_r1.tio file into a *_dl1.hdf5 file containing '
                   'various parameters extracted from the waveforms')
    parser = argparse.ArgumentParser(description=description,
                                     formatter_class=Formatter)
    parser.add_argument('-f',
                        '--files',
                        dest='input_paths',
                        nargs='+',
                        help='path to the TIO r1 run files')
    parser.add_argument('-m',
                        '--monitor',
                        dest='monitor',
                        action='store',
                        help='path to the monitor file (OPTIONAL)')
    parser.add_argument('-o',
                        '--output',
                        dest='output_path',
                        action='store',
                        help='path to store the output HDF5 dl1 file '
                        '(OPTIONAL, will be automatically set if '
                        'not specified)')
    parser.add_argument('-n',
                        '--maxevents',
                        dest='max_events',
                        action='store',
                        help='Number of events to process',
                        type=int)
    parser.add_argument('-r',
                        '--reducer',
                        dest='reducer',
                        action='store',
                        default='AverageWF',
                        choices=WaveformReducerFactory.subclass_names,
                        help='WaveformReducer to use')
    parser.add_argument('-c',
                        '--config',
                        dest='configuration',
                        help="""Configuration to pass to the waveform reducer
                        (Usage: '{"window_shift":6, "window_size":6}') """)
    parser.add_argument('-p',
                        '--plot',
                        dest='plot',
                        action='store_true',
                        help="Plot stages for waveform reducers")
    args = parser.parse_args()
    if args.configuration:
        config = json.loads(args.configuration)
        config_string = args.configuration
    else:
        config = {}
        config_string = ""

    input_paths = args.input_paths
    n_files = len(input_paths)
    for i_path, input_path in enumerate(input_paths):
        print("PROGRESS: Reducing file {}/{}".format(i_path + 1, n_files))
        reader = ReaderR1(input_path, args.max_events)
        n_events = reader.n_events
        n_modules = reader.n_modules
        n_pixels = reader.n_pixels
        n_samples = reader.n_samples
        n_cells = reader.n_cells
        pixel_array = np.arange(n_pixels)
        camera_version = reader.camera_version
        mapping = reader.mapping
        if 'reference_pulse_path' not in config:
            config['reference_pulse_path'] = reader.reference_pulse_path

        kwargs = dict(n_pixels=n_pixels,
                      n_samples=n_samples,
                      plot=args.plot,
                      mapping=mapping,
                      **config)
        reducer = WaveformReducerFactory.produce(args.reducer, **kwargs)
        baseline_subtractor = BaselineSubtractor(reader)

        input_path = reader.path
        output_path = args.output_path
        if not output_path:
            output_path = input_path.rsplit('_r1', 1)[0] + "_dl1.h5"

        with DL1Writer(output_path, n_events * n_pixels,
                       args.monitor) as writer:
            t_cpu = 0
            start_time = 0
            desc = "Processing events"
            for waveforms in tqdm(reader, total=n_events, desc=desc):
                iev = reader.index

                t_tack = reader.current_tack
                t_cpu_sec = reader.current_cpu_s
                t_cpu_ns = reader.current_cpu_ns
                t_cpu = pd.to_datetime(np.int64(t_cpu_sec * 1E9) +
                                       np.int64(t_cpu_ns),
                                       unit='ns')
                fci = reader.first_cell_ids

                if not start_time:
                    start_time = t_cpu

                waveforms_bs = baseline_subtractor.subtract(waveforms)
                bs = baseline_subtractor.baseline

                params = reducer.process(waveforms_bs)

                df_ev = pd.DataFrame(
                    dict(iev=iev,
                         pixel=pixel_array,
                         first_cell_id=fci,
                         t_cpu=t_cpu,
                         t_tack=t_tack,
                         baseline_subtracted=bs,
                         **params))
                writer.append_event(df_ev)

            sn_dict = {}
            for tm in range(n_modules):
                sn_dict['TM{:02d}_SN'.format(tm)] = reader.get_sn(tm)

            metadata = dict(source="CHECLabPy",
                            date_generated=pd.datetime.now(),
                            input_path=input_path,
                            n_events=n_events,
                            n_modules=n_modules,
                            n_pixels=n_pixels,
                            n_samples=n_samples,
                            n_cells=n_cells,
                            start_time=start_time,
                            end_time=t_cpu,
                            camera_version=camera_version,
                            reducer=reducer.__class__.__name__,
                            configuration=config_string,
                            **sn_dict)

            writer.add_metadata(**metadata)
            writer.add_mapping(mapping)
Esempio n. 7
0
class DL1Extractor:
    def __init__(self, reader, config_path):
        self.source = "CHECLabPy"
        self.reader = reader
        self.pixel_array = np.arange(self.reader.n_pixels)

        self.time_calibrator = None
        if not self.reader.is_mc:
            self.time_calibrator = TimeCalibrator()

        self.reducer_kwargs = dict(
            n_pixels=self.reader.n_pixels,
            n_samples=self.reader.n_samples,
            mapping=self.reader.mapping,
            reference_pulse_path=self.reader.reference_pulse_path,
            config_path=config_path,
        )
        self.chain = WaveformReducerChain(**self.reducer_kwargs)
        self.baseline_subtractor = BaselineSubtractor(self.reader)

        # Module metadata dicts
        self.config = self.chain.config.copy()
        self.config.pop('mapping', None)
        self.sn = {}
        self.sipm_temp = {}
        self.primary_temp = {}
        self.dac = {}
        self.hvon = {}
        for tm in range(self.reader.n_modules):
            tm_str = f'TM{tm:02}'
            self.sn[tm_str] = self.reader.get_sn(tm)
            self.sipm_temp[tm_str] = self.reader.get_sipm_temp(tm)
            self.primary_temp[tm_str] = self.reader.get_primary_temp(tm)
            for sp in range(self.reader.n_superpixels_per_module):
                tm_sp_str = f'TM{tm:02}_SP{sp:02}'
                self.dac[tm_sp_str] = self.reader.get_sp_dac(tm, sp)
                self.hvon[tm_sp_str] = self.reader.get_sp_hvon(tm, sp)

    @staticmethod
    def skip_event(waveforms):
        return waveforms.stale or waveforms.missing_packets

    @property
    def metadata(self):
        return dict(
            source=self.source,
            run_id=self.reader.run_id,
            is_mc=self.reader.is_mc,
            date_generated=pd.datetime.now(),
            input_path=self.reader.path,
            n_modules=self.reader.n_modules,
            n_pixels=self.reader.n_pixels,
            n_superpixels_per_module=self.reader.n_superpixels_per_module,
            n_samples=self.reader.n_samples,
            camera_version=self.reader.camera_version,
            n_cells=self.reader.n_cells,
        )

    def __call__(self, waveforms):

        # Calibrate timing offsets between pixels
        waveforms_tc = waveforms
        if self.time_calibrator is not None:
            waveforms_tc = self.time_calibrator(waveforms)

        # Subtract waveform baselines per pixel
        waveforms_bs = self.baseline_subtractor.subtract(waveforms_tc)
        bs = self.baseline_subtractor.baseline

        params = dict(
            iev=waveforms.iev,
            pixel=self.pixel_array,
            t_cpu=waveforms.t_cpu,
            t_tack=waveforms.t_tack,
            first_cell_id=waveforms.first_cell_id,
            baseline_subtracted=bs,
            **self.chain.process(waveforms_bs),
        )
        if waveforms.mc_true is not None:
            params['mc_true'] = waveforms.mc_true

        return params
def main():
    description = ('Obtain the correction factor for a charge extraction '
                   'approach defined in CHECLabPy with respect to the '
                   'CrossCorrelation method')
    parser = argparse.ArgumentParser(description=description,
                                     formatter_class=Formatter)
    parser.add_argument('-f',
                        '--file',
                        dest='input_path',
                        action='store',
                        required=True,
                        help='path to the runlist.txt file for '
                        'a dynamic range run')
    parser.add_argument('-r',
                        '--reducer',
                        dest='reducer',
                        action='store',
                        default='AverageWF',
                        choices=WaveformReducerFactory.subclass_names,
                        help='WaveformReducer to use')
    parser.add_argument('-c',
                        '--config',
                        dest='configuration',
                        help="""Configuration to pass to the waveform reducer
                        (Usage: '{"window_shift":6, "window_size":6}') """)
    args = parser.parse_args()
    config = {}
    if args.configuration:
        config = json.loads(args.configuration)

    output_dir = os.path.dirname(args.input_path)
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
        print("Created directory: {}".format(output_dir))

    df_runs = open_runlist_r1(args.input_path, open_readers=False)
    df_runs = df_runs.loc[(df_runs['pe_expected'] > 50)
                          & (df_runs['pe_expected'] < 100)]
    df_runs['reader'] = [ReaderR1(fp, 100) for fp in df_runs['path'].values]
    n_rows = df_runs.index.size

    first_reader = df_runs.iloc[0]['reader']
    n_pixels = first_reader.n_pixels
    n_samples = first_reader.n_samples
    mapping = first_reader.mapping
    if 'reference_pulse_path' not in config:
        config['reference_pulse_path'] = first_reader.reference_pulse_path
    pixel_aray = np.arange(n_pixels)

    reducer_dict = dict()
    reducers = ['CrossCorrelation', args.reducer]
    print("Investigating reducers: {}".format(reducers))
    print("Reducer Config: {}".format(config))
    for reducer_name in reducers:
        reducer = WaveformReducerFactory.produce(reducer_name,
                                                 n_pixels=n_pixels,
                                                 n_samples=n_samples,
                                                 extract_charge_only=True,
                                                 mapping=mapping,
                                                 **config)
        reducer_dict[reducer_name] = reducer

    df_list = []

    desc0 = "Looping over runs"
    it = enumerate(df_runs.iterrows())
    for i, (_, row) in tqdm(it, total=n_rows, desc=desc0):
        reader = row['reader']
        attenuation = row['fw_atten']
        baseline_subtractor = BaselineSubtractor(reader)
        n_events = reader.n_events
        desc1 = "Processing events"

        a = np.zeros((2048, n_samples))

        for waveforms in tqdm(reader, total=n_events, desc=desc1):
            iev = reader.index
            waveforms_bs = baseline_subtractor.subtract(waveforms)
            for reducer_name, reducer in reducer_dict.items():
                charge = reducer.process(waveforms_bs)['charge']
                df_list.append(
                    pd.DataFrame(
                        dict(
                            transmission=1 / attenuation,
                            iev=iev,
                            pixel=pixel_aray,
                            reducer=reducer_name,
                            charge=charge,
                        )))
    df = pd.concat(df_list)

    poi = 1920
    df_p = df.loc[df['pixel'] == poi]

    m_dict = {}
    p_scatter = Scatter("Transmission", "Charge (mV)")
    for reducer_name in reducers:
        df_r = df_p.loc[df_p['reducer'] == reducer_name]
        f = dict(charge=['mean', 'std'])
        df_agg = df_r.groupby('transmission').agg(f)
        x = df_agg.index.values
        y = df_agg['charge']['mean'].values
        yerr = df_agg['charge']['std'].values

        xp = df_r['transmission'].values
        yp = df_r['charge'].values
        c, m = polyfit(x, y, np.arange(1, 2))
        label = reducer_name + " (m={:.3f}, c(fixed)={:.3f})".format(m, c)

        p_scatter.add(x, y, yerr=yerr, m=m, c=c, fmt='o', label=label)

        m_dict[reducer_name] = m

    p_scatter.add_legend(loc='upper left')
    path = os.path.join(output_dir, "charge_corrections.pdf".format(poi))
    p_scatter.save(path)

    ref_reducer = 'CrossCorrelation'
    norm_gradient_dict = {
        n: float("{:.3f}".format(m_dict[ref_reducer] / v))
        for n, v in m_dict.items()
    }
    print(norm_gradient_dict)
    path = os.path.join(output_dir, "charge_corrections.yml")
    with open(path, 'w') as file:
        yaml.safe_dump(norm_gradient_dict, file, default_flow_style=False)
Esempio n. 9
0
def main():
    runlist_path = get_astri_2019("d2019-04-23_nudges/bright_50pe/runlist.txt")
    df_runlist = pd.read_csv(runlist_path, sep='\t')
    output = get_astri_2019("d2019-04-23_nudges/bright_50pe/charge.h5")

    with HDF5Writer(output) as writer:
        mapping = None
        for _, row in df_runlist.iterrows():
            run = row['run']
            nudge = int(row['nudge'])
            path = join(dirname(runlist_path), f"Run{run:05d}_r1.tio")
            reader = ReaderR1(path, max_events=500)
            mapping = reader.mapping

            kw = dict(
                n_pixels=reader.n_pixels,
                n_samples=reader.n_samples,
                mapping=reader.mapping,
                reference_pulse_path=reader.reference_pulse_path,
            )
            baseline_subtractor = BaselineSubtractor(reader)
            time_calibrator = TimeCalibrator()
            extractor_cc = CrossCorrelation(**kw)
            extractor_onsky_calib = OnskyCalibExtractor(**kw)
            extractor_onsky = OnskyExtractor(**kw)
            common = Common(**kw, _disable_by_default=True, waveform_max=True)

            pixel_array = np.arange(reader.n_pixels)

            monitor = get_nudge_and_temperature_from_reader(reader)
            nudge_from_dac, temperature = monitor
            assert nudge == nudge_from_dac

            desc = "Looping over file"
            for wfs in tqdm(reader, total=reader.n_events, desc=desc):
                iev = wfs.iev
                if wfs.stale.any():
                    continue

                wfs = time_calibrator(wfs)
                wfs = baseline_subtractor.subtract(wfs)

                cc = extractor_cc.process(wfs)['charge_cc']
                onsky_calib = extractor_onsky_calib.process(
                    wfs)['charge_onskycalib']
                onsky = extractor_onsky.process(wfs)['charge_onsky']
                waveform_max = common.process(wfs)['waveform_max']

                params = dict(
                    nudge=nudge,
                    nudge_from_dac=nudge_from_dac,
                    temperature=temperature,
                    iev=iev,
                    pixel=pixel_array,
                    cc=cc,
                    onsky_calib=onsky_calib,
                    onsky=onsky,
                    waveform_max=waveform_max,
                )

                df = pd.DataFrame(params)
                writer.append(df, key='data')

        writer.add_mapping(mapping)