Esempio n. 1
0
def pre_segmentation(options):
    """
    Infer segmentation given the input options passed as parameters
    """

    # define the training backend
    define_backend(options)

    from CNN.base import test_cascaded_model
    from CNN.build_model import cascade_model

    # --------------------------------------------------
    # net configuration
    # take into account if the pretrained models have to be used
    # all images share the same network model
    # --------------------------------------------------
    options['full_train'] = True
    options['load_weights'] = True
    options['weight_paths'] = os.path.join(CURRENT_PATH, 'nets')
    options['net_verbose'] = 0
    model = cascade_model(options)

    # --------------------------------------------------
    # process each of the scans
    # - image identification
    # - image registration
    # - skull-stripping
    # - WM segmentation
    # --------------------------------------------------

    # scan_list = os.listdir(options['test_folder'])
    # scan_list.sort()
    # # check and remove the folder which dose not contain the necessary modalities before prepossessing step
    # for check in scan_list:
    #    check_oututs(check, options)

    # update scan list after removing  the unnecessary folders before prepossessing step

    options['task'] = 'testing'
    scan_list = os.listdir(options['test_folder'])
    scan_list.sort()

    for scan in scan_list:

        total_time = time.time()
        options['tmp_scan'] = scan
        # --------------------------------------------------
        # move things to a tmp folder before starting
        # --------------------------------------------------

        current_folder = os.path.join(options['test_folder'], scan)
        options['tmp_folder'] = os.path.normpath(
            os.path.join(current_folder, 'tmp'))

        # --------------------------------------------------
        # preprocess scans
        # --------------------------------------------------
        preprocess_scan(current_folder, options)
    "> ERROR: The OS system", host_os, "is not currently supported"

from CNN.base import test_cascaded_model
from CNN.build_model import cascade_model

# --------------------------------------------------
# net configuration
# take into account if the pretrained models have to be used
# all images share the same network model
# --------------------------------------------------
options['full_train'] = True
options['load_weights'] = True
options['weight_paths'] = os.path.join(CURRENT_PATH, 'nets')
options['net_verbose'] = 0

model = cascade_model(options)

# --------------------------------------------------
# process each of the scans
# - image identification
# - image registration
# - skull-stripping
# - WM segmentation
# --------------------------------------------------

if container:
    options['test_folder'] = os.path.normpath('/data' + options['test_folder'])
else:
    options['test_folder'] = os.path.normpath(options['test_folder'])

# set task to train
Esempio n. 3
0
def train_network(options):
    """
    Train the CNN network given the options passed as parameter
    """

    # set GPU mode from the configuration file. Trying to update
    # the backend automatically from here in order to use either theano
    # or tensorflow backends
    from CNN.base import train_cascaded_model
    from CNN.build_model import cascade_model

    # define the training backend
    define_backend(options)

    scan_list = os.listdir(options['train_folder'])
    scan_list.sort()

    options['task'] = 'training'
    options['train_folder'] = os.path.normpath(options['train_folder'])
    for scan in scan_list:

        total_time = time.time()

        # --------------------------------------------------
        # move things to a tmp folder before starting
        # --------------------------------------------------

        options['tmp_scan'] = scan
        current_folder = os.path.join(options['train_folder'], scan)
        options['tmp_folder'] = os.path.normpath(
            os.path.join(current_folder, 'tmp'))

        # preprocess scan
        preprocess_scan(current_folder, options)

    # --------------------------------------------------
    # WM MS lesion training
    # - configure net and train
    # --------------------------------------------------

    seg_time = time.time()
    print "> CNN: Starting training session"
    # select training scans
    train_x_data = {
        f: {
            m: os.path.join(options['train_folder'], f, 'tmp', n)
            for m, n in zip(options['modalities'], options['x_names'])
        }
        for f in scan_list
    }
    train_y_data = {
        f: os.path.join(options['train_folder'], f, 'tmp', 'lesion.nii.gz')
        for f in scan_list
    }

    options['weight_paths'] = os.path.join(CURRENT_PATH, 'nets')
    options['load_weights'] = False

    # train the model for the current scan

    print "> CNN: training net with %d subjects" % (len(train_x_data.keys()))

    # --------------------------------------------------
    # initialize the CNN and train the classifier
    # --------------------------------------------------
    model = cascade_model(options)
    model = train_cascaded_model(model, train_x_data, train_y_data, options)

    print "> INFO: training time:", round(time.time() - seg_time), "sec"
    print "> INFO: total pipeline time: ", round(time.time() -
                                                 total_time), "sec"
    print "> INFO: All processes have been finished. Have a good day!"
Esempio n. 4
0
def infer_segmentation(options):
    """
    Infer segmentation given the input options passed as parameters
    """

    # define the training backend
    define_backend(options)

    from CNN.base import test_cascaded_model
    from CNN.build_model import cascade_model

    # --------------------------------------------------
    # net configuration
    # take into account if the pretrained models have to be used
    # all images share the same network model
    # --------------------------------------------------
    options['full_train'] = True
    options['load_weights'] = True
    options['weight_paths'] = os.path.join(CURRENT_PATH, 'nets')
    options['net_verbose'] = 0
    model = cascade_model(options)

    # --------------------------------------------------
    # process each of the scans
    # - image identification
    # - image registration
    # - skull-stripping
    # - WM segmentation
    # --------------------------------------------------
    options['task'] = 'testing'
    scan_list = os.listdir(options['test_folder'])
    scan_list.sort()

    for scan in scan_list:

        total_time = time.time()
        options['tmp_scan'] = scan
        # --------------------------------------------------
        # move things to a tmp folder before starting
        # --------------------------------------------------

        current_folder = os.path.join(options['test_folder'], scan)
        options['tmp_folder'] = os.path.normpath(
            os.path.join(current_folder, 'tmp'))

        # --------------------------------------------------
        # preprocess scans
        # --------------------------------------------------
        preprocess_scan(current_folder, options)

        # --------------------------------------------------
        # WM MS lesion inference
        # --------------------------------------------------
        seg_time = time.time()

        "> CNN:", scan, "running WM lesion segmentation"
        sys.stdout.flush()
        options['test_scan'] = scan

        test_x_data = {
            scan: {
                m: os.path.join(options['tmp_folder'], n)
                for m, n in zip(options['modalities'], options['x_names'])
            }
        }

        test_cascaded_model(model, test_x_data, options)
        print "> INFO:", scan, "CNN Segmentation time: ", round(
            time.time() - seg_time), "sec"
        print "> INFO:", scan, "total pipeline time: ", round(
            time.time() - total_time), "sec"

        # remove tmps if not set
        if options['save_tmp'] is False:
            try:
                os.rmdir(options['tmp_folder'])
                os.rmdir(
                    os.path.join(options['current_folder'],
                                 options['experiment']))
            except:
                pass

    print "> INFO: All processes have been finished. Have a good day!"
Esempio n. 5
0
def train_network(options):
    """
    Train the CNN network given the options passed as parameter
    """
    # set GPU mode from the configuration file.
    # So, this has to be updated before calling
    # the CNN libraries if the default config "~/.theanorc" has to be replaced.
    if options['mode'].find('cuda') == -1 and options['mode'].find(
            'gpu') == -1:
        os.environ[
            'THEANO_FLAGS'] = 'mode=FAST_RUN,device=cpu,floatX=float32,optimizer=fast_compile'
    else:
        os.environ['THEANO_FLAGS'] = 'mode=FAST_RUN,device=' + options[
            'mode'] + ',floatX=float32,optimizer=fast_compile'

    from CNN.base import train_cascaded_model
    from CNN.build_model import cascade_model

    scan_list = os.listdir(options['train_folder'])
    scan_list.sort()

    options['task'] = 'training'
    options['train_folder'] = os.path.normpath(options['train_folder'])
    for scan in scan_list:

        total_time = time.time()

        # --------------------------------------------------
        # move things to a tmp folder before starting
        # --------------------------------------------------

        options['tmp_scan'] = scan
        current_folder = os.path.join(options['train_folder'], scan)
        options['tmp_folder'] = os.path.normpath(
            os.path.join(current_folder, 'tmp'))
        # preprocess scan
        preprocess_scan(current_folder, options)

    # --------------------------------------------------
    # WM MS lesion training
    # - configure net and train
    # --------------------------------------------------

    seg_time = time.time()
    print "> CNN: Starting training session"
    # select training scans
    train_x_data = {
        f: {
            m: os.path.join(options['train_folder'], f, 'tmp', n)
            for m, n in zip(options['modalities'], options['x_names'])
        }
        for f in scan_list
    }
    train_y_data = {
        f: os.path.join(options['train_folder'], f, 'tmp', 'lesion.nii.gz')
        for f in scan_list
    }

    options['weight_paths'] = os.path.join(CURRENT_PATH, 'nets')
    options['load_weights'] = False

    # train the model for the current scan

    print "> CNN: training net with %d subjects" % (len(train_x_data.keys()))

    # --------------------------------------------------
    # initialize the CNN and train the classifier
    # --------------------------------------------------
    model = cascade_model(options)
    model = train_cascaded_model(model, train_x_data, train_y_data, options)

    print "> INFO: training time:", round(time.time() - seg_time), "sec"
    print "> INFO: total pipeline time: ", round(time.time() -
                                                 total_time), "sec"
    print "> INFO: All processes have been finished. Have a good day!"
Esempio n. 6
0
def infer_segmentation(options):
    """
    Infer segmentation given the input options passed as parameters
    """

    # set GPU mode from the configuration file. So, this has to be updated before calling
    # the CNN libraries if the default config "~/.theanorc" has to be replaced.
    if options['mode'].find('cuda') == -1 and options['mode'].find(
            'gpu') == -1:
        os.environ[
            'THEANO_FLAGS'] = 'mode=FAST_RUN,device=cpu,floatX=float32,optimizer=fast_compile'
    else:
        os.environ['THEANO_FLAGS'] = 'mode=FAST_RUN,device=' + options[
            'mode'] + ',floatX=float32,optimizer=fast_compile'

    from CNN.base import test_cascaded_model
    from CNN.build_model import cascade_model

    # --------------------------------------------------
    # net configuration
    # take into account if the pretrained models have to be used
    # all images share the same network model
    # --------------------------------------------------
    options['full_train'] = True
    options['load_weights'] = True
    options['weight_paths'] = os.path.join(CURRENT_PATH, 'nets')
    options['net_verbose'] = 0
    model = cascade_model(options)

    # --------------------------------------------------
    # process each of the scans
    # - image identification
    # - image registration
    # - skull-stripping
    # - WM segmentation
    # --------------------------------------------------
    options['task'] = 'testing'
    scan_list = os.listdir(options['test_folder'])
    scan_list.sort()

    for scan in scan_list:

        total_time = time.time()
        options['tmp_scan'] = scan
        # --------------------------------------------------
        # move things to a tmp folder before starting
        # --------------------------------------------------

        current_folder = os.path.join(options['test_folder'], scan)
        options['tmp_folder'] = os.path.normpath(
            os.path.join(current_folder, 'tmp'))

        # --------------------------------------------------
        # preprocess scans
        # --------------------------------------------------
        preprocess_scan(current_folder, options)

        # --------------------------------------------------
        # WM MS lesion inference
        # --------------------------------------------------
        seg_time = time.time()

        "> CNN:", scan, "running WM lesion segmentation"
        sys.stdout.flush()
        options['test_scan'] = scan

        test_x_data = {
            scan: {
                m: os.path.join(options['tmp_folder'], n)
                for m, n in zip(options['modalities'], options['x_names'])
            }
        }

        test_cascaded_model(model, test_x_data, options)
        print "> INFO:", scan, "CNN Segmentation time: ", round(
            time.time() - seg_time), "sec"
        print "> INFO:", scan, "total pipeline time: ", round(
            time.time() - total_time), "sec"

        # remove tmps if not set
        if options['save_tmp'] is False:
            try:
                os.rmdir(options['tmp_folder'])
                os.rmdir(
                    os.path.join(options['current_folder'],
                                 options['experiment']))
            except:
                pass

    print "> INFO: All processes have been finished. Have a good day!"
Esempio n. 7
0
def infer_segmentation(options):
    """
    Infer segmentation given the input options passed as parameters
    """

    # define the training backend
    define_backend(options)

    from CNN.base import test_cascaded_model
    from CNN.build_model import cascade_model

    # --------------------------------------------------
    # net configuration
    # take into account if the pretrained models have to be used
    # all images share the same network model
    # --------------------------------------------------
    options['full_train'] = True
    options['load_weights'] = True
    options['weight_paths'] = os.path.join(CURRENT_PATH, 'nets')
    options['net_verbose'] = 0
    model = cascade_model(options)

    # --------------------------------------------------
    # process each of the scans
    # - image identification
    # - image registration
    # - skull-stripping
    # - WM segmentation
    # --------------------------------------------------

    # scan_list = os.listdir(options['test_folder'])
    # scan_list.sort()
    # # check and remove the folder which dose not contain the necessary modalities before prepossessing step
    # for check in scan_list:
    #    check_oututs(check, options)

    # update scan list after removing  the unnecessary folders before prepossessing step

    options['task'] = 'testing'
    scan_list = os.listdir(options['test_folder'])
    scan_list.sort()

    for scan in scan_list:

        total_time = time.time()
        options['tmp_scan'] = scan
        # --------------------------------------------------
        # move things to a tmp folder before starting
        # --------------------------------------------------

        current_folder = os.path.join(options['test_folder'], scan)
        options['tmp_folder'] = os.path.normpath(
            os.path.join(current_folder, 'tmp'))

        # --------------------------------------------------
        # preprocess scans
        # --------------------------------------------------
        # preprocess_scan(current_folder, options)

        # --------------------------------------------------
        # WM MS lesion inference
        # --------------------------------------------------
        seg_time = time.time()

        print("> CNN:", scan, "running WM lesion segmentation")
        sys.stdout.flush()
        options['test_scan'] = scan

        test_x_data = {
            scan: {
                m: os.path.join(options['tmp_folder'], n)
                for m, n in zip(options['modalities'], options['x_names'])
            }
        }

        test_cascaded_model(model, test_x_data, options)

        if options['register_modalities']:
            # print("> INFO:", scan, "Inverting lesion segmentation masks")
            print(CYELLOW + "Inverting lesion segmentation masks:",
                  CRED + scan + CEND, ".....started!" + CEND)
            invert_registration(current_folder, options)

        print("> INFO:", scan, "CNN Segmentation time: ",
              round(time.time() - seg_time), "sec")
        print("> INFO:", scan, "total pipeline time: ",
              round(time.time() - total_time), "sec")

        # remove tmps if not set
        if options['save_tmp'] is False:
            try:
                os.rmdir(options['tmp_folder'])
                os.rmdir(
                    os.path.join(options['current_folder'],
                                 options['experiment']))
            except:
                pass

    print("> INFO: All processes have been finished.")